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Spatial point pattern analysis and its
application in geographical epidemiology

Anthony C Gatrell*, Trevor C Bailey**,
Peter J Diggle*** and Barry S Rowlingsont

This paper reviews a number of methods for the exploration and modelling of
spatial point patterns with particular reference to geographical epidemiology (the
geographical incidence of disease). Such methods go well beyond the conventional
‘nearest-neighbour’ and ‘quadrat’ analyses which have little to offer in an
epidemiological context because they fail to allow for spatial variation in population
density. Correction for this is essential if the aim is to assess the evidence for
‘clustering’ of cases of disease. We examine methods for exploring spatial variation
in disease risk, spatial and space-time clustering, and we consider methods for
modelling the raised incidence of disease around suspected point sources of
pollution. All methods are illustrated by reference to recent case studies including
child cancer incidence, Burkitt’s lymphoma, cancer of the larynx and childhood
asthma. An Appendix considers a range of possible software environments within
which to apply these methods. The links to modern geographical information

systems are discussed.
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Introduction

The analysis of spatial point patterns came to
prominence in geography during the late 1950s
and early 1960s, when a spatial analysis paradigm
began to take firm hold within the discipline.
Researchers borrowed freely from the plant ecol-
ogy literature, adopting techniques that had been
used there in the description of spatial patterns and
applying them in other contexts: for example, in
studies of settlement distributions (Dacey 1962;
King 1962), the spatial arrangement of stores
within urban areas (Rogers 1965) and the distri-
bution of drumlins in glaciated areas (Trenhaile
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1971). The methods that were used could be clas-
sified into two broad types (Haggett et al. 1977).
The first were distance-based techniques, using
information on the spacing of the points to charac-
terize pattern (typically, mean distance to the near-
est neighbouring point). Other techniques were
area-based, relying on various characteristics of the
frequency distribution of the observed numbers
of points in regularly defined sub-regions of the
study area (‘quadrats’).

For many geographers, point pattern analysis
will conjure up images of ‘nearest-neighbour
analysis’ applied inappropriately to data sets of
doubtful relevance. Even contemporary textbooks

ISSN 0020-2754 © Royal Geographical Society (with the Institute of British Geographers) 1996



Spatial point pattern analysis

in quantitative methods (for example, Griffith
and Amrhein 1991; McGrew and Monroe 1993)
discuss quite limited distance-based and area-
based methods and do not consider the substantial
and systematic advances in the statistical analysis
of spatial point processes that have been made in
the last twenty years.! Given the particular area of
application we consider here, the time is ripe for an
assessment of the ‘state of the art’ in this field,
though we focus on a sub-set of methods that have
particular value in geographical epidemiology.
Despite this emphasis, all of the methods we out-
line have applications in other areas of geographi-
cal inquiry.

Apart from well-understood shifts in disci-
plinary emphasis away from a perspective based
on spatial analysis, there are perhaps two other
reasons why spatial point pattern analysis has,
until recently, been neglected in geography. The
first (and more significant) reason is that the null
hypothesis with which most of the early methods
were concerned was rarely of real practical value.
Typically, methods sought to establish departures
from complete spatial randomness. Whilst this
might prove a sensible benchmark in some cases,
in others (such as examining the distribution of
disease or the locations of retail outlets in urban
areas) it is unlikely to prove illuminating. Although
we shall make reference to the important concept
of complete spatial randomness, we stress that the
methods we outline go well beyond seeking solely
to establish non-randomness. A second reason is
simply the lack of availability of good software.
While computer programs for nearest-neighbour
or quadrat analysis were published (see, for
example, Baker 1974), these generated purely
textual output of statistical summaries and little or
nothing in the way of maps or other graphical
displays.

More recently, the statistical analysis of point
patterns is attracting renewed interest, notably
because of developments in geographical infor-
mation systems (GIS). The proliferation of geo-
referenced databases, many of which generate data
that may be treated as spatial point patterns,
coupled with the need to infuse GIS with greater
analytical functionality, have been major factors
motivating the kind of work reported here and
elsewhere (Gatrell and Rowlingson 1994). In par-
ticular, new tools have been developed for the
analysis of point data; they are reviewed in the
Appendix. These are now available as libraries that
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may be called from existing statistical program-
ming environments, ‘macros’ that may be called
from proprietary GIS packages, or functions within
spatial analysis packages. They provide a variety of
tools for the visualization, exploration and model-
ling of point data. In other words, they allow us
simultaneously to view the point pattern, create
new views of the pattern (for instance, showing
variations in point density), explore structure in
the data by estimating suitable summary functions
and test hypotheses relating to the process that
may have given rise to the observed event
distribution.

Two final introductory remarks are in order.
First, we observe that the use of spatial point
pattern analysis in geographical epidemiology is
hardly new, though some recent accounts in the
epidemiology literature (Barreto 1993) seem to
have discovered simple dot mapping as a useful
technique! Many accounts draw on the classic
work of John Snow in Victorian London, linking
the ‘clustering’ of cholera deaths around a pump
in Soho to the probable source of infection — an
example that appears in many introductory
accounts of medical geography (see, for example,
Cliff and Haggett 1988; Thomas 1993). A wide
range of analytical methods has been devised to
handle spatial point patterns in epidemiology; we
do not seek to review these comprehensively here,
focusing instead on those methods we have found
most useful in applied work. For example, one
obvious omission in what follows is a discussion
of Openshaw’s ‘geographical analysis machine’
(Openshaw et al. 1987). This is now quite well-
known and is finding its way into texts on medical
geography (Thomas 1993).

Secondly, we do not consider in detail how to
obtain disease-incidence data. Suffice it to say that
many epidemiological databases, particularly in
Britain but also elsewhere, now contain a post-
coded address that may be converted into a grid
reference (Raper et al. 1992). For example, in
Britain, the direct link between unit postcodes and
Ordnance Survey grid references with a resolution
of 100 m (10 m in Scotland) means that one can
readily produce mapped information on disease
incidence as well as performing analyses of the
point-event data, instead of aggregating these to
areal units such as electoral wards. The fact that
one is not required to do such aggregation renders
a point pattern approach attractive, since the
results from any area-based analysis are dependent
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on the particular zoning system one uses. A priori
it seems sensible to use methods that preserve the
original continuous setting of the data. On the
other hand, there are a number of questionable
assumptions involved in accepting a unit postcode
(referring, on average, to perhaps fifteen or so
other households, though with some variation
about this notional mean; ibid.) for it to be a
sensible measure of location for the disease or an
adequate reflection of exposure to risk factor(s). It
suggests that the individuals forming the database
of disease incidence are adequately represented by
their address (strictly, postcode) at the time of
diagnosis. This assumes, quite naively, that people
are immobile and ignores any possible exposure
to environmental contamination (from whatever
source) in the workplace or elsewhere. It further
ignores the multitude of exposures to risk factors
that may well have been picked up in earlier
residential and occupational environments. How-
ever, we shall later see that in raised-incidence
models we can begin to incorporate more meaning-
ful covariates into the analysis and hence strive
towards a richer interpretation and explanation of
disease risk.

