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Introduction
 It is reasonable to assume that drivers will on average make the same decisions 

under the same average conditions.

 If drivers are driving in a traffic flow that has a certain speed 𝑢𝑢, they will on average 
remain the same distance headway 𝑠𝑠 with respect to the preceding vehicle.

 This implies that if we would consider a stationary traffic flow, it is reasonable to 
assume that there exists some relation between
• the traffic density 𝑘𝑘 and the mean speed 𝑣𝑣,
• and between the density and the flow, or the flow and the speed.

 This relation is sometimes referred to as the equilibrium relation and is expressed 
as:

𝑞𝑞 = 𝑘𝑘 × 𝑣𝑣
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Introduction
 Analogy to fluid dynamics: The traffic flow is similar to the flow of fluids and the 

traffic state is described based on speed 𝑣𝑣, density 𝑘𝑘 and flow 𝑞𝑞. 

 It depends on
• The different properties of the road (width of the lanes, grade),
• The composition of the flow (percentage of trucks, fraction of commuters, 

experienced drivers, etc.),
• External conditions (weather and ambient conditions),
• Traffic regulations,
• etc.

 This chapter introduces the concept of the fundamental diagram and the 
relationship between macroscopic characteristics of traffic.

Alizadeh H. (2024) École Polytechnique de Montréal– CIV6705 Autumn 2024 3



Introduction
 Image illustrates the data captured by a video camera in 

Georgia NaviGAtor, Georgia’s intelligent transportation system.
 As discussed before, traffic data can be extracted from video 

images by means of image processing.
 A virtual detector has been placed in each lane.
 Collected data:

• Aggregated volume over 20s periods
• Occupancy
• Speed
• Average vehicle length
• Density
• Gap 

An image captured by video cameras 
from NaviGAtor data collection system
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Introduction
 The plots are generated with use of traffic data collected at a 

fixed location.
 One-year worth of field observations aggregated to 5 min (i.e., 

each point in the figure represents the traffic condition observed 
in 5 min).

 The traffic speed here is the time mean speed since it is 
impossible to calculate the space mean speed from aggregated 
point sensor data.

 Density is estimated from flow and speed (The exact method is 
not described).

 Therefore, such plots are location specific—that is, plots 
generated from different locations may differ.

 Time information is lost in the figure  One could not deduce 
the time when a data point was observed.

 As such, the figure actually depicts an equilibrium or steady-state 
relationship  models of such a relationship without a 
reference to time are termed “equilibrium models” or “steady-
state models.”

Observed q-k-v relationships from 
NaviGAtor data collection system
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Introduction
 Each plot exhibits a trend which suggests a pairwise 

relationship among flow, speed, and density.
 For example, the top-left plot reveals a decreasing 

relationship between speed and density with two 
intercepts intuitively known.

 One intercept represents a scenario where there are very 
few vehicles on the road (i.e., 𝑘𝑘 →  0). Hence, one may 
drive at the desired speed without being blocked by a slow 
driver (𝑣𝑣 →  𝑣𝑣𝑓𝑓, the free-flow speed).

 The other intercept corresponds to a scenario where 
everyone rushes home. As such, the road is jammed (𝑘𝑘 →
 𝑘𝑘𝑗𝑗, the jam density), resulting in a stop-and-go condition 
(𝑣𝑣 →  0).

 Numerous functions have been proposed to establish the 
relationship between speed and density.

Observed q-k-v relationships from 
NaviGAtor data collection system
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The Greenshields Model
 Greenshields proposed the use of a linear function to summarize 

the speed-density relationship.
 First fundamental diagram to describe traffic flow conditions.
 The Greenshields function can be completely determined from 

knowledge of two points on the line:
• 𝑘𝑘 =  0, 𝑣𝑣 =  𝑣𝑣𝑓𝑓
• 𝑘𝑘 = 𝑘𝑘𝑗𝑗 , 𝑣𝑣 =  0

 The speed-density 𝑣𝑣 − 𝑘𝑘 relationship can be expressed as:

 Combining the identity 𝑞𝑞 =  𝑘𝑘 ×  𝑣𝑣 and eliminating 𝑣𝑣, one can 
derive the flow-density 𝑞𝑞 − 𝑘𝑘 relationship implied by the 
Greenshields model:

