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Introduction

➢ Previously, two types of relationships among traffic flow characteristics were 
discussed:
1. The flow-speed-density relationship or the identity:

𝑞 = 𝑘 × 𝑣

• An identity is an equality that holds true regardless of the values chosen for its 
variables. They are often used in simplifying or rearranging algebra expressions: 

𝑥 + 𝑦 2 = 𝑥2 + 𝑦2 + 2𝑥𝑦.

• It is location specific and time specific, that is, flow, speed, and density must 

refer to the same location and time : 𝑞(𝑡, 𝑥) = 𝑘(𝑡, 𝑥) × 𝑣(𝑡, 𝑥)
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Introduction

➢ Previously, two types of relationships among traffic flow characteristics 
were discussed:
2. Pairwise relationships or equilibrium models:

These relations:
• Define the fundamental diagram
• They are location specific—that is, different locations and roads may 

have different underlying fundamental diagrams
• They are equilibrium models— that is, they describe a steady-state 

behavior in the long run, and hence are not specific to a particular time
• Such relationships are only of statistical significance—that is, the equal 

signs do not strictly hold in the real world. 

➔
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Traffic flow theory - Objective

➢ The main purpose of formulating a traffic flow theory is to help better understand 
traffic flow and, by the application of such knowledge, to control traffic for safer 
and more efficient operations.

➢ Hence, a good theory should be able to help answer the following questions:

• Given existing traffic conditions on a road and upstream arrivals, how do road traffic 
conditions change over time?

• Where are the bottlenecks, if any?

• In the case of congestion, how long does it last and how far do queues spill back?

• If an incident occurs, what is the best strategy so that the impact on traffic is minimized?

➢ Answers to these questions involve the analysis of dynamic change of traffic states 
over time and space.

➢ The equilibrium models are capable only of describing traffic states and do not 
provide a mechanism to analyze how such states evolve.

➢ This chapter introduces dynamic models to address these questions.
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The Continuity Equation

➢ The derivation of a dynamic equation starts with the examination of a small volume 
of roadway traffic as a continuum.

➢ Here traffic flow is treated as a one-dimensional compressible fluid like a gas.

➢ Conservation laws apply to this kind of fluid.

➢ The first-order form of conservation is mass conservation, also known as the 
continuity equation.

➢ Here, we introduce 3 different perspectives to derive the continuity equations:
• Derivation 1 – Finite Difference,
• Derivation 2 – Fluid Dynamics,
• Derivation 3: Three-Dimensional Representation of Traffic Flow.
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Derivation 1 – Finite Difference

➢ Suppose a highway section is delineated by two observation stations at 𝑥1 and 𝑥2.

➢ Let ∆𝑥 = 𝑥2 − 𝑥1denote the section length.

➢ During time interval ∆𝑡 = 𝑡2 − 𝑡1, 𝑁1 vehicles passed 𝑥1and 𝑁2 vehicles passed 𝑥2. 
Therefore, the flow rates at these locations are:

➢ The change in the number of vehicles in the section is

Road section to derive 
the continuity equation

,
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➢ Since vehicles cannot be created or destroyed inside the section, 
the change in the number of vehicles should be the same in the 
same section during the same time interval.
Therefore, ∆𝑁 = ∆𝑀—that is:

➢ Dividing both sides by ∆𝑥∆𝑡, we get:

➔

Derivation 1 – Finite Difference

➢ Assume the traffic densities in the section at 𝑡1 and 𝑡2 are 𝑘1 and 𝑘2, respectively.

➢ Therefore, there are 𝑀1 = 𝑘1∆𝑥 vehicles in the section at time 𝑡1 and 𝑀2 = 𝑘2∆𝑥
vehicles in the section at time 𝑡2 .

➢ The change in the number of vehicles in the section can be expressed as

Road section to derive 
the continuity equation

∆𝑥 → 0

∆𝑡 → 0
➔ ➔
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Derivation 2: Fluid Dynamics

➢ Figure illustrates a small fluid cube of size 𝛿𝑥 × 𝛿𝑦 × 𝛿𝑧

➢ The fluid velocity 𝑣 and density 𝑘 at two sides of the cube also are shown.

Small fluid cube to derive 
the continuity equation

➢ The mass flow into the cube is 𝑣𝑘𝛿𝑦𝛿𝑧.