In the remainder of the paper, we first introduce
some basic properties of spatial point processes
and define some useful theoretical functions which
may be used to characterize their behaviour. We
indicate how one would expect such functions to
behave in a ‘benchmark’ theoretical situation and
consider how to estimate such functions from an
observed point pattern and how the results may be
used to explore hypotheses of interest. We then
look at the issue of spatial clustering in epidemio-
logical data, followed by the extension to a space-
time context. Finally, we consider a modelling
framework for assessing whether there is an
elevated disease risk around a possible pollution
source. In the Appendix we consider some
software options for implementing the ideas
developed here.

Concepts and methods

Formally, a point pattern may be thought of as
consisting of a set of locations (s, S,, etc.) in a
defined ‘study region’, R, at which ‘events’ of
interest have been recorded. The use of the vector,
s;, referring to the location of the ith observed
event, is simply a shorthand way of identifying the
X’ coordinate, s;,, and the ‘y’ coordinate, s;,, of an
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event. Use of the term ‘event’ has become standard
in spatial point process analysis as a means of
distinguishing the location of an observation from
any other arbitrary location within the study
region (Diggle 1983). The study region R might
be a rectangular or complex polygonal region.
Regardless of its shape, we must be aware of
possible edge effects in the analysis, usually coping
with these by either leaving a suitable guard area
between the perimeter of the original study region
and a sub-region within which analysis is per-
formed, or by modifying the analytical tools to take
account of boundary shape.

In the simplest case, our data set comprises
solely the event locations. However, in some cases
we may have additional information relating to the
events which might have a bearing on the nature of
analysis. For example, events may be of two differ-
ent types (a bivariate point pattern), such as a set
of individuals with a disease (‘cases’) and those
without (‘controls’). Alternatively, a continuous
measure might be attached to each, an important
instance being the time at which disease onset
occurred among cases. This gives rise to what is
known as a marked point pattern.

The simplest theoretical model for a spatial
point pattern is that of complete spatial randomness,
in which the events are distributed independently
according to a uniform probability distribution
over the region R. One important question that
then arises is whether the observed events display
any systematic spatial pattern or departure from
randomness either in the direction of clustering or
regularity. However, the role of complete spatial
randomness as such a benchmark is useful only in
applications where departure from it is not obvious
a priori. More interesting questions, especially in
the human domain, include: Is observed clustering
due mainly to natural background variation in the
population from which events arise? Over what
spatial scale does any clustering occur? Are clusters
merely a result of some obvious a priori heteroge-
neity in the region studied? Are they associated
with proximity to other specific features of interest,
such as transport arteries or possible point sources
of pollution? Are events that aggregate in space
also clustered in time? All these sorts of questions
serve to take us beyond the simple detection of
non-randomness and all are dealt with later.

From a statistical point of view, an observed
spatial point pattern can be thought of as the
outcome (a realization) of a spatial stochastic
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process. Mathematically, we may express this in
various ways but one useful possibility is in terms
of the number of events occurring in arbitrary
sub-regions or areas, A, of the whole study region,
R. Accordingly, the process is represented by a set
of random variables: Y(A), A € R, where Y(A) is the
number of events occurring in the area A.We can
never hope fully to characterize the process but we
can investigate some properties that represent
important aspects of the process; these we now
consider.

First- and second-order properties
Useful aspects of the behaviour of a general spatial
stochastic process may be characterized in terms of its
so-called first-order and second-order properties. Very
informally, the first-order properties describe the way
in which the expected value (mean or average) of the
process varies across space, while second-order prop-
erties describe the covariance (or correlation) be-
tween values of the process at different regions in
space. In seeking to understand ‘pattern’ in observed
spatial data, it is important to appreciate that this
might arise either from region-wide ‘trends’ (first-
order variation) or from correlation structures
(second-order variation), or from a mixture of both.
More formally, first-order properties are
described in terms of the intensity, A(s), of the
process, which is the mean number of events per
unit area at the point s (Diggle 1983). This is
defined as the mathematical limit:

A(s)=lim {M} 1)

ds—0 ds

where ds is a small region around the point s, E()
is the expectation operator and ds is the area of this
region. Y(ds) refers to the number of events in this
small region.

The second-order properties, or spatial depend-
ence, of a spatial point process involve the relation-
ship between numbers of events in pairs of sub-
regions within R. This is again formally defined in
terms of a limit, the second-order intensity of the
process:

@

y(sy8;) = lim
dsi,dsj—0

E(Y(ds;)Y(ds;))
{ dsds; }

with similar notation to that described above.
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We say that a point process is stationary if the
intensity is constant over R, so that /(s)=4 and, in
addition, y (s;, 5;)=7 (si—s;)=y (d). The latter implies
that the second-order intensity depends only on
the vector difference, d (direction and distance),
between s; and s; and not on their absolute
locations. The process is further said to be isotropic
if such dependence is a function only of the
length, d, of this vector d and not its orientation.
Henceforth, we use the term stationary without
qualification to mean stationary and isotropic.

Kernel estimation

Having set out some basic ideas concerned with
the properties of spatial point processes, we now
consider some methods. We consider first an
exploratory tool for examining the first-order prop-
erties of a point process, a tool that proves to be of
potential value in an epidemiological context.
Instead of superimposing a regular grid of quad-
rats on our event distribution, as is frequently done
in geographical applications of point pattern analy-
sis, we could form a count of events per unit area
within a moving quadrat or ‘window’. We define a
window of fixed size and imagine centring this on
a number of locations in turn, where these are
arranged in a fine grid superimposed over R. We
thus obtain estimates of the intensity at each grid
point. This produces a more spatially ‘smooth’
estimate of variation in A(s) than we can obtain
by using a fixed grid of quadrats. However, in
each of the intensity estimates, no account is taken
of the relative location of events within the
window and the choice of a suitable window size is
not clear.

Kernel estimation is a generalization of this idea,
where the window is replaced with a moving
three-dimensional function (the kernel) which
weights events within its sphere of influence
according to their distance from the point at which
the intensity is being estimated. The method is
commonly used in a more general statistical con-
text to obtain smooth estimates of univariate
(or multivariate) probability densities from an
observed sample of observations (Silverman 1986).
Estimating the intensity of a spatial point pattern is
similar to estimating a bivariate probability density
(Gatrell 1994). Formally, if s represents a vector
location anywhere in R and s,,.., s, are the vector
locations of the n observed events, then the
intensity, A(s), at s is estimated as
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typical
event s;

location
Study s

xw=27kC S) 3

Here, k() represents the kernel weighting function
which, for convenience, is expressed in standard-
ized form (that is, centred at the origin and having
a total volume of 1 under the curve). This is then
centred on s and ‘stretched’ according to the
parameter 7 >0, which is referred to as the band-
width. The value of 7 is chosen to provide the
required degree of smoothing in the estimate.
Graphically, we may imagine a three-dimensional
function that ‘visits’ each point s on the fine grid
(Fig. 1). Distances to each observed event s; that
lies within the region of influence (as controlled by
7), are measured and contribute to the intensity
estimate at s according to how close they are to s.
We may then use a suitable contouring algorithm,
or some form of raster display, to represent the
resulting intensity estimates as a continuous sur-
face showing how intensity varies over R.