The Greenshields model
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Special points of the fundamental diagram
 It is interesting to note a few special points on the curve.
 When the density is close to zero (𝑘𝑘 →  0), the flow drops to 

zero (𝑞𝑞 →  0) since the road is almost empty
 When the road is jammed (𝑘𝑘 = 𝑘𝑘𝑗𝑗), the flow also becomes 

zero (𝑞𝑞 =  0) because no one can move.
 Starting from the origin (𝑘𝑘 =  0, 𝑞𝑞 =  0), flow increases as 

density increases.
 This trend continues until, at some point (𝑘𝑘 =  𝑘𝑘𝑚𝑚), the flow 

peaks (𝑞𝑞 =  𝑞𝑞𝑚𝑚  =
𝑣𝑣𝑓𝑓𝑘𝑘𝑗𝑗
4

 ).
 After this point, the flow begins to drop as the density 

continues to increase, and the flow becomes zero (𝑞𝑞 =  0) 
when the density reaches the jam density (𝑘𝑘 = 𝑘𝑘𝑗𝑗).

 In this notation,𝑞𝑞𝑚𝑚 is the maximum flow – that is, the capacity 
– and 𝑘𝑘𝑚𝑚is the optimal (critical) density – that is, the density 
when the flow peaks.

The Greenshields model
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Special points of the fundamental diagram
 The Greenshields model

 When the flow is close zero (𝑞𝑞 →  0), two scenarios are 
possible:

1. The road is nearly empty and the few vehicles on the road can 
move at freeflow speed (𝑣𝑣 →  𝑣𝑣𝑓𝑓);

2. The road is jammed, so that no one can move (𝑣𝑣 →  0).

 Entering a given flow value less than the capacity into the 
equation will normally result in two speeds:

1. A lower one, which corresponds to a worse traffic condition.
2. A higher one, corresponding to a better traffic condition. When 

the flow reaches capacity (𝑞𝑞 =  𝑞𝑞𝑚𝑚), the two speeds become 
one, which is called the optimal (critical) speed, 𝑣𝑣𝑚𝑚.

The Greenshields model
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Special points of the fundamental diagram
 Note that the three pairwise relationships – that is, the speed-density, flow-density, 

and speed-flow relationships – reflect different facets of the flow-speed-density 
relationship.

 Hence, they have different applications in traffic flow theory. For example:
 The speed-density relationship relates a driver’s speed choice to the concentration of 

vehicles around the driver. Therefore, the relationship is typically used in traffic flow 
theory to understand how drivers adjust their speeds in response to traffic in their 
vicinity – that is, modeling drivers’ car-following behavior.

 As will be seen later, the flow-density relationship is convenient for explaining the 
propagation of disturbances in traffic flow (such as waves and their velocities) and, 
hence, is frequently used in dynamic traffic flow modeling.

 Anyone who is familiar with highway capacity and level of service (LOS) will 
immediately recognize that the speed-flow relationship is extensively used by traffic 
engineers to perform highway capacity analysis and determine the LOS on freeways and 
multilane highways.

The Greenshields model
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Single-regime models
 Greenshields model is simple and elegantly depicts the 

relation between speed 𝑣𝑣, density 𝑘𝑘 and flow 𝑞𝑞.
 Empirical observations reveal that the model suffers 

from a lack of accuracy.
 For example, the model predicts that the capacity 

(𝑞𝑞𝑚𝑚) occurs at half the jam density (𝑘𝑘𝑚𝑚 =  1/2𝑘𝑘𝑗𝑗).
 If an average vehicle length of 6 m is assumed, the jam 

density would be somewhere around 1000/6 ≈  164 
𝑣𝑣𝑣𝑣𝑣/𝑘𝑘𝑘𝑘. Half of this number is 82 𝑣𝑣𝑣𝑣𝑣/𝑘𝑘𝑘𝑘.

 However, field observations suggest that 𝑘𝑘𝑚𝑚 is most 
likely in the range of 25 − 40 𝑣𝑣𝑣𝑣𝑣/𝑘𝑘𝑘𝑘.

 Also, unlike the way that speed decreases linearly with 
density, field observations show that free-flow speed 
can be sustained up to a density of about 15 
𝑣𝑣𝑣𝑣𝑣/𝑘𝑘𝑘𝑘 before a noticeable speed drop can be 
observed. The Greenshields model and empirical data
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Single-regime models

Single-regime models and empirical data

 Inspired by Greenshields’s pioneering work, many 
models were proposed subsequently to formulate 
speed-density relationships with various degrees of 
fitting quality.