➢ The mass flow out of the cube is:

➢ The mass stored in the cube is equivalent to the mass that 
flows in minus mass that flows out:
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Derivation 2: Fluid Dynamics

➢ If we ignore the higher-order term, we have:

➢ Similar treatment applies to the other two directions of the cube, so the total mass 
stored in the cube is:

Small fluid cube to derive 
the continuity equation

➢ The mass stored in the cube must be balanced by the 
change of mass in the cube:

➢ The law of mass conservation requires that:

➔
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Derivation 2: Fluid Dynamics

➢ Highway traffic constitutes a special case of the above 
situation with only one dimension: 

Small fluid cube to derive 
the continuity equation

➢ Note that 𝑞 = 𝑘𝑣. Therefore:
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Derivation 3: Three-Dimensional Representation

➢ As discussed previously, the surface which represents the cumulative 
number of vehicles, 𝑁, can be expressed as a function of time 𝑡 and 
space 𝑥—that is, 𝑁 = 𝑁(𝑡, 𝑥).

➢ The density at time-space point (𝑡, 𝑥) is the first partial derivative of 
𝑁(𝑡, 𝑥) with respect to 𝑥, but takes a negative value:

➢ The flow at (𝑡, 𝑥) is the first partial derivative of 𝑁(𝑡, 𝑥) with respect to 
𝑡:

Cumulative flow function 𝑁(𝑥, 𝑡)

Alizadeh H. (2022) École Polytechnique de Montréal– CIV6705 Autumn 2022 11



Derivation 3: Three-Dimensional Representation

➢ If both the flow and the density have first-order derivatives:

➢ Then:

➔

Cumulative flow function 𝑁(𝑥, 𝑡)
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First-Order Dynamic Model

➢ Traffic evolution is the process of how traffic states (e.g., flow 𝑞, speed 𝑣, and density 
𝑘) evolve over time 𝑡 and space x given some initial conditions (e.g., 𝑘0 =
𝑘(0, 𝑥))and boundary conditions (e.g., 𝑞(𝑡) = 𝑞(𝑡, 𝑥0)).

➢ One recognizes that time 𝑡 and space 𝑥 are independent variables and traffic states 
are dependent variables—that is, they are functions of time and space (𝑞 =
𝑞(𝑡, 𝑥), 𝑣 = 𝑣(𝑡, 𝑥), 𝑘 = 𝑘(𝑡, 𝑥)).

➢ The continuity equations derived before dynamically relate the change of flow 𝑞𝑥 to 
the change of density 𝑘𝑡

➢ This equation contains two unknown variables 𝑞(𝑡, 𝑥) and 𝑘(𝑡, 𝑥). Since the number 
of unknown variables is greater than the number of equations, the problem is 
underspecified. Because of this, another simultaneous equation is needed.

➢ Hopefully, the identity comes handy: 
𝑞(𝑡, 𝑥) = 𝑘(𝑡, 𝑥) × 𝑣(𝑡, 𝑥)
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First-Order Dynamic Model

➢ By adding this new equation, we introduce a third unknown variable— that is, speed 𝑣(𝑡, 𝑥).

➢ Therefore, a third simultaneous equation is called for. 

➢ We are unable to find a third governing equation that holds for any time and space.

➢ Consequently, we have to accept the (less-than-ideal) option by looking at equilibrium 
traffic flow models (e.g., the Greenshields model), which are known to hold only statistically. 
Such a model takes the form of:

➢ Putting everything together, one obtains a system of three equations involving three 
unknown variables:

➢ If initial and boundary conditions are provided, the above system of equations may be 
solvable.

➢ One can determine the traffic state at an arbitrary time-space point (𝑡, 𝑥)—that is, 𝑞(𝑡, 𝑥), 
𝑣(𝑡, 𝑥), and 𝑘(𝑡, 𝑥). and answer the questions posed at the beginning of this section.

➢ However, solving such a system of equations is not easy!
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Wave Phenomena

➢ Waves are everywhere in the real world.
• In a pond
• A football stadium
• Shaking a rope

➢ A wave is the propagation of a disturbance in a medium over time and space.

➢ If we apply the notion to a platoon of vehicles on a highway, when one of the 
vehicles brakes suddenly and then resumes its original speed, subsequent vehicles 
will be affected successively.

➢ The propagation of such a disturbance is a wave, and the traffic is the medium. 

WavesTraffic waves on a highway
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Mathematical Representation

➢ Waves are described by partial differential equations (PDEs). For example:

➢ Note that:
• If a dependent variable 𝑘 is a function of independent variables 𝑡 and 𝑥, we 

write 𝑘 = 𝑘(𝑡, 𝑥) and we denote its partial derivatives with respect to 𝑥 and 𝑡
as follows:

• A PDE for 𝑘(𝑡, 𝑥) is an equation that involves one or more partial derivatives of 
𝑘 with respect to 𝑡 and 𝑥, for example:
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Mathematical Representation

➢ PDEs can be classified on the basis of their order, homogeneity, and linearity:

Order

➢ The order of a PDE is the order of the highest partial derivative in the equation.
For example:

➢ A first-order PDE can be expressed in the following general form:

• Where 𝑃, 𝑄, and 𝑅 are coefficients, and they may be functions of 𝑡, 𝑥, and 𝑘.