As to the exact functional form of the kernel, k()
we require a decreasing radially symmetric bivari-
ate function providing a total weight of unity over
the region of influence. Different choices from
amongst the range of ‘reasonable’ candidates have
relatively little effect on the resulting intensity
estimate, A(s). A typical choice might be the
so-called quartic kernel. Then, the estimate of A (s)
may be simply expressed as:

. 3 a\ 2
A@=Z;(%4> @

2
di<t T
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where d; is the distance between the point s and the
observed event location s;, and the summation is
only over values of d; which do not exceed . The
region of influence within which observed events
contribute to A_(s) is therefore a circle of radius t
centred on s. At the site s (a distance of zero), the
weight is simply 3/z7* and drops smoothly to a
value of zero at distance 7.

The kernel estimate A _(s) is intended to be sen-
sitive to the choice of bandwidth, z. As this is
increased, there is more smoothing of the spatial
variation in intensity; as it is reduced we obtain an
increasingly ‘spiky’ estimate. What value, then
should we choose? In practice, the value of kernel
estimation is that one has the flexibility to exper-
iment with different values of z, exploring the
surface A (s) using different degrees of smoothing
in order to look at the variation in /(s) at different
scales. There are also methods which attempt auto-
matically to choose a value of = which optimally
balances the reliability of the estimate against the
degree of spatial detail that is retained, given the
observed pattern of event locations (Diggle 1985).
We should further note that it is possible to adjust
the value of 7 at different points in R in order to
improve the kernel estimate. Such local adjustment
of bandwidth may be achieved by adaptive kernel
estimation (for further details and a geographical
application, see Brunsdon 1991). In adaptive
smoothing, sub-areas in which events are more
densely packed than others (and thus where more
detailed information on the variation in intensity is
available) are ‘visited’ by a kernel whose band-
width is smaller than elsewhere, as a means of
avoiding smoothing out too much detail.

Edge effects will tend to distort the kernel esti-
mates close to the boundary of R because an event
near the boundary is denied the possibility of neigh-
bours outside the boundary. One way to avoid the
problem is to construct a guard area inside the
perimeter of R, as mentioned earlier. Kernel esti-
mates are computed only for points in R which are
not in the guard area but events in the guard area
are allowed to contribute to such kernel estimates.
Alternatively, one can modify the kernel estimate by
dividing by an explicit edge-correction term:

5.(s)— 1 (s—u)
r(s)—J;k< . >du (5)

This is the volume under the scaled kernel centred
on s which lies ‘inside’ R. It may result in a
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considerable increase in the computation required
when R is an irregular polygonal region.

Extensions to kernel estimation

From an epidemiological perspective, kernel esti-
mation is of most value in estimating the intensity
of one type of event relative to another. For
example, if we perform separate kernel estimates
relating to cases and to controls respectively, we
may then form the ratio of the two, with a view to
evaluating spatial variations in disease risk. This
could help identify peaks in the resulting surface
corresponding to possible locations of ‘clusters’, or
at least sub-regions worth further examination.

In the simplest case, the same bandwidth, T, and
kernel, k(), are used in the estimates of both case
intensity and control intensity, so allowing some
cancellation in the ratio. Clearly, this is not neces-
sary and it would be a simple modification to use
different bandwidths in each. In fact, the use of
different bandwidths may well be sensible since we
are concerned here with the ratio of two kernel
estimates of intensity. It does not necessarily follow
that ‘good’ estimates of the numerator and the
denominator will automatically lead to a ‘good’
estimate of their ratio. For instance, relatively small
changes in the denominator (the estimate of control
intensity) in regions where its value is small may
produce dramatic and unacceptable variations in
the ratio of the two kernel estimates. For such
reasons, it may be preferable deliberately to ‘over-
smooth’ the kernel estimate of control intensity
when estimating the ratio by selecting a larger
bandwidth than would be appropriate if we were
interested only in an estimate of the population
density.

These ideas were initially exploited by Bithell
(1990) in a study of clustering of childhood leukae-
mia in Cumbria. The resulting density or probabil-
ity surface was contoured, allowing peaks on the
surface that correspond to an excess of case (leu-
kaemia) intensity over that of background (child)
population to be readily visualized. As a further
exploratory device, this approach has much to
commend itself, though, as with related methods,
the controls must be selected with care and the
choice of bandwidth in the kernel estimation is
critical (Bithell experiments with adaptive smooth-
ing and displays a variety of possible maps of
relative risk). In a further examination of larynx
and lung cancer data for Lancashire, Kelsall and
Diggle (1994) have exploited ideas of kernel esti-
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mation and are currently refining the methodology
for estimating two-dimensional variation in
relative risk.

The K function

Having considered a method for characterizing the
first-order behaviour of a point pattern, we now
examine a very useful function for estimating the
second-order properties of the process that gave
rise to the data.

Stationarity is the minimal assumption under
which inference is possible from a single observed
pattern. If a point process is stationary (and iso-
tropic), there is a close mathematical relationship
between the second-order intensity and an alter-
native characterization of second-order properties
known as the K function (Ripley 1981). This is
defined by the relationship

AK(d)=E(#(events<distance d
of an arbitrary event)) (6)

where E() denotes expectation, # means ‘the
number of’ and A is the intensity or mean number
of events per unit area. Essentially, the K function
describes the extent to which there is spatial
dependence in the arrangement of events. We see
shortly how this function can be estimated from an
observed event distribution but, first, we establish
how we would expect it to behave in a particular
theoretical situation.

We have already made reference to the idea of a
random arrangement of events. Formally, the point
process that gives rise to such an arrangement is
called a homogeneous Poisson process. We say that an
arrangement of events shows complete spatial ran-
domness (CSR) if it is a realization of such a process.
As far as the K function for a CSR process is
concerned, the important point is that the probabil-
ity of the occurrence of an event at any pointin R is
independent of what other events have occurred
and is equally likely over the whole of R. Thus, for
a homogeneous process with no spatial depen-
dence, the expected number of events within a
distance d of a randomly chosen event is
simply Ard?. In other words,

K(d)=T? (M

(Boots and Getis 1988; Diggle 1983; Getis 1983;
Upton and Fingleton 1985). If there is clustering of
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point events, we would expect to see an excess of
events at short distances. Thus, for small values
of d, the observed value of K(d) will be greater
than To?. We say more about this later when we
consider the estimation of the K function.