Single-regime models
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Single-regime models

Single-regime models and empirical data

 All these models are one equation models, meaning 
that the models apply to the entire range of density. 
Hence, these models are called single-regime 
models.

Single-regime models

Alizadeh H. (2024) École Polytechnique de Montréal– CIV6705 Autumn 2024 13



Single-regime models
 Single-regime models such as the Greenshields model, the Greenberg Model, etc. 

are typically simple because they involve few parameters.

 In addition, in these models, the derivatives of flow with respect to density 
𝑑𝑑𝑞𝑞/𝑑𝑑𝑘𝑘 exist at each point in the entire range of density. This makes these models 
mathematically appealing because 𝑑𝑑𝑞𝑞/𝑑𝑑𝑘𝑘 can be very useful later in dynamic 
macroscopic modeling such as in solving the LWR model.

 Moreover, these macroscopic models are closely related to a family of microscopic 
car-following models.

 These models typically suffer from poor fitting quality.
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Multi-regime models
 It seems that none of these single-regime models are able to fit the empirical 

observations reasonably well over the entire density range.
• Some models are good in one density range, while others are superior in 

another range.
 The inability of single-regime models to perform well over the entire range of 

density prompted researchers to think about fitting the data in a piecewise manner 
using multiple equations.

 This gave rise to multi-regime models.

The Greenshields model and empirical data

Multi-regime models

 They fit better to empirical data 
compared to single-regime models, 
but their piecewise formulation 
makes them less attractive.
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Multi-regime models

Multi-regime models and empirical data

Multi-regime models

Edie model

Source: https://www.desmos.com/calculator
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Multi-regime models
 Smulders introduced the following equations:

• 𝑢𝑢0 is the free-flow speed,
• 𝑘𝑘𝑗𝑗 is the jam density,
• 𝑘𝑘𝑐𝑐 is the critical density (i.e. 𝑘𝑘𝑚𝑚).

 𝛾𝛾 follows from the requirement that 𝑢𝑢(𝑘𝑘) is continuous 
at point 𝑘𝑘 = 𝑘𝑘𝑐𝑐  

Smulders’ fundamental diagram

 𝛾𝛾 = 𝑢𝑢0𝑘𝑘𝑐𝑐 
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Concept of discontinuous diagram
 Edie was the first researcher to indicate the possibility of 

a discontinuity in the diagram around the capacity point.

 This idea is based on the observation that a traffic 
stream with increasing density (starting from stable or 
free flow) reaches a higher capacity value (‘free flow 
capacity’, 𝑞𝑞𝑐𝑐𝑐) than a traffic stream starting from a 
congested state (in the extreme case from a standing 
queue) that ends in the so called ‘queue discharge 
capacity’, 𝑞𝑞𝑐𝑐2.

 This idea also called ‘capacity drop’.

Fundamental diagram with discontinuity
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Wu’s fundamental diagram with capacity drop
 Wu has developed a model for the diagram with a capacity drop, based on assumptions about 

microscopic behaviour.
 In this model two regimes are distinguished: free flow and congested flow.
 Free flow has densities from 𝑘𝑘 =  0 up to 𝑘𝑘 =  𝑘𝑘𝑐. Congested flow has a density range from 

𝑘𝑘 = 𝑘𝑘2 up to the jam density 𝑘𝑘𝑗𝑗. Both regimes are overlapping in terms of density range, i.e. 
𝑘𝑘𝑐 > 𝑘𝑘2.

Main assumption for free flow state
 In this state it is assumed the traffic flow is a mixture of free driving vehicles with mean speed 

𝑢𝑢0 and platoons with speed 𝑢𝑢𝑝𝑝 . If the fraction of free driving vehicles (in terms of density) is 
𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, then the fraction of vehicles in platoon is (1 −  𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓), and the overall space mean 
speed equals:

 𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =  1  𝑢𝑢 = 𝑢𝑢0 for 𝑘𝑘 =  0 and 𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓=  0  𝑢𝑢 = 𝑢𝑢𝑝𝑝 for 𝑘𝑘 =  𝑘𝑘𝑐
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Wu’s fundamental diagram with capacity drop
 If we suppose (it can be also be argued based on queueing theory) that for a two-

lane roadway (for one-directional traffic) 𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓decreases linearly with density: 

 For a three-lane roadway: 

