Final exam

J.-S. Bourdeau and N. Saunier

December 20, 2017

Please

- note the scale (the total score is out of 20) and the indicative time to devote to each exercise;
- clearly indicate the numbers of the questions you are dealing with and your corresponding answers (and underline or frame the numerical results);
- pay particular attention to the wording and definition of the notations you use;
- download the data necessary for certain exercises available in the data archive on moodle (Section " Final exam ", first element " Data ") (the text files are provided in a version with a point and a comma for decimals, if necessary).

Statistical tables are available on moodle if necessary.

Exercise 1 (statistical analysis and regression model) 65 min (/ 9 pts) This exercise is based on a data set from the City of Washington, D.C. bike-sharing system for the years 2011 and 2012 (file washington-day.csv). The attributes of the file are as follows:

- instant: identifier
- dteday: date
- season: season (1: spring, 2: summer, 3: fall, 4: winter)
- yr: year (0: 2011, 1: 2012)
- mnth: month (1 to 12)
- holiday: holiday indicator
- weekday: day of the week
- workingday: weekday indicator
- weathersit: weather conditions
 - 1: clear, few clouds
 - 2: cloudy, fog
 - 3: snow or light rain
 - 4: heavy rain, storm, heavy snow

- temp: normalized temperature in degrees Celsius (divided by 41)
- atemp: felt temperature in degrees Celsius, normalized (divided by 50)
- hum: normalized humidity (divided by 100)
- windspeed: normalized wind force (divided by 67)
- casual: number of bikes borrowed per day by occasional users
- registered: number of bikes borrowed per day by subscribers
- cnt: number of bikes borrowed per day (sum of " casual " and " registered ")

Please answer the following questions:

- 1. Propose a graph to study the correlation between the variables " casual " and " registered " according to the days of the week and the weekend. Comment on the graph and the correlations. (1.5 Pts)
- 2. Determine using a statistical test whether the number of bicycles borrowed per day (variable " cnt ") is greater on clear days than on cloudy days. (1.5 Pts)
- 3. What statistical test can be used to study the correlation between the number of bicycles borrowed per day (variable " cnt ") and weather conditions (variable " weathersit ")? What are the conditions of application of the test? (1 Pt)
- 4. While paying attention to the nominal variables, propose a linear model of the number of bicycles borrowed per day (variable " cnt ") by keeping only the independent variables significant at 95 %. Comment on the model. (4 pts)
- 5. By relying on visualization of the residuals, check and comment if the estimation conditions of the model are verified. (1 pts)

Solution

- 1. point cloud + color for weekdays and weekends. Good correlation with different slope depending on the day
- 2. sun 4876.786177 + 1879.483989 cloud 4035.862348 + 1809.109918

Exercise 2 (statistics and segmentation methods) 40 min (/ 5 pts) This exercise is based on a set of traffic data collected at a point on a California five-lane freeway, in one direction of traffic, for the day of January 12, 2016 (file d04_text_404905_raw_2017_02_14.txt). The data is aggregated at 5 min intervals and the attributes are as follows:

- flow: the number of vehicles
- occupancy: the occupancy rate (proportion of the time that the sensor is occupied by a vehicle)
- speed: the average speed

Please answer the following questions:

- 1. Describe the distribution of mean speeds by descriptive statistics (1 Pt)
- 2. Calculate the confidence interval of the mean speeds at 90 and 95 %. (1 Pt)
- 3. Using an appropriate data mining method, identify groups of traffic conditions from the variables of number of vehicles (variable " flow ") and average speed (variable " speed "). Describe the groups. (3 Pts)

Solution

- 1. count 288.000000 mean 60.970486 std 18.476275 min 14.500000 first quartile 57.975000 median 71.100000 last quartile 72.300000 max 75.400000
- 2. 95 (58.82569793207994, 63.115274290142288) 90 (59.174089920552007, 62.766882301670222)

Exercise 3 (spatial analysis, databases and SQL)

45 min (/ 6 pts)

You have the following tables.

	Field		Туре	
• arrondissements table:	id _arround		Integer	
	name _arroun	d	VARCHAR (255)	
	Geom		Geometry (MultiPolygon, 32188)	
• reseau_routier table:	Field		pe	
	d_lien_routier Integer		teger	
	Geom G		cometry (MultiLinestring, 32188)	
	Field	'	Туре	
• reseau_cyclable table:	id_lien_cyclabl	e 🛛	Integer	
	Geom		Geometry (MultiLinestring, 32188)	

Propose a method, for example in the form of an SQL query with spatial functions, in order to determine, by district, the proportion of the road network that contains a cycle lane. The list of spatial functions is presented in the table 1.

Solution

The steps of the method are as follows:

1. Creation of a table of road links by district:

CREATE TABLE public.reseau_routier_arrond AS SELECT 1.*, R.id_arrond, ST_Intersection (l.geom, r.geom) as geom_intersection FROM public.reseau_routier 1 INNER JOIN public.arrondissements r ON ST_Intersects (l.geom, r.geom);

2. Creation of a table of cycle links by district: CREATE TABLE public.reseau_cyclable_arrond AS SELECT l. *, R.id_arrond, ST_Intersection (l.geom, r.geom) as geom_intersection FROM public.reseau_cyclable l INNER JOIN public.arrondissements r ON ST_Intersects (l.geom, r.geom);

Function	Description
ST_Area (g1)	Returns the area of the surface if it is a
	Polygon or MultiPolygon
ST_Dwithin(g1, g2, distance_of_srid)	Returns true if the geometries are within
	the specified distance of one another
ST_Intersection (geomA, geomB)	Returns a geometry that represents the
	shared portion of geomA and geomB
ST_Intersects (geomA, geomB)	Returns TRUE if the Geometries / Geog-
	raphy "spatially intersect in 2D"
ST_Length (g1)	Returns the 2d length of the geometry if
	it is a linestring or multilinestring
ST_X (g1)	Return the X coordinate of the point
ST_Y (g1)	Return the Y coordinate of the point

Table 1: List of spatial functions

3. Extraction of cycle paths which are at a certain distance from the road network (here 10m):

CREATE TABLE public.reseau_cyclable_ arrondissement_within10m AS SELECT DISTINCT ON (a.id_link_cyclable) a.* FROM public.reseau_cyclable_rounded a, public.reseau_routier_arrond b WHERE ST_DWithin (a.geom_intersection, b.geom_intersection, 10)

4. Calculation of the lengths of the selected cycle network and of the road network by district:

CREATE TABLE arrondissements_lengths AS SELECT l.id_round, sum (ST_Length (c.geom_intersection)) / sum (ST_Length (r.geom_intersection)) as percentage_reseau_cyclable FROM arrondissements l LEFT JOIN reseau_cyclable_arrond_within10m c ON l.id_round = c.id_round LEFT JOIN reseau_routier_arrond r ON l.id_round = r. id_round GROUP BY l.name_arron;

Bonus point

(/1 pt)

Explain one of the reasons why correlation should not be confused with cause and effect.