Extensions to the K function: bivariate and
space-time patterns

The homogeneous Poisson process is a convenient
benchmark against which to evaluate certain
classes of phenomena. However, in many appli-
cations, especially those in the human domain, it
makes little sense to compare observed spatial
distributions against an homogeneous Poisson
model. As we have already noted, a priori we may
expect to observe a certain amount of cluster-
ing due to natural background variation in the
population from which events arise. For example,
cases of cancer will always cluster because of
the distribution of population at risk. In such
instances, we are more interested in detecting
evidence of clustering over and above this under-
lying environmental heterogeneity; in other
words, in discovering whether the distribution of
one type of event clusters relative to that of
another. In addition, events may have occurred at
different points in time and our interest may lie in
detecting space-time clustering. Accordingly, we
need to consider how we might expect the kind of
functions we have introduced to behave in theo-
retical situations where we have more than one
type of event, or where ancillary information is
attached to each event in the form of time of
occurrence.

Consider first the detection of clustering over
and above that of natural variation in background
population. Given n, type 1 events of primary
concern (cases) and n, type 2 events that purport to
represent environmental heterogeneity (controls)
then, in the absence of clustering among the cases
relative to the controls, if we pool the two sets of
events we would expect the n; case ‘labels’ to be
attached at random to the combined set of events;
this is called a random labelling of events. This
stipulates that the type of an event is independent
of its location. Under such random labelling,
Diggle (1993) shows that the K functions for the
cases (K;y(d)) and for the controls (K,,(d)), are
identical. We shall make use of this result when
looking at ways of investigating spatial clustering.

Turning now to processes in both time and
space, where we have a time ‘label’ attached to

Anthony C Gatrell et al.

each event, we define the ‘space-time’ K function
by

ApAK(d,t)=E(#(events<distance d and
time t of an arbitrary event)) (8)

where A is the spatial intensity of events and A,
their temporal intensity. If the processes operating
in time and space are independent (that is, there is
an absence of space-time interaction), K(d,t) should
be the product of separate space and time K
functions. That is, we might theoretically expect

K(d,)=Kp(d)K(t) ©)

to apply in the case where there is no space-time
interaction in the process (Diggle et al. 1995).
Again, we can make use of this result when con-
ducting empirical tests for space-time interaction.

Estimation of the K function
An estimate of the K function is given by

1

If(d)zﬁ

PIRACH
i#j

(Boots and Getis 1988; Diggle 1983) where R is the
area of region R and 14(d;) is an indicator function
that takes the value 1 when d; is less than d.
However, this does not allow for edge effects close
to the boundary of R which will distort the esti-
mate. Consider a circle centred on event i, passing
through the point j, and let w; be the pro-
portion of the circumference of this circle which
lies within R (Boots and Getis 1988). Then w;; is the
conditional probability that an event is observed in
R, given that it is a distance d;; from the ith event. A
suitable edge-corrected estimator for K(d) is then

(10)

N SR A7
Rid) =3 ¥y 4% an

2
AR i£j ij
To complete our estimate we need to replace the
unknown intensity A with an estimate, say A=n/R,
where n is the observed number of events. The

final estimate of K(d) is therefore

- R 1,(d..
Rd) =5 ¥y, 0

i£j )

12)

Ignoring the edge correction, we can visualize the
estimation of a K function as shown in Figure 2. We
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Seven events within
a distance, d, of five
units from event i

Three events within
a distance, d, of five
i units from event j

(2

Figure 2 Estimation of a K function

may imagine that an event is ‘visited’ and that
around this event a set of concentric circles at a fine
spacing is constructed. The cumulative number of
events within each of these distance ‘bands’ is
counted. Every other event is similarly ‘visited’
and the cumulative number of events within dis-
tance bands up to a radius d around all events
becomes the estimate of K(d) when scaled by R/n?.

In practice, the calculation of K(d) is not easy
since, for arbitrary-shaped regions, the weights w;;
are hard to derive. Explicit formulae for w;; can be
written down for simple shapes such as rectangu-
lar or circular R. In other cases the derivation of w;;
will require more intensive computation, although
computer solutions are available (see Appendix).

Once calculated, K(d) can be compared with its
expected form according to particular theoretical
situations. For example, as we noted, we expect
K(d)=md? for a homogeneous process with no
spatial dependence. Under regularity, K(d) would
be less than To?, whereas, under clustering, K(d)
would be greater than Td?. So we can compare K(d),
estimated from the observed data, with td? This
may be done through a plot of K(d)- 1o against d.
Peaks in positive values tend to indicate spatial
clustering and troughs of negative values indicate
regularity, at corresponding scales of distance, d.
How do we assess whether the observed peaks or
troughs in this plot are significant?

This may be done using simulation techniques.
Under the assumption of CSR, we may perform m
independent simulations of n events in the study
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region (where m might be, say, 99). For each
simulated point pattern, we can estimate K(d) and
use the maximum and minimum of these functions
for the simulated patterns to define an upper and
lower simulation envelope. If the estimated K(d)
lies above the upper envelope, we can speak of
aggregation. If it lies below the lower envelope,
this is evidence of spatial ‘inhibition’ or regularity
in the arrangement of events.

As noted earlier, estimation of a K function for a
single set of events will not usually be informative
in geographical epidemiology. More interesting is a
test of the hypothesis of ‘random labelling’, which
suggests that

K11(d)=Kyo(d)=K,,(d) (13)

We might, therefore, use a plot of the difference

D(d)=Ky(d)= Kzo(d) (14)
against d to explore such a hypothesis. When D(d)
is plotted against d, peaks in this plot will show
clustering over and above that of environmental
heterogeneity.

A more formal assessment of the significance of
peaks in this plot again employs the idea of a
simulation test. Suppose, as before, that there are
n, ‘cases’ and n, ‘controls’, then upper and lower
simulation envelopes for assessing the peaks in the
D(d) plot may be developed by repeated simu-
lations in which case labels are randomly assigned
to n, of the events (Bailey and Gatrell 1995; Diggle
1993; Diggle and Chetwynd 1991). Such a method
provides a useful complement to alternative
approaches (see, for example, Cuzick and Edwards
1990) which are essentially based on extensions to
the distribution function of inter-event distances.