Homogeneity

➢ A first-order PDE 𝑃(𝑡, 𝑥, 𝑘)𝑘𝑡 + 𝑄(𝑡, 𝑥, 𝑘)𝑘𝑥 = 𝑅(𝑡, 𝑥, 𝑘) is
• homogeneous if 𝑅(𝑡, 𝑥, 𝑘) = 0;
• nonhomogeneous if 𝑅(𝑡, 𝑥, 𝑘) = 0.
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Mathematical Representation

Linearity

➢ In the above general first-order PDE, if both 𝑃 and 𝑄 are independent of 𝑘, that is, 𝑃 =
𝑃 𝑡, 𝑥 , 𝑄 = 𝑄 𝑡, 𝑥 , and
• If 𝑅 is also independent of 𝑘—that is, 𝑅 = 𝑅(𝑡, 𝑥)—then the PDE is strictly linear. For example, 

2𝑥𝑘𝑡 + 3𝑘𝑥 = 5𝑡. 
• If 𝑅 is linearly dependent on 𝑘—that is, 𝑅 = 𝑅(𝑡, 𝑥, 𝑘)—then the PDE is linear. For example, 

2𝑥𝑘𝑡 + 3𝑘𝑥 = 5𝑘 + 3.
• If 𝑅 is dependent on 𝑘 in a nonlinear manner, then the PDE is semi-linear. For example, 

2𝑥𝑘𝑡 + 3𝑘𝑥 = 𝑒𝑘 .

➢ If 𝑃 or 𝑄 is dependent on 𝑘, or both 𝑃 and 𝑄 are dependent on 𝑘, that is, 𝑃 = 𝑃(𝑡, 𝑥, 𝑘), 𝑄 =
𝑄(𝑡, 𝑥, 𝑘), and 𝑅 = 𝑅(𝑡, 𝑥, 𝑘), then the PDE is quasilinear. For example,
𝑘𝑡 + (3𝑘 + 2)𝑘𝑥 = 0.

➢ A PDE is nonlinear if it involves cross terms of 𝑘 and its derivatives, for example,
𝑘𝑡𝑘𝑥 + 𝑘 = 2.
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Traveling Waves

➢ Many PDEs have solutions in a traveling wave form : 𝑘 𝑡, 𝑥 =
𝑓 𝑥 − 𝑐𝑡

➢ Figure illustrates two instants of the traveling wave, 𝑓 (𝑥 − 𝑐𝑡0) and 
𝑓 (𝑥 − 𝑐𝑡1).

➢ Note that:

1. The traveling wave preserves its shape 

2. The wave at time 𝑡1 is simply a horizontal translation of its initial 
profile at time 𝑡0

➢ If 𝑐 is a positive constant, wave 𝑘(𝑡, 𝑥) = 𝑓 (𝑥 − 𝑐𝑡) travels to the 
right over time, while wave 𝑘(𝑡, 𝑥) = 𝑓 (𝑥 + 𝑐𝑡) moves to the left. A traveling wave

Alizadeh H. (2022) École Polytechnique de Montréal– CIV6705 Autumn 2022 19



Traveling Wave Solutions

➢ To solve the following wave equation where 𝑎 is a constant :
➢ Assume that a solution to the above wave equation takes a traveling form 𝑘(𝑡, 𝑥) =

𝑓 (𝑥 − 𝑐𝑡). Let 𝑧 = 𝑥 − 𝑐𝑡. Then:

➢ Similarly:

➢ Plugging the above expressions into the wave equation, one obtains:

➢ There are two ways for the left-hand side to be 0:

1. If 𝑐2 − 𝑎 = 0, then 𝑘(𝑡, 𝑥) = 𝑓 (𝑥 ± 𝑎𝑡), where 𝑓 can take any functional 
form. 

2. If 𝑓 = 0, then 𝑘(𝑡, 𝑥) = 𝐴 + 𝐵(𝑥 − 𝑐𝑡), where 𝐴 and 𝐵 are arbitrary 
constants. 
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Wave Front And Pulse

➢ A traveling wave is called a wave front if:

➢ A traveling wave is called a pulse if 𝑘1 = 𝑘2

A wave front
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General Solution to Wave Equations

➢ As previously mentioned, the wave equation in one dimension is expressed by: 

➢ Many wave equations have a general solution in the form of superposition of 
traveling waves:

➢ Note that even though each of the terms on the right-hand side is a traveling wave, 
their superposition may not necessarily be.