 In general the exponent equals the number of lanes minus 1, i.e. for 𝑛𝑛 lanes

 This function implies that 𝑢𝑢(𝑘𝑘) starts flatter if the roadway has more lanes.
 At density 𝑘𝑘𝑐 every vehicle drives in a platoon with speed 𝑢𝑢𝑝𝑝. This implies a 

relation between the net time headway, 𝑣𝑛𝑛𝑓𝑓𝑛𝑛𝑛𝑛
𝑓𝑓 , in this platoon, the effective vehicle 

length (1/𝑘𝑘𝑗𝑗) and speed.
 Given parameters 𝑢𝑢𝑝𝑝 and 𝑘𝑘𝑗𝑗 , either 𝑣𝑛𝑛𝑓𝑓𝑛𝑛𝑛𝑛

𝑓𝑓 or 𝑘𝑘𝑐 is a free parameter of the model.
 Wu has chosen 𝑣𝑛𝑛𝑓𝑓𝑛𝑛𝑛𝑛

𝑓𝑓 because it can be observed in practice more easily than 𝑘𝑘𝑐, 
especially if it is assumed that 𝑣𝑛𝑛𝑓𝑓𝑛𝑛𝑛𝑛

𝑓𝑓 is a constant parameter for all free flow states.
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Wu’s fundamental diagram with capacity drop
Assumption for congested flow state
 In congested flow every vehicle is (more or less) in a car-following state and 

maintains a constant net time headway, 𝑣𝑛𝑛𝑓𝑓𝑛𝑛𝑛𝑛𝑐𝑐 , over the density range 𝑘𝑘2 < 𝑘𝑘 < 𝑘𝑘𝑗𝑗

 This assumption implies a straight line for the congested part of the function 𝑞𝑞(𝑘𝑘). 
Hence in this aspect the model is the same as Daganzo’s and Smulders’.

 Parameter 𝑘𝑘2 : This parameter can be determined by assuming that the maximum 
speed of the congested state is at most equal to the speed that corresponds to 100 
percent platooning at free flow state:
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Wu’s fundamental diagram with capacity drop
 Example: Typical values for a two-lane roadway with 100 % cars are:

• 𝑢𝑢0 =  free flow speed =  110 𝑘𝑘𝑘𝑘/𝑣;
• 𝑢𝑢𝑝𝑝 =  speed of free flow platoon =  80 𝑘𝑘𝑘𝑘/𝑣;
• 𝑘𝑘𝑗𝑗 =  jam density =  150 𝑣𝑣𝑣𝑣𝑣/𝑘𝑘𝑘𝑘; 
• 𝑣𝑛𝑛𝑓𝑓𝑛𝑛𝑛𝑛

𝑓𝑓 =  net time headway in free flow platoon =  1.2 𝑠𝑠;
• and, 𝑣𝑛𝑛𝑓𝑓𝑛𝑛𝑛𝑛𝑐𝑐 =  net time headway at congested flow =  1.6 𝑠𝑠.

 Because the net time headway at free flow is smaller than at congestion the two branches of 
the fundamental diagram in the 𝑢𝑢 − 𝑘𝑘 plane do not coincide.
In the example the free flow capacity is 2400 𝑣𝑣𝑣𝑣𝑣/𝑣 and the discharge capacity 1895 𝑣𝑣𝑣𝑣𝑣/
𝑣 (21 % less).

 Capacity drops found in practice are usually smaller.

Note: The capacity drop offers a substantial possible benefit of ramp metering. If one can control 
the input flows such that the flow on the freeway does stay below, say, 2200 𝑣𝑣𝑣𝑣𝑣/𝑣 𝑝𝑝𝑣𝑣𝑝𝑝 𝑙𝑙𝑙𝑙𝑛𝑛𝑣𝑣, 
then most of the time the smaller discharge capacity is not relevant.
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The State-of-the-Art Models
 Further research emphasizes single-regime models, which are mostly 

coupled with the development of microscopic car-following models.
 Details of these car-following models and their associated equilibrium 

models will be discussed later in this course.

Newell Nonlinear Model
 The Newell nonlinear model involves three parameters and takes the following 

form:

• 𝑣𝑣𝑓𝑓 is the free-flow speed,
• 𝑘𝑘𝑗𝑗 is the jam density,
• 𝜆𝜆 is the slope of the speed-spacing curve.
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The State-of-the-Art Models
Del Castillo and Benítez Model

 Also involving three parameters, the model of del Castillo and Benítez takes the 
following form:

• 𝑣𝑣𝑓𝑓 is the free-flow speed,
• 𝑘𝑘𝑗𝑗 is the jam density,
• 𝐶𝐶𝑗𝑗is the kinematic wave speed at the jam density.

