Examen final

N. Saunier

14 décembre 2020

Please

- consider that this is a english translation of the final exam: please consider that the french version is the original version and refer to it in case of ambiguous or inacurrate wording;
- note the scale (the total score is out of 20) and the indicative time to devote to each exercise;
- clearly indicate the numbers of the questions you are dealing with and your corresponding answers (and underline or frame the numerical results);
- pay particular attention to the wording and definition of the notations you use;
- note that some exercises require files available on Moodle ("Examen Final" Section) (text files are provided in a version with a period and a comma for decimal numbers, if necessary). Statistical tables are available on Moodle if necessary.

Exercise 1 (modèle de régression)

40 min (/5.5 pts)

A multivariate linear regression model yield the results presented in the tables 1 et 2.

Table 1: Global results						
R^2	1.000					
R^2 adjusted	1.000					
Statistic F	3309					
Prob (>F)	0.0128					

5

Observations

Table 2: Coefficients of the model

	coef	std err	t	P > t	[0.025	0.975]
Intercept	3.5347	0.162	21.759	0.029	1.471	5.599
x1	7.3775	0.239	30.870	0.021	4.341	10.414
x2	-4.9703	0.132	-37.551	0.017	-6.652	-3.289
x3	0.4180	0.165	2.531	0.240	-1.681	2.517

- 1. Is it a good idea to add a fourth variable to the model, knowing that its correlation with the dependent variable is very strong? To justify. (1 pt)
- 2. Describe the quality of the model, if it is significant, and indicate the significant variables of the model. Justify. (1 pt)
- 3. A new data collection is done including the fourth variable and providing 100 observations provided in the file exercise1.csv.
 - (a) Based on a visualization of the distribution of the dependent variable y, describe the shape of the distribution (0.5 pt)
 - (b) Propose a model of the variable *y* as a function of the four independent variables *x*1, *x*2, *x*3 and *x*4.
 - i. Describe the quality of your model and indicate the significant variables. (2 pts)
 - ii. By relying on visualization of the residuals, check and comment if the estimation conditions of the model are verified. (1 pt)

Exercise 2 (analyse et fouille de données)

70 min (/9.5 pts)

This exercise is based on a set of traffic data collected on a highway in the Portland metro area for seven consecutive days in September 2011, available in the file portland-1395.csv. The data is aggregated at 20 s intervals and the attributes are as follows:

- detectorid: detector identifier
- starttime: date and time of the start of the interval
- volume: number of vehicles detected in the interval of 20 s
- speed: average vehicle speed
- occupancy: occupancy rate (proportion of the time that the sensor is occupied by a vehicle)
- status: detector status (not used)
- dqflags: quality indicator (not used)
- date: date deducted from the starttime attribute

Please answer the following questions:

- 1. Describe a sensor technology to collect the three attributes volume, speed and occupancy, and indicate one advantage and one disadvantage. (1 pt)
- 2. Choose two days and do the following analyzes:
 - (a) calculate the 95 % confidence intervals of the speeds for each day; (1 pt)
 - (b) compare the average speeds using a statistical test; (1 pt)
 - (c) test the adequacy of the distribution of the speeds of one of these days to the normal distribution. (1.5 pts)
- 3. Explain (without doing it) how to compare, using a statistical test, the means of the variable volume according to the days and the conditions to apply the test. (1 pt)
- 4. Using a segmentation method, group the traffic conditions (described by the three attributes volume, speed and occupancy) and describe the resulting groups. Choose a small number of groups (2 to 4). (3 pts)
- 5. Describe (without doing it with the data) a graphic visualization of the groups and the three attributes used to create the groups. (0.5 pt)
- 6. Describe (without doing it) a supervised learning method for identifying important variables in groups obtained by the segmentation method. (0.5 pt)

Exercise 3 (regression model)

25 min (/3 pts)

The results of a discrete choice model of the logit type are presented in the table 3. The variable to predict is the choice of the plane for a trip (the alternatives are the train, the bus and the car). The explanatory variables of the model are as follows:

- invt: travel time (min)
- hinc: household income (1000\$)
- psize: number of people traveling together

Dep.	Variable	car	No. O	bservati	ons:	210	
Mod	el:	Logit	Df Residuals:			206	
Meth	nod:	MLE	Df Model:			3	
Date	:		Pseudo R-squ.: 0.8240				
Time	:		Log-Likelihood: -21.775				
converged:		True	LL-Null:		-	-123.76	
	coef	std err	Z	P > z	[0.025	0.975]	
const	9.7860	2.312	4.232	0.000	5.254	14.318	
invt	-0.0469	0.009	-5.185	0.000	-0.065	-0.029	
hinc	0.0291	0.020	1.460	0.144	-0.010	0.068	
psize	-1.0656	0.536	-1.988	0.047	-2.116	-0.015	

Table 3: Results of a logit model

Please answer the following questions:

- 1. Describe the quality of the model, if it is significant, and indicate the significant variables of the model. To justify. (1 pt)
- 2. Explain how to compare the effects of different independent variables. (0.5 pt)
- 3. Which model would allow us to study the factors associated with the choice of the mode of transport among at least three modes. (0.5 pt)
- 4. Discuss a survey method for collecting such data (reference population, type of survey and survey technique). (1 pt)

Exercise 4 (spatiale analysis)

 $15 \min(/2 \text{ pts})$

A model with a spatial component per zone was estimated and we want to validate whether the residuals are well distributed spatially using a spatial autocorrelation analysis. Moran's I for the residuals by zone is -0.2315, with a p-value (obtained by simulation) of 0.04.

- 1. Are the residuals well distributed spatially (without spatial autocorrelation)? Justify. (1 pt)
- 2. What would be the interval of the Geary index C for the residuals? (0.5 pt)
- 3. What measurement would make it possible to determine the places where the residues are most concentrated? (0.5 pt)