Turning to the space-time context, where we
have a time ‘label’ attached to each event, we may
develop an estimate of the ‘space-time’ K function
defined earlier. As noted before, this definition
involved the expected number of events within a
distance d and time interval t of an arbitrary event,
scaled by the expected number of events per unit
area and per unit time. By analogy with our
previous K function estimates, an appropriate
edge-corrected estimate of K(d,t), from an observed
space-time event distribution is therefore

5 RT L(d, )L (%,

(15)
w0,
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where R, d;;, 14(d;;) and w;; are as used previously, T
is the overall timespan observed, t; is the time
interval between the ith and jth observed events,
l,(t;;) is an indicator function which is 1 if t;<t and
0 otherwise, and v;; is the temporal equivalent of
the spatial-edge correction, based upon whether a
time interval centred on i of length t;, lies wholly
within the (0, T) timespan observed (Diggle 1993;
Diggle et al. 1995).

As mentioned earlier, if the processes operating
in time and space are independent (that is, there is
an absence of space-time interaction), K(d,t) should
be the product of separate space and time func-
tions, Kp(d) and K(t) respectively. Thus, one pos-
sible exploratory tool for space-time interaction is
the function

D(d,t)= K(d,t)- Ko (d)K(t) (16)
Evidence of space-time interaction will be
observed as peaks on the surface of D(d,t) plotted
against space and time. We see later how this may
be more formally used to detect space-time
interaction.

Before considering some applications, we need
to establish a final point that should be appreciated
throughout the rest of our discussion, namely that
first- and second-order effects may be inherently
confounded in many real data sets. Although part
of the art of spatial point process analysis is trying
to disentangle these two effects in order better to
understand the process generating the observed
events, inferring process from pattern is ultimately
a question of judgement and may not always be
clear cut. In certain cases it may not be possible to
distinguish on a purely statistical basis between
competing explanations (Bartlett 1964; Cliff and
Ord 1981). For example, if we detect clustering in
the distribution of events, is this clustering the
outcome of a process of environmental heterogene-
ity, in which the location of an event is functionally
independent from that of another, or is it more a
reflection of ‘true contagion’, where the environ-
ment is homogeneous but there is direct spatial
dependence between events, the location of an
event being ‘influenced’ in some way by that of
others? For example, we introduced the K function
as characterizing the second-order properties of a
stationary point process. However, if we estimate a
K function in a situation where there are large-scale
first-order effects — in other words, where intensity
varies greatly across the study region — then any
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spatial dependence indicated by the estimated K
function could be due more to these first-order
effects rather than to interaction between the
events themselves. We may have to adopt an
explanation which acknowledges some overall
first-order heterogeneity and then proceed to
examine smaller sub-regions of R for possible ad-
ditional second-order effects. In some cases, the
nature of the data and the strength of trends in the
observed pattern may make such judgements rela-
tively straightforward. In other cases, this may be
difficult and open to debate and interpretation.
Existence of environmental heterogeneity does not
necessarily invalidate the assumption of stationar-
ity, since we may be prepared to assume that a
non-constant spatial intensity may itself be a realiz-
ation of an underlying stationary process. This
leads to a class of models known as stationary Cox
processes (Diggle 1983).

Applications in environmental
epidemiology

Having set out some fundamental concepts and
methods, we now illustrate the usefulness of these
ideas. We examine first the important issue of
spatial clustering, then consider the space-time
extension before examining a spatial point pro-
cess model of considerable value in geographical
epidemiology.

Spatial clustering

The question of whether the geographical inci-
dence of disease shows any tendency towards
clustering in geographical space has a long and
rich history. Do cases of disease tend to occur in
proximity to other cases? The problem has become
more urgent in recent years in the light of concerns
raised about possible links between disease inci-
dence and potential sources of environmental con-
tamination, such as nuclear installations. Evidence
of clustering might also lend support to other
theories of disease incidence, such as a viral aetiol-
ogy. For example, exposure to a common, persist-
ent viral infection, either during gestation or as a
young child with an immune system that had been
protected at a very early age, might provide
clues to explaining possible leukaemia clustering
(see Alexander 1993 for a clear and up-to-
date overview). We do not review here all the
various theories or methodological developments
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Figure 3 Locations of cases of childhood leukaemia in west-central Lancashire, 1954-92

concerned with disease clustering. Good over-
views are provided in Draper (1991) and Beral et al.
(1993) We focus instead on appropriate use of the
K function to evaluate evidence of overall spatial
clustering in an observed event distribution. In a
later section we discuss the issue of whether there
are specific clusters around point or linear sources
of environmental contamination.

As noted above, we may estimate K functions
both for disease cases and for controls. The differ-
ence between the two functions, along with an
appropriate simulation envelope, is used to assess
evidence for or against clustering. The particular
application we discuss here relates to a study of the
incidence of childhood cancer in the Penwortham
area of central Lancashire, England (Gatrell and
Whitelegg 1993). We wished to examine whether
the distribution of child cancer mirrored that of the
child population as a whole or whether there was
evidence, as implied by concerned local residents,
of clustering. Data were provided for the study by
the Manchester Children’s Tumour Registry on a
variety of cancers (leukaemias, lymphomas, central
nervous system, renal, hepatic, bone and soft-

tissue sarcoma), covering the period 1954-92. All
325 cases were postcoded, the link to Ordnance
Survey grid references providing the means for
subsequent spatial analysis. Figure 3 shows the
incidence of all leukaemias in the study region. We
defined a wide study area in order to embrace not
merely the area of immediate concern which covers
part of the Fylde region — as far north as Blackpool
— and stretches south of Preston. Defining a suit-
able set of controls is clearly an important and
non-trivial research problem. With cases taken
from as far back as 1954, it is out of the question to
use school records. Instead, we extracted all unit
postcodes in the study region, together with all
centroids of 1981 Census enumeration districts
(EDs). The latter were used to construct Thiessen
polygons, a set of pseudo-ED boundaries. Next, the
childhood population (ages 0-4, 5-9, 10-14) in each
ED were obtained and multiplied by the fraction of
all cancers in each group (as reported by Draper
1991). This defined a ‘weighted’ population for
each ED, from which control cases were then
sampled. First, an ED was selected in proportion
to its weighted population (so that one with a
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Figure 4 Difference between K functions (bold
line) and simulation envelope (lighter lines) for
childhood leukaemia and ‘population at risk’

weighted population of 40, for example, had twice
the chance of being drawn as one with a value of
20). A unit postcode within that ED was then
selected at random, its grid reference becoming the
location of a ‘control’. A total of 975 controls were
selected in this way, corresponding to three times
the number of cases of childhood cancer. While this
is far from an ideal way of establishing a set of
controls and is, of course, a simulated distribution,
it was felt reasonably to reflect the distribution of
the population at risk.

K functions were then estimated separately for
cases and controls, as described above, and sub-
tracted to obtain the difference function, D(d).
Under a random labelling of the combined set of
cases and controls, the expected value of this
difference is zero for all distances, d. Upper and
lower simulation envelopes were developed by
performing 99 random labellings of cases and
controls. If D(d) lies above the upper simulation
envelope we can speak of significant spatial
clustering.