Alizadeh H. (2022) École Polytechnique de Montréal– CIV6705 Autumn 2022 22



General Solution to Wave Equations

Method of change of variables:

➔

𝜕2𝑢

𝜕𝑡2
= 𝑎

𝜕2𝑢

𝜕𝑥2

Define two
new 
coordinates

𝑟 = 𝑥 + 𝑐𝑡, 𝑠 = 𝑥 − 𝑐 𝑡𝑢𝑡𝑡 = 𝑐2𝑢𝑥𝑥 ➔

Converting our
partial derivatives in 

t and x to partial 
derivatives in r and s 
using the chain rule

➔

𝜕𝑢

𝜕𝑥
=

𝜕𝑢

𝜕𝑟

𝜕𝑟

𝜕𝑥
+

𝜕𝑢

𝜕𝑠

𝜕𝑠

𝜕𝑥

𝜕𝑢

𝜕𝑡
=

𝜕𝑢

𝜕𝑟

𝜕𝑟

𝜕𝑡
+

𝜕𝑢

𝜕𝑠

𝜕𝑠

𝜕𝑡

𝜕𝑢

𝜕𝑥
=

𝜕𝑢

𝜕𝑟
+

𝜕𝑢

𝜕𝑠
➔

𝜕𝑢

𝜕𝑡
= 𝑐

𝜕𝑢

𝜕𝑟
− 𝑐

𝜕𝑢

𝜕𝑠

Apply the chaine rule
again to find the second 

derivatives

𝜕2𝑢

𝜕𝑥2
=
𝜕2𝑢

𝜕𝑟2
𝜕𝑟

𝜕𝑥
+

𝜕2𝑢

𝜕𝑠𝜕𝑟

𝜕𝑠

𝜕𝑥
+

𝜕2𝑢

𝜕𝑟𝜕𝑠

𝜕𝑟

𝜕𝑥
+
𝜕2𝑢

𝜕𝑠2
𝜕𝑠

𝜕𝑥
=
𝜕2𝑢

𝜕𝑟2
+ 2

𝜕2𝑢

𝜕𝑠𝜕𝑟
+
𝜕2𝑢

𝜕𝑠2
➔

𝜕2𝑢

𝜕𝑡2
= 𝑐

𝜕2𝑢

𝜕𝑟2
𝜕𝑟

𝜕𝑡
+ 𝑐

𝜕2𝑢

𝜕𝑠𝜕𝑟

𝜕𝑠

𝜕𝑡
− 𝑐

𝜕2𝑢

𝜕𝑟𝜕𝑠

𝜕𝑟

𝜕𝑡
− 𝑐

𝜕2𝑢

𝜕𝑠2
𝜕𝑠

𝜕𝑡

= 𝑐2
𝜕2𝑢

𝜕𝑟2
− 2𝑐2

𝜕2𝑢

𝜕𝑠𝜕𝑟
+ 𝑐2

𝜕2𝑢

𝜕𝑠2

➔

Plug into
the wave
equation:

➔ 𝑐2
𝜕2𝑢

𝜕𝑟2
− 2𝑐2

𝜕2𝑢

𝜕𝑠𝜕𝑟
+ 𝑐2

𝜕2𝑢

𝜕𝑠2
= 𝑐2

𝜕2𝑢

𝜕𝑟2
+ 2

𝜕2𝑢

𝜕𝑠𝜕𝑟
+
𝜕2𝑢

𝜕𝑠2
➔ 4𝑐2

𝜕2𝑢

𝜕𝑠𝜕𝑟
= 0 ➔

𝜕2𝑢

𝜕𝑠𝜕𝑟
= 0
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General Solution to Wave Equations

Method of change of variables:

➔
𝜕2𝑢

𝜕𝑠𝜕𝑟
= 0

Integrate
with

respect to r

𝜕𝑢

𝜕𝑠
= ℎ(𝑠)
h is a pure 

function of s

Integrate
with

respect to s
➔ ➔

𝑢 = 𝑓 𝑟 + 𝑔(𝑠)

The anti-
derivative of 

h(s)

f is a pure 
function of r

𝑟 = 𝑥 + 𝑐𝑡, 𝑠 = 𝑥 − 𝑐 𝑡
We also

had: ➔

The general
solution to the 
wave equation

𝑢 𝑥, 𝑡 = 𝑓 𝑥 + 𝑐𝑡 + 𝑔(𝑥 − 𝑐 𝑡)