Alizadeh H. (2024) École Polytechnique de Montréal– CIV6705 Autumn 2024 24



The State-of-the-Art Models
Van Aerde Model

 The Van Aerde model involves four parameters 
and takes the following form:

• 𝑣𝑣𝑓𝑓 is the free-flow speed,
• 𝑣𝑣𝑚𝑚 is the optimal speed,
• 𝑞𝑞𝑚𝑚 is the capacity,
• 𝑘𝑘𝑗𝑗 is the jam density.
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The State-of-the-Art Models
Intelligent Driver Model

 The intelligent driver model involves four parameters 
and takes the following form:

• 𝑣𝑣𝑓𝑓 is the free-flow speed,
• 𝑠𝑠0 is the jam distance,
• 𝑇𝑇 is the safe time headway,
• 𝛿𝛿 is the acceleration exponent.
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The State-of-the-Art Models
Longitudinal Control Model

 The longitudinal control model involves four parameters and takes the following form:

• 𝑣𝑣𝑓𝑓 is the free-flow speed,
• 𝑙𝑙 = 𝑐

𝑘𝑘𝑗𝑗
is the nominal vehicle length, which is the reciprocal of the jam density 𝑘𝑘𝑗𝑗,

• 𝜏𝜏 is the perception-reaction time,
• 𝛾𝛾 is the aggressiveness.
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The State-of-the-Art Models
 To illustrate their features, the above models are fitted to 

empirical data.
 The following general principles apply when one is fitting the 

models:
1. Fix the free-flow speed 𝑣𝑣𝑓𝑓 of all the models to roughly the same 

value observed in the data,
2. Fix the jam density 𝑘𝑘𝑗𝑗  of all the models to roughly the same value 

observed in the data,
3. Fix the capacity to roughly the same value observed in the data by 

tweaking the remaining parameters

State-of-the-art models fitted to empirical data

Model parameters
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Stochastic Models
 Though all relationships presented above take 

deterministic forms, the actual relationships are 
essentially quite stochastic.

 For example, a speed-density relationship may predict 
that when the density 𝑘𝑘 is 12 𝑣𝑣𝑣𝑣𝑣/𝑘𝑘𝑘𝑘, the speed 𝑣𝑣 will 
be 96 𝑘𝑘𝑘𝑘/𝑣.

 However, in reality, the observed speed may vary over a 
certain range, forming a distribution.

 Figure illustrate the scattering effect of empirical 
observations and how deterministic models fail to 
capture such an effect. Deterministic Speed-Density relationship
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Stochastic Models
 A step forward in modeling the speed-density relationship is to 

consider the scattering effect by representing speed as a 
distribution at each density level.

 Empirical observations seem to support such a proposition.

 For example, the observed mean and standard deviation of the 
speed-density relationship are plotted in the figure below.

 Hence, the deterministic speed-density relationship in the form 
𝑣𝑣 =  𝑓𝑓(𝑘𝑘) may be replaced by the following one in generic 
form:  𝑣𝑣 =  𝑓𝑓 𝑘𝑘,𝜔𝜔 𝑘𝑘 ,

• where 𝜔𝜔 is a distribution parameter dependent (at least) on 
density 𝑘𝑘.

 In this model, since speed is a distribution at each density level, 
the model is essentially a stochastic one.

Three-dimensional representation of the 
speed-density relationship

Mean and variance of the speed-density relationship
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Fundamental diagram based on a car-following model
 Consider a situation in which vehicle 𝑖𝑖 drives behind vehicle 𝑖𝑖 −  1. Vehicle 𝑖𝑖 

considers a gross distance headway of 𝑠𝑠𝑖𝑖. Both vehicles have the same speed 
𝑣𝑣. Driver 𝑖𝑖 includes the following in determination of the gross distance 
headway:

1. Vehicle 𝑖𝑖 −  1 may suddenly brake and come to a complete stop,
2. Driver 𝑖𝑖 has a reaction time of 𝑇𝑇𝑓𝑓 seconds,
3. Braking is possible with a deceleration of 𝑙𝑙 (with 𝑙𝑙 >  0),
4. When coming to a full stop behind the preceding vehicle, the net distance 

headway between the vehicles 𝑖𝑖 −  1 and 𝑖𝑖 is at least 𝑑𝑑0,
5. The deceleration of the vehicle 𝑖𝑖 −  1 is 𝛼𝛼 times the deceleration of vehicle 𝑖𝑖.