We took each of the diagnostic categories in turn
and compared their spatial distribution with the
control population. Results for the leukaemias are
shown in Figure 4. While there is some weak
tendency to cluster, there is no statistically signifi-
cant evidence for clustering. The same basic pat-
tern is repeated for other childhood cancers. We
have not analysed sub-regions of the study area,

Anthony C Gatrell et al.

though clearly this would be straightforward using
the interactive software environments outlined in
the Appendix. Analysis of a temporal sub-set of the
data - cases diagnosed since 1974 and since 1980 —
also failed to find any evidence of clustering.
Results from analyses conducted in Draper (1991)
for Britain as a whole, did suggest some evidence
for the aggregation of childhood leukaemia
between 1966 and 1983.

Space-time interaction
We now consider the problem of testing for space-
time clustering. Classical tests for space-time
interaction, such as those of Knox (1964) (see
Thomas 1993 for a discussion), require that the
user specify, in advance, distance and time
thresholds within which events are considered
‘close’ in a spatial and temporal setting respec-
tively. A count is then made of the number of
pairs of events that are close both in time and in
space. But, because of the simple discretization of
space and time, most empirical applications of
Knox’s method usually perform multiple tests
using different time and space intervals. Exten-
sions are available where continuous measures of
spatial and temporal separation are used (Mantel
1967) but these are also sensitive to somewhat
arbitrary judgements concerned with choice of
appropriate parameter values wused in the
transformations involved.

An alternative approach is to use the space-time
K function described earlier (Diggle et al. 1995).
Recall that we suggested an exploratory tool for
space-time interaction based upon

D(d,H)=K(d,t)~ Ko (d)K+(t)

Evidence of space-time interaction will be
observed as peaks on the surface of D(d,t) plotted
against space and time. One way to devise a more
formal assessment of the significance of the
observed values of D(d,t) is to perform m simula-
tions, in each of which the n events are randomly
labelled with the observed n time ‘markers’. We
can thus obtain m estimates D;(d,t), i=l.., m. The
observed standard error 23(d,t) of these m estimates
in turn gives us an estimate of the standard error of
D(d,t). We may then define a set of standardized
residuals as

D(d,t)
62(d,t)

R(dt) = (17)
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These residuals have the property that, in the
absence of space-time interaction, they have expec-
tation zero and variance of one. A more precise
interpretation is difficult because residuals at dif-
ferent values of d and/or t are not independent.

An overall test of space-time clustering may be
obtained by comparing the actual observed sum of
D(d,t) over all d and t, with the empirical frequency
distribution of m such sums, each of which is
obtained from one of the corresponding D;(d.t).
When compared with this distribution, an
‘extreme’ value of the observed sum would indi-
cate evidence of overall space-time interaction. For
example, if the observed sum exceeds, say, 95 per
cent of the simulated values, we can infer that the
observed space-time interaction occurs by chance
with a probability of less than 5 per cent. More
specific details of these methods may be found in
Diggle et al. (1995)

This may be illustrated with reference to a
classic research problem, relating to the incidence
of Burkitt’s lymphoma in east Africa. The disease
has been the subject of several previous space-time
analyses, notably in the west Nile district of
Uganda (Siemiatycki et al. 1980; Williams et al.
1978). Burkitt’'s lymphoma is a tumour occurring
mostly in childhood, with a peak in the 5-8 year
age range. Geographically it is largely, though not
exclusively, restricted to parts of central Africa,
notably in areas of low altitude and where tem-
peratures in the coolest month are greater than
15°C and annual precipitation exceeds 50 cm. It
was these geographical and environmental restric-
tions that led Burkitt originally to suggest a role for
malaria in the aetiology (see Lenoir 1985 for this
background). More recent work has suggested that
intense malaria suppresses the immune system
and promotes the multiplication of lymphocytes
that had previously been infected with the
common Epstein-Barr virus, thereby increasing
the likelihood of the development of abnormal,
cancerous cells (ibid.). Although by no means con-
clusive, any suggestion of space-time clustering in
observed data could imply person-person trans-
mission of the Epstein-Barr virus, which might
be expected to be spatially and temporally
constrained (Siemiatycki et al. 1980).

We used data collected in Malawi between 1977
and 1987, comprising a total of 174 patients (Gatrell
et al. 1994). A plot of the data (Fig. 5a) shows the
preponderance of cases in the south of the country
but, of course, gives no temporal sequencing.
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Recall that the test of space-time interaction
involves subtracting the product of separate spatial
and temporal K function estimates from that of the
combined space-time K function, giving a plot of
these differences as a function of both space and
time. Results for these data (Fig. 5b) show peaks in
this function at relatively large spatial and tem-
poral scales but no evidence of very localized
space-time clustering. To evaluate this more for-
mally, a set of 999 simulations was performed,
randomly permuting the time ‘markers’ attached
to the cases. A plot of standardized residuals was
then constructed (Fig. 5¢) which shows relatively
large numbers of values in excess of two standard
errors. We may also compute the sum of the
observed differences between the space-time K
function and the product of the separate space and
time K functions and compare this with the fre-
quency distribution of the same summary for the
simulations. In this case the observed sum of these
differences ranked 975 out of 1000 ‘possible’ values
(Fig. 5d). This suggests some evidence for space-
time clustering — the probability that the observed
space-time configuration arose by chance being
less than 0-025. This result is similar to that
obtained from different space-time analyses of data
from the west Nile district of Uganda (presented in
Williams et al. (1978) and analysed both there and
in Siemiatycki et al. (1980); see Bailey and Gatrell
(1995) for a copy of the data). The Uganda data
show some evidence of space-time clustering
between 1961-5, though weaker evidence in later
years.

These ideas have also been applied in other
epidemiological contexts, for example to the
study of Legionnaires’ disease in Glasgow and
Edinburgh (Bhopal et al. 1992). Some cases of this
disease are known to be associated with particular
point sources of contaminated water supplies or
malfunctioning air-conditioning or cooling sys-
tems. These cases are recognized ‘outbreaks’;
others are referred to as ‘sporadic’. Analysis of
so-called sporadic cases demonstrated quite signifi-
cant space-time interaction, however, suggesting
that at least some of these might also be related to
locationally specific sources of contamination.

Modelling the raised incidence of disease

Testing for spatial clustering — the aggregation of
events over and above that due to environmental
heterogeneity — needs to be distinguished from the
detection of specific ‘clusters’. By the latter, we
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Figure 5 Testing for space-time interaction in Burkitt’s lymphoma data, Malawi:
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mean the assessment of whether there are signifi-
cant, unusual local aggregations of events. A dis-
tinction needs also to be made between the search
for clusters in an exploratory data analysis context
(as in Openshaw et al. 1987 for example) and
the testing of a priori hypotheses about possible
clusters in the vicinity of fixed locations (see, for

instance, Bithell and Stone 1989). We consider only
the latter problem here, using a model from Diggle
(Diggle 1990; Diggle et al. 1990; Diggle and
Rowlingson 1994).