Suppose we choose
a fixed point f(0) on 

the function f.
𝑥 + 𝑐𝑡 = 0 ➔ 𝑥 = −𝑐𝑡

time

Wave
speed

So as time increases, 
the horizontal position 
of f(0) goes backwards

➔

Since f(0) has a fixed
value, a point of fixed

value is moving
backwards in space

In fact, all the othe
points such as f(1), f(-

1),etc. are also moving
backwards at the same

speed

➔ ➔ 𝑓 𝑥 + 𝑐𝑡

Backward
travelling wave

With the same logic ➔ 𝑔(𝑥 − 𝑐 𝑡)
Forward travelling 

wave

➔
The general solution to the wave equation is a backward

travelling wave supperposed by a forward travelling wave
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D'Alembert Solution to the Wave Equation

Solution in a specific infinite one-dimensional domain

➔

𝜕2𝑢

𝜕𝑡2
= 𝑎

𝜕2𝑢

𝜕𝑥2
𝑢𝑡𝑡 = 𝑐2𝑢𝑥𝑥

−∞ < 𝑥 < +∞, 𝑡 > 0
No explicit boundary 

conditions

𝑢 𝑥, 0 = 𝑢0(𝑥)

ቤ
𝜕𝑢

𝜕𝑡
𝑡=0

= 𝑣0(𝑥)

Some initial 
displacement

Some initial velocity

Solution

𝑢 𝑥, 𝑡 = 𝑓 𝑥 + 𝑐𝑡 + 𝑔(𝑥 − 𝑐 𝑡)
The general 

solution to the 
wave equation

➔

f and g are unknowns
Substitute the 

initial conditions

𝑢 𝑥, 0 = 𝑓 𝑥 + 𝑐0 + 𝑔 𝑥 − 𝑐 0 = 𝑓 𝑥 + 𝑔 𝑥

𝜕𝑢

𝜕𝑡
= 𝑓’ 𝑥 + 𝑐𝑡 𝑐 + 𝑔’(𝑥 − 𝑐 𝑡)(−𝑐)

𝑁𝑜𝑡𝑒 𝑡ℎ𝑎𝑡:
𝜕𝑓 𝑔 𝑥

𝜕𝑥
= 𝑓’(𝑔(𝑥))𝑔’(𝑥)

(1)

➔
(2)

ቤ
𝜕𝑢

𝜕𝑡
𝑡=0

= 𝑣0 𝑥 = 𝑐𝑓’ 𝑥 − 𝑐𝑔’(𝑥)➔

Integrate from 
𝑥0 to 𝑥

න
𝑥0

𝑥

𝑣0 𝑠 𝑑𝑠 = 𝑐 𝑓 𝑥 − 𝑓(𝑥0) − 𝑐 𝑔 𝑥 − 𝑔(𝑥0)
Dummy integration variable

1

𝑐
න
𝑥0

𝑥

𝑣0 𝑠 𝑑𝑠 + 𝑓 𝑥0 + 𝑔 𝑥0 = 𝑓 𝑥 − 𝑔 𝑥➔

(𝐴)

(𝐵)
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D'Alembert Solution to the Wave Equation

Solution in a specific infinite one-dimensional domain

𝐴 + (𝐵)
➔

And replace x by x+ct to 
get an expression for the 

backwards travelling wave

𝑓 𝑥 + 𝑐𝑡 =
1

2
𝑢0 𝑥 + 𝑐𝑡 +

1

2𝑐
න
𝑥0

𝑥+𝑐𝑡

𝑣0 𝑠 𝑑𝑠 +
𝑓 𝑥0 − 𝑔 𝑥0

2

𝐴 − (𝐵)
➔

And replace x by x-ct to get 
an expression for the 

forward travelling wave

𝑔 𝑥 − 𝑐𝑡 =
1

2
𝑢0 𝑥 − 𝑐𝑡 −

1

2𝑐
න
𝑥0

𝑥−𝑐𝑡

𝑣0 𝑠 𝑑𝑠 +
𝑔 𝑥0 − 𝑓 𝑥0

2

𝑢 𝑥, 𝑡 = 𝑓 𝑥 + 𝑐𝑡 + 𝑔 𝑥 − 𝑐 𝑡 =
1

2
𝑢0 𝑥 + 𝑐𝑡 + 𝑢0 𝑥 − 𝑐𝑡 +

1

2𝑐
න
𝑥−𝑐𝑡

𝑥+𝑐𝑡

𝑣0 𝑠 𝑑𝑠
The general 

solution to the 
wave equation

𝑢 𝑥, 𝑡 =
1

2
𝑢0 𝑥 + 𝑐𝑡 + 𝑢0 𝑥 − 𝑐𝑡 +

1

2𝑐
න
𝑥−𝑐𝑡

𝑥+𝑐𝑡

𝑣0 𝑠 𝑑𝑠
D'Alembert Solution to the 

Wave Equation
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Characteristics