 It should be clear that the parameter 𝛼𝛼 is somehow a measure for the 
aggressiveness of the driver: larger values of 𝛼𝛼 imply that the follower 
assumes more abrupt deceleration of the follower, which will result in larger 
distance headways. 

𝑖𝑖 −  1 𝑖𝑖
𝑣𝑣 𝑣𝑣

𝑠𝑠𝑖𝑖
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Fundamental diagram based on a car-following model
 To calculate the minimal distance 𝑠𝑠𝑖𝑖 to the leader of vehicle 𝑖𝑖:

 If we assume that 𝑠𝑠0 =  𝐿𝐿 + 𝑑𝑑0
(gross stopping distance headway = vehicle length + safety distance margin)
then we have:

The gross distance headway + 
braking distance of the leader

length of the follower + security margin + 
reaction distance + braking distance follower=
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Fundamental diagram based on a car-following model
 To transform this microscopic relation into a macroscopic description of traffic flow, we 

need to make the following substitutions: 
• Replace the gross distance headway 𝑠𝑠𝑖𝑖 by the inverse of the density 1/𝑘𝑘,
• Replace the individual speed 𝑣𝑣𝑖𝑖 by the flow speed 𝑢𝑢,
• Replace the gross stopping distance headway 𝑠𝑠0 by the inverse of the jam density 1/𝑘𝑘𝑗𝑗.

 We get

 Since 𝑞𝑞 =  𝑘𝑘𝑢𝑢, we get the following expression for the relation between flow and speed:
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Fundamental diagram based on a car-following model
 The 𝑢𝑢 –  𝑞𝑞 relation is depicted
 Note that the speed is not restricted in this model

 We can determine the speed 𝑢𝑢𝑐𝑐 for which capacity results 
by taking the derivative of 𝑞𝑞 with respect to 𝑢𝑢 and setting 
it to zero:

Flow - speed curve derived from simple 
car-following model
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Fundamental diagram based on a car-following model
 We can also express 𝑞𝑞𝑐𝑐 as a function of 𝛼𝛼, 𝑇𝑇𝑓𝑓,𝑘𝑘𝑗𝑗 and determine 

the effect of changes in the parameters on the capacity:

• The reaction time 𝑇𝑇𝑓𝑓
• The jam-density 𝑘𝑘𝑗𝑗 
• The braking deceleration 𝑙𝑙

(improved braking system)
• The parameter 𝛼𝛼 is closer to 1

(drivers are less cautious)

Road capacity

 It turns out that as time goes by, capacity increases steadily.
 For example, in the USA the capacity has increases from 2000 𝑣𝑣𝑣𝑣𝑣/𝑣 (in 1950) to 

2400 𝑣𝑣𝑣𝑣𝑣/𝑣 (in 2000) under ideal circumstances.
 Using the derived model, we can (partially) explain this 20% increase. 
 We can thus explain the capacity increase by a decrease in 𝛼𝛼 (drivers are more daring and 

are more experienced), a shorter reaction time 𝑇𝑇𝑓𝑓 and higher deceleration capacity 𝑙𝑙.
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General points
 If one wants to determine the fundamental diagram for a road section the following points 

are relevant:
 Does one need the complete diagram or only a part of it; e.g. only the free operation part 

(𝑘𝑘 < 𝑘𝑘𝑘𝑘) or only the congestion branch. A more fundamental point is whether it is 
possible to determine the complete diagram at one cross-section.

 Is the road section homogeneous? If this is the case, one can do with observations at a 
single cross-section. Otherwise road characteristics are variable over the section and a 
method such as the moving observer might be suitable.

 Period of analysis: If this is chosen too short, random fluctuations will have too much 
influence; if it is too long then it is questionable whether the state of the flow is stationary 
over the period. In practice the balance between randomness and stationarity has led to 
periods of 5 to 15 minutes.