An earlier version of the model considered a
single possible point source, around which it
sought to show whether type 1 events (call them
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Figure 6 Functional form for Diggle’s raised-
incidence model

‘cases’ again) cluster. Diggle (1990) formulated a
multiplicative model of the intensity of cases, 1,(s),
expressing this as a function of environmental
heterogeneity (the intensity of controls) and dis-
tance from the point source. Formally,

A1(S)=pA,(s)f(d;0) (18)
where p is a scaling parameter (representing the
ratio of the number of cases to controls), 1,(s)
represents the background intensity and f() is a
distance-decay function, involving a vector of
parameters, 6, describing how the incidence of
cases varies with the distance, d, of the location, s,
from the point source. In the absence of an elevated
risk, we would expect that f(d;#)=1 for all dis-
tances, d. As a functional form for f(), Diggle
postulated

f(d;0) =1+6,e7%2% (19)

where ¢, and ¢, are parameters to be estimated, @,
is an intercept term and ¢, represents a distance-
decay effect (Fig. 6). Diggle suggested estimating
background intensity, 1,(s), using the kernel esti-
mation method discussed earlier. The parameters,
@, were estimated using maximum likelihood
methods. The null model implies an absence of any
distance-decay effect. If this is true, then the inten-
sity of cases is simply equal to the background
intensity, scaled by the constant p.

A more recent version of the model (Diggle and
Rowlingson 1994) avoids the need to perform ker-
nel estimation on the controls. The authors derive
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the probability that an event at s is a case (rather
than a control) and express this as

pls) = L8 _ (20)

(1+pf(d;0))
with notation as in the previous version of the
model.

An advantage of this formulation is that multi-
ple point sources (or, indeed, linear sources) can
be added to the model in a multiplicative form.
Another extension is to include other covariates
that might be available for the cases. For example,
we might have age and gender information on
the hypothetical children with leukaemia, together
with information on parental occupation. If so,
the function f() can be replaced with a general
formulation:

f(dy, . ..,dq;zl, e 2,0:0)

q ’
~11 (g(d,.;m)exp( y ¢,-z,(s>> 1)
i=1 j=1

where there are q possible sources at distances d;
from s, and r possible covariates z; at s. g() is a
suitable distance-decay function involving a vector
of parameters 8 and ¢=(¢1.., ¢,) associated with
each of the covariates. Maximum likelihood can
then be used to generate estimates of the spatial
effects, represented by the @ parameters, along with
the aspatial effects, represented by ¢.

The motivation for the development of these
approaches was the wish to establish whether there
was an elevated risk of respiratory cancer in the
vicinity of a former industrial waste incinerator in
south Lancashire (see Diggle et al. 1990 for the
background to the research problem). Simple
exploratory geographical analysis had suggested
that larynx cancer might be elevated, with five
cases (from a total of 58 observed in the period
1974-83) observed within 2 km of the site. The first
approach expresses the intensity of the disease as a
function of two elements: the intensity of back-
ground population and distance from the potential
source of pollution. Interest centres on whether the
intensity of larynx cancer declines with distance
from the incinerator and this hypothesis is evalu-
ated against a null model (which states that
the intensity of larynx cancer is simply equal to the
intensity of background population, scaled by the
ratio of cases to controls). The model is fitted using
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Figure 7 Locations of lung cancers, Chorley and South Ribble, Lancashire, 1974-83

maximum likelihood methods. Initially, we took
cases of a more commonly occurring cancer — that
of the lung (see Fig. 7) - to represent the controls or
background population. Fitting the model yielded
estimated parameters ,=23.67 and 0,=0.91, the
former representing the effect at the site, the latter
the distance-decay effect. A likelihood ratio test
gave a probability of less than 0:01 that the null
model was correct, suggesting that there was
indeed an elevated risk of larynx cancer within
about 2 km of the incinerator.

An important research question is how critical is
the choice of lung cancer as a measure of back-
ground population? This may be answered by
adopting other common cancers, such as stomach
cancer, as well as postcode density as alternatives.
Regardless of what was chosen, results remained
much the same (Gatrell 1990). However, it was
recognized that the number of cases was small:
deletion of a case near the site reduced the signifi-

cance of the fit, while removal of two cases failed to
give a significant result. Of course, this works both
ways: adding a case to the vicinity, to reflect
possible out-migration of an individual who
presents with larynx cancer in another part of the
country, increases the significance of the fit.
Initially, the model was fitted by running FOR-
TRAN programs to both generate the kernel esti-
mate of background population and subsequently
to estimate the model parameters. More recently,
we have linked the model to the proprietary GIS
ARC/INFO (Gatrell and Rowlingson 1994) so that
both types of events — cases and controls — may be
displayed within the ARCPLOT module and the
model fitted by running a macro that simply
requires the user to specify the location of the point
source of interest, together with starting values for
the parameters. The location of the point source is
specified by entering a map reference or inter-
actively with a mouse. The latter gives the model
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sufficient interactive power such that any location
of interest could be evaluated in order to see
whether there is an elevated risk there. Moreover,
one can run the model over a regular lattice of such
‘point sources’, resulting in a map of relative risk
for the entire study region. When this is done for
south Lancashire, only the location of the former
incinerator gives a significantly elevated risk. This
procedure is similar in spirit to Openshaw’s geo-
graphical analysis machine (Openshaw et al. 1987).

Following on from this tentative suggestion of
raised incidence of laryngeal cancer around one
site, the Department of the Environment asked the
Small Area Health Statistics Unit (based at the
London School of Hygiene and Tropical Medicine)
to conduct a study of larynx cancer in the vicinity
of other, broadly similar, incinerators. The results
(Elliott et al. 1992) were based on an alternative
methodology (essentially area-based rather than
using spatial point process methods) and so are not
directly comparable. Nonetheless, they failed to
find any evidence of an excess risk in the vicinity of
other sites. Whether this is genuinely so, a function
of method, or a function of the fact that the point
sources examined were not directly comparable
has not been established.

One of the limitations of the larynx cancer study
was the absence of any useful covariates relating
to cases or controls. For example, we had no
information about smoking behaviour or alcohol
consumption, the two major risk factors for that
cancer (Diggle et al. 1990). Research on another
problem - the incidence of asthma in north
Derbyshire (Singleton et al. 1994) — indicates how
the alternative non-linear binary regression ap-
proach (Diggle and Rowlingson 1994) may profit-
ably be used and such covariates incorporated.