➢ Therefore, it has been shown that if:
The solution takes the following form:

➢ Applying the above conclusion, one notices that the solution 
𝑘 at an arbitrary time-space point (𝑡∗, 𝑥∗) is:

➢ The above equation suggests that the solution at an 
arbitrary point (𝑡∗, 𝑥∗) can be determined by 
➢ The initial condition at points (0, 𝑥∗ − 𝑐𝑡∗) and (0, 𝑥∗ + 𝑐𝑡∗)
➢ And, the interval 𝐼 bounded by the two points (inclusive)—

that is, 𝐼 = [𝑥∗ − 𝑐𝑡∗, 𝑥∗ + 𝑐𝑡∗]. 

➢ This is illustrated in the left part of the Figure . Therefore, 
the interval 𝐼 is called the domain of dependence of point 
(𝑡∗, 𝑥∗).

Characteristics
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Characteristics

➢ Notice that in the left part of the figure, the two lines 
coming from point (𝑡∗, 𝑥∗) intersecting the 𝑥-axis at 
(0, 𝑥∗ − 𝑐𝑡∗) and (0, 𝑥∗ + 𝑐𝑡∗) have slopes 𝑐 and −𝑐. 
These two lines are called characteristic lines or simply 
characteristics.

Characteristics

➢ The term “range of influence” refers to a 
collection of time-space points whose 
solutions are influenced either completely or 
partially by the domain of dependence 𝐼; see 
the shaded area in the right part of the figure.

➢ When                        ,    the solution of the wave equation 
reduces to:

➢ This shows that the value of 𝑘 at (𝑡, 𝑥) depends only on 
the initial values of 𝑘 at two points, 𝑥1 = 𝑥 − 𝑐𝑡 and 
𝑥2 = 𝑥 + 𝑐𝑡.

➢ Once the initial values 𝑘(0, 𝑥 − 𝑐𝑡) and 𝑘(0, 𝑥 + 𝑐𝑡) are 
known, one constructs the solution 𝑘 at (𝑡, 𝑥) by taking 
the average of 𝑘(0, 𝑥1) and 𝑘(0, 𝑥2).
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Characteristics

Example
➢ Use characteristics to solve the following wave equation:

Solution
➢ In this equation, the traveling wave speed 𝑐 = ±2—that is, 𝑘(𝑡, 𝑥) =

𝑓(𝑥 ± 2𝑡).

➢ First, construct an 𝑥 − 𝑡 plane.

➢ Locate points 0 and 1 on the x-axis.

➢ Then draws two characteristics (their slopes are ±2) from each of the two 
points.

➢ The four characteristics partition the 𝑥 − 𝑡 plane into six regions as labeled 
in Figure.

Solution using method of characteristics
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Characteristics

Example
➢ Use characteristics to solve the following wave equation:

Solution
➢ Take an arbitrary point (𝑡0, 𝑥0).

➢ The solution at this point is found by drawing two characteristics from this 
point.

➢ Then find the intersections of the two characteristics on the 𝑥-axis.

➢ Next, find the 𝑘 values at the two intersections. In this case the 𝑘 values 
are 1 and 0.

➢ Then the solution 𝑘 at point (𝑡0, 𝑥0) is the average of the 𝑘 values at the 
two intersections, that is, 𝑘 𝑡0, 𝑥0 = 1/2.

Solution using method of characteristics
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Characteristics

Example
➢ Use characteristics to solve the following wave equation:

Solution
➢ With use of a similar technique, the solution in other regions can be 

determined.

Solution using characteristics
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Method of Characteristics

➢ Let’s consider a very simple PDE derived from the conservation law with an initial 
condition:

➢ If one assumes 𝑞 = 𝑐𝑘, where c is a constant, then 𝑞𝑥 = 𝑐𝑘𝑥, and the PDE can be 
defined as follows:

➢ The goal is to find a solution to this PDE ➔ This is equivalent of finding the value of 
𝑘 at an arbitrary time-space point, 𝑘(𝑡, 𝑥).

➢ Rather than working on an arbitrary point in the entire time-space plane, one starts 
with a simpler case by working on a point on a specific curve in the time-space 
plane.

➢ To do this, let’s assume a curve 𝑥 = 𝑥(𝑡).

(𝐴)
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Method of Characteristics

➢ Therefore, the new goal is to find the value of 𝑘 at an arbitrary point (𝑡, 𝑥(𝑡)) on the 

curve—that is, 𝑘 𝑡, 𝑥 𝑡 , and examine how 𝑘 changes along the curve 𝑥 = 𝑥(𝑡).