 Finally, one has to estimate the parameters of the model chosen. This is mostly done by 
using a regression technique. A given set of data points can often be used to fit quite a few 
different models. In general models without too many parameters are preferred.
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Data collection location
 To obtain a representative fundamental diagram one has to carry out 

measurements at various sites and during different periods.
 This will be illustrated with the data one can get when taking measurement 

around an overloaded bottle-neck.
 This phenomena is depicted for a roadway of 3 lanes with a bottle-neck (b-n) 

section of 2 lanes wide.

Traffic flow conditions at different cross-sections for an 
under and oversaturated bottle-neck

 Measurements will be carried out at 4 cross-sections:
A. This cross section is so far upstream that congestion 

due to an overloading of the b-n will not reach it.
B. This cross-section is closer to the b-n and congestion 

will reach it.
C. A cross-section inside the b-n.
D. A cross-section downstream of the b-n.
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Data collection location
 The fundamental diagrams of Greenshields have been 

assumed to hold for all cross-sections.
 They are the same for cross-sections 𝐴𝐴, 𝐵𝐵 and 𝐷𝐷. For cross-

section 𝐶𝐶 the form is similar, but the capacity and jam density 
are 2/3 of the values at 𝐴𝐴.

 We assume that the intensity increases gradually from a low 
value to a value that is just a little smaller than the capacity of 
the b-n; this capacity is 2𝐶𝐶0 with 𝐶𝐶0 =  𝑘𝑘𝑙𝑙𝑝𝑝𝑙𝑙𝑘𝑘𝑖𝑖𝑐𝑐𝑐𝑐 𝑜𝑜𝑓𝑓 𝑜𝑜𝑛𝑛𝑣𝑣 𝑙𝑙𝑙𝑙𝑛𝑛𝑣𝑣. 
The data points resulting from such a demand pattern are 
depicted as ∗ in the diagrams.

 At cross-section 𝐴𝐴, 𝐵𝐵 and 𝐷𝐷 intensity is not higher than 2/3 of 
the capacity. This means free operations with high speeds.

 At cross-section 𝐶𝐶 the capacity is nearly reached.
 Now we assume demand increases further until a value that 

equals 2.5 times 𝐶𝐶0 and discuss which data points we will get 
on the 4 cross-sections.

Traffic flow conditions at different cross-sections for an 
under and oversaturated bottle-neck
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Data collection location
 𝑨𝑨: It has been assumed that congestion will not reach this 

cross-section, so the state of the flow remains free. The data 
points, depicted by open circles, are in a range of 4000 to 
5000 vehicles per hour and speeds remain high.

 𝑩𝑩: When the higher demand reaches the beginning of the b-
n, congestion will start, move upstream and reach cross-
section B after some time. Before that moment data points 
are still on the free flow part of the diagram and afterwards 
on the congestion part. The flow then equals (on average) the 
capacity of the b-n and the mean speed equals the speed 
corresponding to this flow according to the congested part of 
the diagram.

 𝑪𝑪: In the b-n, flow is limited to the capacity value of the b-n.
 𝑫𝑫: Here the flow is not larger than 2𝐶𝐶0 because the b-n does 

not let through more vehicles and traffic operation remains 
free. Traffic flow conditions at different cross-sections for an 

under and oversaturated bottle-neck
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Data collection location
 When demand is reduced to low values the process will 

develop in reverse order.
 Looking to the total results it appears that at cross-section A 

and D only free traffic operation can be observed.
 In the b-n one can observe the free flow part of the diagram.
 Most information about the diagram is seen at cross-section B.
 It should be realized that also here the information about the 

congested part of the diagram is rather limited. To collect data 
about the complete congested part of the diagram, one 
requires a b-n with a capacity varying from zero to, in this case, 
3𝐶𝐶0.

 The site of data collection determines which traffic flow states 
one can observe. 

 Only in a bottle-neck one can observe a long-lasting capacity 
state. If one wants to estimate capacity and has observations 
carried out at sites not being a bottle-neck, some form of 
extrapolation is always required.

Traffic flow conditions at different cross-sections for an 
under and oversaturated bottle-neck
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Capacity and the effect of rain
 Roadway (with a length of 4 km) with three lanes near Rotterdam under two 

conditions: 
• Dry and fair weather,
• Rainy conditions.

Speed – flow in dry weather Speed – flow in rainy weather

Characteristics of 
the capacity state
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Calibration of Macroscopic Traffic Flow Models
 The traffic models discussed thus far can be used to determine 

specific characteristics, such as the speed and density at which 
maximum flow occurs, and the jam density of a facility.

