Sous la responsabilité du département de Génie électrique

Le projet consiste en un travail de conception en ingénierie réalisé par l'étudiant sous la direction d'un professeur ou d'un ingénieur désigné par le département. L'étudiant doit produire un rapport de qualité professionnelle qui comporte généralement un relevé des travaux antérieurs, la définition et la situation du problème, la méthode de solution favorisée, les résultats obtenus et une discussion. Le projet fait également l'objet de présentations vidéo.
Modélisation des systèmes physiologiques : introduction, spécificité. Transformée de Laplace. Systèmes linéaires et stationnaires, discrets ou continus. Réponse impulsionnelle, fonction de transfert, modèles d'état. Modélisation de systèmes électriques, mécaniques, hydrauliques et thermiques. Exemples de modélisation de systèmes physiologiques. Comportement statique et dynamique, linéarisation. Caractéristiques et performance des systèmes bouclés : rapidité, précision, rejet de perturbation, stabilité, actions dérivée et intégrale. Réponse temporelle de systèmes physiologiques : impulsionnelle et indicielle. Stabilité : critère de Routh-Hurwitz, lieu des racines. Réponse en fréquence : diagrammes de Bode, de Nyquist et de Black. Stabilité relative : marges de gain et de phase. Conception de contrôleurs. Identification : à partir des réponses temporelle et fréquentielle, déconvolution, moindres carrés, fonctions de corrélation.
Projet de conception d’un prototype d’instrument biomédical destiné à recueillir et analyser des signaux physiologiques : choix des capteurs et actuateurs; développement des circuits analogiques de conditionnement de signal; programmation d’un microcontrôleur pour contrôler les composants, acquérir les signaux et effectuer les calculs. Notions fondamentales sur les microcontrôleurs : instructions, registres, entrées/sorties, interruptions, piles, mémoires, arithmétiques binaire et vectorielle, périphériques, conversion analogique/numérique, compteurs, programmation modulaire, intégration des langages de bas et haut niveau.
Cette formation en communication écrite et orale s'étale de la première à la troisième année. Elle se présente en quatre étapes : une évaluation initiale d'une communication écrite et d'une communication orale en première année; une prescription individuelle (s'il y a lieu); une évaluation finale d'une communication écrite et d'une communication orale en troisième année; la réalisation d'un portfolio sur ces formes de communication. Cette formation vise à apprendre à rédiger des textes ainsi qu'à préparer et présenter des exposés de façon efficace et productive, conformes aux conventions de communication en vigueur dans la discipline du génie biomédical qui se distingue par le caractère multidisciplinaire des audiences cibles.
Importance de la gestion des risques associés aux instruments médicaux. Lois, règlements et normes. Instances gouvernementales. Organismes approuvant, élaborant et vérifiant les normes. Inventaire des normes techniques pertinentes. Gestion de la qualité. Documentation. Gestion des risques : analyse des risques; emploi prévu; identification des phénomènes dangereux physiques et biologiques; évaluation de la probabilité et de la sévérité des dommages; maîtrise des risques; suivi des incidents. Achat et opération sécuritaire des instruments médicaux en milieu hospitalier, vigilance. Épidémiologie clinique, évaluation quantitative et modalités des essais cliniques. Réglementations connexes : médicaments et matériaux biologiques.
Structure type d’un instrument biomédical, métrologie, fonction de transfert, sécurité et normes. Circuits électroniques pour le conditionnement du signal : amplification, filtrage, détection. Approches pour diminuer l’interférence et le bruit. Principes de fonctionnement et circuits de base pour divers types de capteurs : électrode, force, débit, pression, ultrason, rayonnement, biochimique. Applications : électrocardiographie, système respiratoire.
Importance de la gestion des risques associés aux instruments médicaux. Lois, règlements et nor-mes. Instances gouvernementales. Organismes approuvant, élaborant et vérifiant les normes. Inven-taire des normes techniques pertinentes. Gestion de la qualité. Documentation. Gestion des risques : analyse des risques; emploi prévu; identification des phénomènes dangereux physiques et biologi-ques; évaluation de la probabilité et de la sévérité des dommages; maîtrise des risques; suivi des in-cidents. Achat et opération sécuritaire des instruments médicaux en milieu hospitalier, vigilance.
Analyse statistique univariée et multivariée. Évaluation des techniques d'intervention et de diagnostic: essais cliniques avec ou sans groupe contrôle, effet placebo, biais. Bioéthique; responsabilité légale, normes.

Exposés et discussions principalement centrés sur les projets de recherche des étudiants à la maîtrise en génie biomédical. Discussions sur des publications récentes et participation occasionnelle de conférenciers invités.

Imagerie à rayons X : sources et leurs caractéristiques, spectre, interaction avec les tissus, instrumentation, formation et caractéristiques de l'image, applications cliniques, extension à la tomographie. Médecine nucléaire: principes généraux, production de radio traceurs, leur bio-distribution, caméra gamma, caractéristiques des images, SPECT, applications cliniques. Tomographie d'émission de positron (TEP) : principes généraux, instrumentation, traceurs, formation d'image. Imagerie ultrasonore : propagation de l'onde ultrasonore, propriétés des tissus, transducteurs et propriétés, modes, applications cliniques. Imagerie à résonance magnétique : magnétisme nucléaire, description classique, réseau de spin et relaxation, séquences spin-écho, imagerie et encodage du signal, instrumentation, séquences d'excitation, imagerie fonctionnelle, applications cliniques.

Le projet intégrateur de grande envergure porte sur un mandat d'ingénierie et est réalisé par les étudiants en équipe multidisciplinaire. Le mandat comprend la détermination des objectifs du projet, le cahier des charges, la méthodologie de résolution et design proposé, l'échéancier et les ressources nécessaires à sa réalisation. Les étudiants doivent démontrer un grand niveau d'autonomie et de savoir-faire technique et de professionnalisme lors de la réalisation du mandat confié. Ils devront concevoir selon les règles de l'art, la réglementation, les normes et les standards, un produit, un procédé, un système, un prototype ou un service propre au domaine du génie biomédical. La gestion du projet devra tenir compte du budget, des contraintes de temps, des risques et des ressources. Les sujets de projet pourront provenir de l'industrie, des hôpitaux, des étudiants ou des professeurs. Le projet fera l'objet d'une présentation orale publique devant un jury d'évaluation.