➢ The rate of change of 𝑘 with time is the first derivative of 𝑘 with respect to time 𝑡; 
that is:

➢ Comparing (𝐴) and (𝐵) we have:

➢ This means that the total time derivative of 𝑘 along the curve 𝑥 = 𝑥(𝑡) is zero ➔
The value of 𝑘 is constant along the curve.

➢ This implies that the curve 𝑥 = 𝑥(𝑡) needs to be drawn such that it is a straight line 
with slope of 𝑐.

(𝐵)

➔
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Method of Characteristics

➢ To find the equation of the line, we need to solve the following ordinary differential 
equation:

➢ At time 𝑡 = 0, this line intersects the 𝑥-axis at 𝑥0.

➢ Since 𝑘 remains constant along this line, the solution 𝑘 at any point on this line, 
𝑘(𝑡, 𝑥(𝑡)), is the same as 𝑘(0, 𝑥0) = 𝑘(𝑥0), which is given in the initial condition.

➢ Therefore, we have found the solution for all points on this line. Such a line is called 
a characteristic.
It is the same as the characteristic previously explained, where it is a line drawn 
from a time-space point with slope c, which is the speed of the traveling wave 
𝑓 (𝑥 − 𝑐𝑡).

➢ Since a characteristic denotes a set of time-space points on which the solution of 𝑘
remains constant, 𝑘 may be multivalued at the intersection of two characteristics. 
Such an occurrence is called a gradient catastrophe.

Integrate with 
respect to t

Alizadeh H. (2022) École Polytechnique de Montréal– CIV6705 Autumn 2022 34



Method of Characteristics

Recap
➢ the method of characteristics was discussed as a means to solve the 

continuity equation (i.e., conservation law) with an initial condition:

➢ Where 𝑞 = 𝑄(𝑘) is a function of 𝑘:

➢ To find the solution of 𝑘 at an arbitrary time-space point (𝑡∗, 𝑥∗), 𝑘(𝑡∗, 𝑥∗), 
one simply constructs a characteristic 𝑥 = 𝑐𝑡 + 𝑥0 which starts from 
(𝑡∗, 𝑥∗) and extends back to the x-axis at intercept (0, 𝑥∗ − 𝑐𝑡∗).

➢ Since 𝑘((0, 𝑥∗ − 𝑐𝑡∗)) = 𝑘0(𝑥
∗ − 𝑐𝑡∗) is given in the initial condition and 𝑘

remains constant along the characteristic, the solution is:
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Gradient Catastrophes

➢ In this solution, if 𝑐 is constant, characteristics drawn from two different 
time-space points remain straight, parallel lines.
• Hence, any time-space point lies on one and only one characteristic, and 

the solution at this point is single valued.

➢ However, if 𝑐 is a function of 𝑘, 𝑐 = 𝑐(𝑘), and not explicitly dependent 
on 𝑥 or 𝑡, two different characteristics drawn from two time-space 
points are still straight lines but they may not necessarily be parallel, in 
which case they may intersect and the solution at this intersection may 
be multivalued.

A gradient catastrophe

Solution profile illustrating 
gradient catastrophe 
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Gradient Catastrophes

➢ As the two characteristics become closer and closer, the gradient of the 
solution profile (red curves above the characteristics) becomes 
increasingly steep.

➢ At the intersection of two characteristics (point 𝐶), the solution profile 
will have an infinite gradient at this point.

➢ The formation of such an infinite gradient is called a gradient 
catastrophe.

➢ The time when infinite gradient occurs is called the break time 𝑡𝑏.

➢ After this point, the solution profile ceases to be a valid function, and 
the solution beyond the break time will be problematic.

➢ In this section, we are trying to address such an issue.

A gradient catastrophe

Solution profile illustrating 
gradient catastrophe 
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Gradient Catastrophes

➢ The example below (left) illustrates a family of characteristics moving closer and 
closer over time, so they form a compression wave.

➢ The opposite case is a family of characteristics moving farther and farther apart 
without any intersection; such a wave is called an expansion wave.

Compression wave Expansion wave
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Shock Waves

➢ if two characteristics intersect, the solution at the intersection will be 
multivalued.

➢ However, if one allows discontinuity at the intersection, it is possible to 
construct a piecewise smooth solution.

The solution is 
multivalued.

Piecewise solution—shock wave

➢ Figure illustrates such a solution where curve 𝑥𝑠 (𝑡) in the 𝑥 − 𝑡
plane is a collection of characteristic intersections. 

➢ The solution remains constant along each characteristic and 
terminates at their intersection.