 This usually involves collecting appropriate data on the particular 
facility of interest and fitting a suitable model to the collected 
data points.

 The most common method of approach is regression analysis. This 
is done by minimizing the squares of the differences between the 
observed and expected values of a dependent variable.

 When the dependent variable is linearly related to the 
independent variable, the process is known as linear regression 
analysis.

 When the relationship is with two or more independent variables, 
the process is known as multiple regression analysis
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Calibration of Macroscopic Traffic Flow Models
 If a dependent variable 𝑐𝑐 and an independent variable 𝑥𝑥 are related by an 

estimated regression function, then:

 The constants a and b could be determined from:

 Where:
• 𝑛𝑛  number of sets of observations
• 𝑥𝑥𝑖𝑖  𝑖𝑖th observation for 𝑥𝑥
• 𝑐𝑐𝑖𝑖  𝑖𝑖th observation for 𝑐𝑐

 A measure commonly used to determine the suitability of an estimated 
regression function is the coefficient of determination

 Where 𝑌𝑌𝑖𝑖  is the value of the dependent variable as computed from the 
regression equations. The closer 𝑅𝑅2 is to 1, the better the regression fits.
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Calibration of Macroscopic Traffic Flow Models
Fitting Speed and Density Data to the Greenshields Model
 Let us now use the data shown in the table (columns 1 and 2) to demonstrate the 

use of the method of regression analysis in fitting speed and density data to the 
Greenshields model:

 Comparing this expression with the regression function 
presented before, we see that the speed �𝑢𝑢𝑠𝑠 in the 
Greenshields expression is represented by 𝑐𝑐 in the estimated 
regression function, the mean free speed 𝑢𝑢𝑓𝑓 is represented 
by 𝑙𝑙, and the value of the mean free speed 𝑢𝑢𝑓𝑓 divided by the 
jam density 𝑘𝑘𝑗𝑗is represented by 𝑏𝑏. We therefore obtain:

Speed and Density Observations at a Rural Road
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Calibration of Macroscopic Traffic Flow Models
Fitting Speed and Density Data to the Greenshields Model
 We therefore obtain

 Since 𝑙𝑙 = 𝑢𝑢𝑓𝑓 = 62.68 𝑘𝑘𝑖𝑖/𝑣 , and 
𝑢𝑢𝑓𝑓
𝑘𝑘𝑗𝑗

= 0.53 

 Calculating 𝑅𝑅2 we obtain: 𝑅𝑅2 = 0.95

 The maximum flow: 

 The velocity at which flow is maximum: 62.68
2

= 31.3 𝑘𝑘𝑖𝑖/𝑣 

 The density at which flow is maximum: 𝑐𝑐8
2

= 59 𝑣𝑣𝑣𝑣𝑣/𝑘𝑘𝑖𝑖

, and

 𝑘𝑘𝑗𝑗 = 118 𝑣𝑣𝑣𝑣𝑣/𝑘𝑘𝑖𝑖

 �𝑢𝑢𝑠𝑠 = 62.68 − 0.53𝑘𝑘 

𝑞𝑞𝑚𝑚  =
𝑢𝑢𝑓𝑓𝑘𝑘𝑗𝑗

4 =
118 × 62.68

4 = 1849 𝑣𝑣𝑣𝑣𝑣/𝑣 
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Calibration of Macroscopic Traffic Flow Models
Fitting Speed and Density Data to the Greenberg Model
 the Greenberg model can be written as:

 �𝑢𝑢𝑠𝑠 in the Greenberg expression is represented by 𝑐𝑐 in the 
estimated regression function, 𝑘𝑘𝑐𝑐 𝑘𝑘𝑗𝑗 is represented by 𝑙𝑙, 𝑘𝑘 
(𝑘𝑘 = 𝑢𝑢𝑚𝑚, the speed for maximum flow) is represented by −𝑏𝑏, 
and ln𝑘𝑘 is represented by 𝑥𝑥.

Speed and Density Observations at a Rural Road
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Calibration of Macroscopic Traffic Flow Models
Fitting Speed and Density Data to the Greenshields Model
 We therefore obtain

 Since a = 145.06 , and b = −28.68 𝑢𝑢𝑓𝑓 = 28.68 𝑘𝑘𝑖𝑖/𝑣

 Therefore:

 To obtain

, and





  

For maximum 
flow

Obtaining 𝑘𝑘0, the density 
for maximum flow:



𝑅𝑅2 = 0.95
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