There is some evidence to suggest that the
incidence of asthma has been increasing in Britain
in recent years. Certainly, it represents a public
health problem to which much recent research
effort has been devoted (see, for example, Alderson
1989). Some writers (for example, Perry et al. 1983)
have attributed variations in incidence to air pol-
lution in the external environment. In order to see
whether there is indeed any association between
asthma incidence among children and proximity to
potential sources of pollution, a survey was con-
ducted of over 2000 children aged 4-11 years in ten
north Derbyshire schools. The incidence of asthma
in this population was adjudged by self (parental)
reporting and yielded 216 cases, together with 1076
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children without asthma, taken to be ‘controls’. A
comprehensive questionnaire collected ancillary
information on a range of covariates, including
exposure to tobacco smoke, presence of pets in the
home and problems of dust and mould in the
home environment. Three potential point sources
of pollution were evaluated: a chemical plant, a
coking works and a plant for treating hazardous
waste. A non-spatial logistic regression model indi-
cated that the presence of a closed ‘Parkray’ fire in
the home had a positive effect on asthma incidence,
while an open fire was inversely associated with
such incidence (Singleton et al. 1994). The (spatial)
non-linear binary regression model referred to ear-
lier suggested some elevation of risk around the
coking works, though other point sources failed to
show such raised relative risk. Inclusion of the
obvious covariates (such as exposure to cigarette
smoke and to household dust) failed to improve on
goodness of fit.

There are alternative software environments
available for both the approaches to raised-
incidence modelling. One is via SPLANCS (see
Appendix) within the framework of S-Plus. This is
an attractive option, since maps of the events,
together with point sources of pollution being
assessed, may be displayed in one window with
graphical and statistical output in another. An
alternative option is to run a macro from within
ARC/INFO. This implements a very general
menu-driven system, prompting the user for ‘cov-
erages’ of cases and controls, any covariates that
one wishes to include in the model and a set of one
or more ‘source locations’ to be evaluated. The
latter may be contained within a separate coverage,
or entered via the keyboard, or by pointing on the
screen. As with the first approach, results comprise
parameter estimates — those relating both to the
distance effects of the sources as well as any
covariates being considered.

Conclusions

In this paper we have described how spatial point
patterns can be represented statistically and how
their first- and second-order properties may be
characterized through the concepts of intensity and
second-order intensity. Kernel estimation and, in
particular, the use of ratios of kernel estimates was
suggested as a means of assessing spatial variation
in disease risk. We suggested that second-order
properties may be characterized by the K function
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and that this could be extended to consider differ-
ent types of event. This led us to consider the
important topic of how we could detect spatial
clustering in the presence of environmental hetero-
geneity. We also examined the use of K functions in
a test for space-time clustering. Next, we presented
two variants of a model in order to assess whether
there is evidence for raised incidence of one type
of event in the vicinity of a fixed site, such as a
potential source of environmental contamination.
Throughout, we have been keen to stress the
empirical usefulness of these techniques in an
important area of applied geography.

While we have stressed the use of point process
methods in an epidemiological context, it is worth
drawing attention to other applications of modern
point process analysis. For example, Okabe and
Sadahira (1994) have examined the spatial associ-
ation between a set of retail outlets and population
distribution in Osaka, Japan. This approach has
much in common with the raised-incidence models
reviewed earlier: for example, we could take
a non-homogeneous distribution of demand, to-
gether with the locations of one or more retail
outlets attempting to meet that demand. A raised-
incidence model would allow us to estimate both
the distance-decay effects around the outlet(s) and
to estimate their attractiveness. In another area of
application, Odland and Ellis (1992) have drawn
attention to similarities between raised-incidence
models and the spatial form of proportional haz-
ards models used more often in a temporal context.
They apply such a model to the spacing of settle-
ments in Nebraska. Hopefully, applications such as
these and those considered in this paper will serve
to reintroduce geographers to the value of point
process methods in their research.
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Appendix: software environments

As noted in the Introduction, applications of
modern spatial point process techniques have been
hampered, in part, by the lack of suitable soft-
ware. As will be clear from this paper, in order to
apply the range of exploratory methods and to fit
possible models, we need good, interactive analyti-
cal software that will permit us to visualize the
mapped pattern of events, to estimate variation in
intensity, to see the empirical functions arising
from any second-order analyses, to display results
from model-fitting and so on. What software is
available to aid such analysis?

One approach is to use S-Plus, a statistical pro-
gramming language to which may be attached
user-written libraries (Becker et al. 1988). One such
library, ‘SPLANCS’ (Rowlingson and Diggle 1993),
implements all the above methods (and more).
Embedded into S-Plus is a set of high-level statis-
tical functions. This feature, coupled with the
excellent graphics facilities, makes it an excellent
vehicle for interactive spatial analysis. When oper-
ating in a windows environment on a workstation,
it is possible, for example, to have a map of the
events in one window, graphical plots (such as the
K function) in another and the commands entered
in a third. Other windows might be opened if one
wished to display the results of kernel estimation
or if one wished to display a histogram of the
temporal distribution of events in a space-time
context. The empirical work has made extensive
use of S-Plus and SPLANCS. (SPLANCS is avail-
able for UNIX workstations at a small charge from
the Department of Mathematics and Statistics,
Lancaster University, Lancaster LA14YB. How-
ever, the user must, of course, have a licence to run
S-Plus. Details of obtaining such a licence may be
obtained from Statistical Sciences Ltd, Oxford.)

For those interested in conducting such analyses
within a GIS environment, some progress has been
made in linking computer code for spatial point
process analysis to the proprietary system, ARC/
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INFO, running in a workstation environment
(Gatrell et al. 1994; Gatrell and Rowlingson 1994).
Having invoked the GIS, one can call a ‘macro’
(known as an ‘AML’ within the particular system
under consideration) that itself calls compiled
code. Various tools for point process modelling,
notably K function estimation, kernel estimation
and the fitting of raised-incidence models, are part
of a so-called ‘spatial analysis toolkit’ (SAT/1) that
seeks to extend the spatial analytical functionality
offered by current releases of ARC/INFO. Details
of this are available from Anthony Gatrell.

Finally, as an educational aid, Trevor Bailey has
written a package for interactive spatial data analy-
sis called INFO-MAP (Bailey 1990; Bailey and
Gatrell 1995). This is designed to perform a range
of statistical analyses on small spatial data sets
using a minimal PC hardware configuration.
Although not a fully fledged GIS, nor containing
any facility for linking plots in different windows,
it does offer some functionality for much of the
analysis we report above. For example, kernel
estimation is available, as is the estimation of K
functions (including those for analysis of bivariate
point patterns), together with some simulation
functionality. The command language also permits
the user to explore some of the ideas concerned
with raised incidence. Multiple maps may be plot-
ted on the same screen by saving currently dis-
played plots to a ‘clipboard’ and retrieving them
subsequently. As a result, we could, for example,
compare the effects of bandwidth selection on
kernel estimation. Selection of sub-sets of the
data is also possible, so we could examine spatial
patterns in particular sub-regions of interest. The
software accompanies the text produced by Bailey
and Gatrell (1995).
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