➢ Therefore, the curve partitions the solution space into two parts 
𝑅− and𝑅+ and, consequently, separates the solution into two 
smooth pieces 𝑆− and 𝑆+.

➢ The drop or discontinuity of 𝑘 at the curve denotes an abrupt 
change of 𝑘 which creates a shock wave.

➢ Such a piecewise smooth solution of the partial differential 
equation (PDE) is called a shock wave solution.
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Shock Waves

➢ A critical step in the shock wave solution is to find the curve 
𝑥𝑠(𝑡) which connects the intersections of characteristics.

➢ Since the curve represents the locations at which a shock wave 
forms, such a curve is called a shock path.

➢ In Figure, two families of characteristics are illustrated where a 
characteristic may have multiple intersections.

➢ Hence, many curves can be drawn by connecting different sets 
of intersections and ➔ the shock wave may take different 
paths.

Shock path

Piecewise solution—shock wave
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Shock Waves

➢ Fortunately, the underlying conservation law ensures that only 
one shock path is valid, and such a shock path must satisfy a 
physical condition called the Rankine-Hugonoit jump condition:

Where :
• 𝑑𝑥𝑠 dt is the slope of the shock path,
• 𝑞 = 𝑄(𝑘) as defined in the conservation law,
• 𝑘(𝑡, 𝑥𝑠

− ) takes the 𝑘 value on the 𝑅− side,
• 𝑘(𝑡, 𝑥𝑠

+) takes the 𝑘 value on the𝑅+side,
• and similar notation applies to 𝑞(𝑡, 𝑥𝑠

−) and 𝑞(𝑡, 𝑥𝑠
+).

➢ Therefore, if one or more intersections on curve 𝑥𝑠(𝑡) are 
known, one can construct the shock path by starting from the 
known points and following the slope defined above.

Shock path

Piecewise solution—shock wave
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Shock Waves

Example
➢ solve the conservation law with the following initial condition using the shock 

waves method:
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Shock Waves

Solution

➢ The slope of the characteristics is 𝑐 = 𝑑𝑞/𝑑𝑘 = 𝑘

➢ Therefore, characteristics drawn below x = 0 are straight, 
parallel lines with slope 𝑐 = 𝑘 = 1➔ 𝑞 = 1/2𝑘2 = 1/2

➢ Similarly, characteristics drawn above 𝑥 = 0 are horizontal 
lines with slope 𝑐 = 0. They carry 𝑘 = 0, and hence 𝑞 = 0.

➢ The origin is a known point on the shock path. According to the 
Rankine-Hugonoit jump condition, the slope of the shock path 
is:

➢ Therefore, the shock path is a straight line which starts from the 
origin with constant slope 1/2—that is: 

Problem:
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Shock Waves

Solution

➢ Therefore, the solution is:

➢ The solution is illustrated in Figure.

➢ Few concepts discussed before are illustrated: 

➢ A characteristic is a line along which the solution 𝑘
remains constant;

➢ A kinematic wave is a family of straight, parallel 
characteristics, and a shock wave separates two 
kinematic waves with an abrupt change of the 𝑘 value;

➢ A shock path is the projection of shock locations onto 
the 𝑥 − 𝑡 plane.

Illustration of the solution
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Rarefaction Waves

➢ If the initial condition in the above example is reversed the two 
families of characteristics go farther and farther apart, leaving 
an empty wedge-shaped area in between.

➢ Characteristics of this PDE are drawn in the Figure.

➢ Since a characteristic carries a constant k solution, areas swept 
by characteristics will have solutions.

➢ An empty area in the solution space means there is no solution 
in this area.

➢ To resolve this issue, there should be a means to fill the empty 
area with characteristics.

Characteristics without an intersection
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Rarefaction Waves

➢ If one relaxes the step function of the initial condition by assuming that 𝑘0
varies smoothly from 0 to 1 over a small distance ∆𝑥, the slopes of 
characteristics drawn in ∆𝑥 will gradually increase from 0 to 1 so that any 
point in the solution space is swept by one and only one characteristic.

➢ To return to the step function of the initial condition, one takes the limit 
∆𝑥 → 0. 

➢ Now the empty area is filled with a fan of characteristics drawn from the 
origin. If one cuts the solution space with a few planes 𝑡 = 𝑡0, 𝑡1, 𝑡2, …, 
with 𝑡0 passing the origin and other planes at consequently later times, 
one obtains a time development of the solution as shown in Figure 7.11. 
Notice that the profile of the solution is thinned out or rarefied as time 
moves on. Hence, this fan of characteristics represents a rarefaction wave.

Characteristics 
without an 
intersection

Filling an 
empty area 
with 
characteristics

A rarefaction 
wave
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