{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## Matricule & noms : " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "###
ELE8812 - Traitement et analyse d'images
\n", "
Travail practique No. 1
\n", "
Hiver 2021
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "Ce lien vous permettra de voir les différences fondamentales entre Python et Matlab. Ne passez pas forcement par les étapes d'installation.\n", "
" ] }, { "attachments": { "image.png": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1oAAAJ9CAIAAACjHpTzAAAgAElEQVR4AeydB3gVRdfH56aSSnoIgRAEFaQKKD2ForSQUEKTJvYu6ocF9VUx4KtYAIO+KKCCNfhie+0UQUQ0EFpAEOkloQdC6p2Z77lEb24u4Wb3ZieZ3f3fZx+85czZM/8zZ/NzdneWcLygABSAAlAACkABKAAFTKwAMXHf0XUoAAWgABSAAlAACkABDhzEIIACUAAKQAEoAAWggKkVAA6aOv3oPBSAAlAACkABKAAFgIMYA1AACkABKAAFoAAUMLUCwEFTpx+dhwJQAApAASgABaAAcBBjAApAASgABaAAFIACplYAOGjq9KPzUAAKQAEoAAWgABQADmIMQAEoAAWgABSAAlDA1AoAB02dfnQeCkABKAAFoAAUgALAQYwBKAAFoAAUgAJQAAqYWgHgoKnTj85DASgABaAAFIACUAA4iDEABaAAFIACUAAKQAFTKwAcNHX60XkoAAWgABSAAlAACgAHMQagABSAAlAACkABKGBqBYCDpk4/Og8FoAAUgAJQAApAAeAgxgAUgAJQAApAASgABUytAHDQ1OlH56EAFIACUAAKQAEoABzEGIACUAAKQAEoAAWggKkVAA6aOv3oPBSAAlAACkABKAAFgINGHgMn8YIC5lPg9OnT5eXlQgu7sLDwwIED+/CCAiZT4NixY0IrC87rUQHgYD2KL3zXHUz86tihQ6cOHTqaUoFrL/bdlF23dfqGG27Izc0VWl1ZWVmhoaEeHh6epnyRiy+LB7F4WEy22XpusVhMmXZPQkhiYqLQyoLzelQAOFiP4gvfNSHEx8cnKioqWqZXw4YNPTw8goKCxAXVOCoqITDwPkKua9iwkbLdhIeHe3l5+fr6RkZGKmtRF1ZRUVF+fn4eHh7h4eHK9zekgd+dFkt8RITyJmotIyIiPD09vb29pRpdUVFRDRo0aNq0aXZ2ttDqysrKioyM7N69+/3mew0bNszX1zessV/v0c0Txphr6zK4aVC47xVXXHHrrbeaLfMjR4708/MDDgo9sNSvc+Bg/eovdu8Wi6V3794FBQWlMr0WLFgQHh4+d+7coqIiUXEVFJTNmMEJKVu0qPTCBSV72bJlS6dOnYYOHZqfn6/Evm5szp07d/vtt8fGxubk5CjdY0lJ+fjxLCioZNcupU3U2+3cubNp06a9evU6d+6c+taiWpw8eXLEiBFxcXF1gIOxsbHPP/+82AKW0vuKFStCQ0PbJkS/til17uY0U21Pft4vvn1oampqfn6+lMkRGNTatWsjIyOBgwIlrm/XwMH6zoDI/VsslsTExKKiIpE7Ue174cKF4eHhmZmZVqtVdWNlDVhREc3I4ISwd99lZWVKGuXm5nbu3DktLe306dNK7OvGpqSk5K677oqNjd2+fbvSPVJKJ07kwcF8716lTdTb7dmzJy4uLiEhobi4WH1rUS0KCgrS09OBg6L0vegXOAgcFDrA4Ly+FAAO1pfydbFf4CBwUNA4Aw5idhCzg4KKS063mB2UMy8aRgUc1FBM6VwBB4GDggYlcBA4CBwUVFxyugUOypkXDaMCDmoopnSugIPAQUGDEjgIHAQOCiouOd0CB+XMi4ZRAQc1FFM6V8BB4KCgQQkcBA4CBwUVl5xugYNy5kXDqICDGoopnSvz4mBpKV22jA8bxlatYspuWDHOrSSMsblz+bhxXOTNj8BB4CBwULojvsiAgIMi1ZXCN3BQijQICsK0OGjTkzFutdr+VfYyDg5yzillVitT3HdlClWxAg4CB4GDVUrC6B+Ag0bPMAcOGjnFpsZBlYk1FA6q7Lsb5sBB4CBw0I3C0W8T4KB+c6cwcuCgQqF0aQYcVJ424KByrTjnwEHgIHBQVcno3Rg4qPcM1hg/cLBGiXRsABxUnjzgoHKtgINZWVnAQeCgqpLRuzFwUO8ZrDF+4GCNEunYwLw4yJjtwSSnTrGSEoWXDxoJB1lhIT19mlEqbuxidhA4CBwUV18SegYOSpgUbUMCDmqrp1zeTIuDrKSEvvMO7daNff01Ky9XkhXj4CBjdMYM2q8vO3pUScfdswEOAgeBg+7Vjk5bAQd1mjjlYQMHlWulP0vz4iCeWYxnFousV5wsbpsQDRwUOcSk8w0clC4lWgcEHNRaUZn8AQexDLWg8YjZQcwOAgcFFZecboGDcuZFw6iAgxqKKZ0r4CBwUNCgBA4CB4GDgopLTrfAQTnzomFUwEENxZTOFXAQOChoUAIHgYPAQUHFJadb4KCcedEwKuCghmJK5wo4CBwUNCiBg8BB4KCg4pLTLXBQzrxoGBVwUEMxpXMlJw4uWrQoPDx8/vz5VmVPE3ZDVtsqM7NmcU9PtmQJKytT4mHHjh2dO3dOS0s7c+aMEvu6sSkpKbnrrruaNGmSm5urdI+M0cmTeWgo37dPaRP1dibHwWXLlpkdBxOjX9s4dE5Oqqm26Z/1jW8fmpaWli/ygeDqy7EuWqxduzYqKiopKakudoZ91IcCwMH6UL2u9iknDi5cuDA8PDwzM1MgDlqtdMcO+tGHfP9+rmz5PSMtNMN+XU+XLWMXLogbaCbHQdxZfPHOYpPiYGpqqjlxMDIyMjExUdxRBZ7rVwHgYP3qL3bvpsVBN2Q1Dg660Xn1TYCDZp8dxEIz6qtG1y1wsljX6VMSPHBQiUp6tQEOKs8ccFC5VnhIHWYHse6gqnoxgDFw0ABJdN0F4KBrffT9K3BQef6Ag8q1Ag4CB4GDqurFAMbAQQMk0XUXgIOu9dH3r8BB5fkDDirXCjgIHAQOqqoXAxgDBw2QRNddAA661kffv5oXByllBw/yNWtoXh5jTEkWDYWDf/zB1q1jxcVKOu6eDa4dxLWDWGjGvdrRaSvgoE4Tpzxs4KByrfRnaVoctC008+KL1D+AffABKy9Xkjnj4CBj7LbbaHQjtn+/ko67ZwMcBA4CB92rHZ22Ag7qNHHKwwYOKtdKf5amxsGMDE4IlqEWNGqBg8BB4KCg4pLTLXBQzrxoGBVwUEMxpXMFHAQOChqUwEHgIHBQUHHJ6RY4KGdeNIwKOKihmNK5Ag4CBwUNSuAgcBA4KKi45HQLHJQzLxpGBRzUUEzpXAEHgYOCBiVwEDgIHBRUXHK6BQ7KmRcNowIOaiimdK6Ag8BBQYMSOAgcBA4KKi453QIH5cyLhlEBBzUUUzpX5sXBkhL6zju8a1f2v/+Z8M5i+uyzLDmZHTkibkQCB4GDwEFx9SWhZ+CghEnRNiTgoLZ6yuXNtDjIKaUnT9IdO+jZs9x86w6yo0fprj94WZm44QgcBA4CB8XVl4SegYMSJkXbkICD2uoplzfz4qD6PBhn3UH1fXejBXAQOAgcdKNw9NsEOKjf3CmMHDioUChdmgEHlacNOKhcKzykDg+pw0PqVNWLAYyBgwZIousuAAdd66PvX4GDyvMHHFSuFXAQOAgcVFUvBjAGDhogia67ABx0rY++fwUOKs8fcFC5VsBB4CBwUFW9GMAYOGiAJLruAnDQtT76/tW8OFhayr76ik6eTNet41arkiwaBwcZo2+9Re+8k584oaTj7tng2kFcO4hrB92rHZ22Ag7qNHHKwwYOKtdKf5amxUFWVERnzeKenmzJEqbsBltD4eDNN/PQUL5vn7ghCxwEDgIHxdWXhJ6BgxImRduQgIPa6imXNzlxcNGiRREREfPnz7cqm7dzQ1MbDs6cyYmFvfeewnUHd+zY0aVLl2HDhp05c8aNPQpqUlJSctdddzVp0iQ3N1fpLhijkybx4IaicbBZs2YJCQklJSVKAxNvV1BQkJ6e3qxZs+zsbKF7W7ZsWWxsbEZGhtC9yOl8xYoVYWFhbRMbvbpx6JycVFNt0z/rG98+NC0tLT8/X87siItq7dq1UVFRSUlJ4nYBz/WrAHCwfvUXu3c5cXDhwoXh4eGZmZlicTAjgxOCp5IIGmGYHcTsIGYHBRWXnG4xOyhnXjSMCjiooZjSuQIOAgcFDUrgIHAQOCiouOR0CxyUMy8aRgUc1FBM6VwBB4GDggYlcBA4CBwUVFxyugUOypkXDaMCDmoopnSuTI2DL7zAfHzZ0qUKrx001K0kU6awiAjR1w7GxcUlJCQUFxfLM+4rrh2Mi4sTfe0gFprBQjPyDPu6iQQ4WDc61+NegIP1KL7wXZsXB8vK2Dff0Ntv5+vXm3GhmUWL6AMPsJMnxY0wzA5idhCzg+LqS0LPwEEJk6JtSMBBbfWUy5tpcdCNNBhndtCNzqtvAhwEDgIH1deNjlsAB3WcPGWhAweV6aRPK+Cg8rwBB5VrhaeS4GQxTharqhcDGAMHDZBE110ADrrWR9+/AgeV5w84qFwr4CBwEDioql4MYAwcNEASXXcBOOhaH33/arFYevbseezYsTMyvV5//fWwsLDZs2efOnVKnrh+/fXXjh07Dh48eP/+/fJElZ+fP2XKlJiYmPXr18sT1ZkzZ3Jycpo0adKjR4+8vDx5Ajt06FBaWhpuJRF62FqxYkVoaChwUKjIEjoHDkqYFG1DAg5qq6dc3gghTZo0ue+++6bK9LrhhhsaNGjQt2/fBx98UFBcD02dmjH1oYVTpz4zdepDyvYxadKk6Ojoli1b3nPPPcpa1IXV/fff3759+8DAwEmTJinf3+ypUxdMnTpNeQP1llOmTAkKCmrSpMn999+vvrWoFvfcc89VV13VtGlT3Fks7kgEHExNTTXnU0kiIyMTExPFDS14rl8FgIP1q7/YvRNCfHx8GjVqFCPTq2HDhhaLJTg4WFxQzRo1ui8oKJuQcSEhscq6HxkZ6e3t7eXjERTmGxwhyxYU7uvdwNPiQQJCfJRH9byvx08WcmWoiibKnVdYBob6WDykG13R0dENGjQADgo9rAAHgYNCBxic15cCwMH6Ur4u9ksIadu2bVZW1ucyve6///6goKA777zzs88+ExTXV1lZ2ydM5IRsnDr1i+XLlewlMzOzRYsWzdqGTJzZ6dbXukqy3fzSda16RPkHe498tJ3CkG579fp1ncOLfD0ee6qDwiZumI16soN/Q+82bdosW7ZMibx1Y/PRRx/17NkTJ4uFHlyAg8BBoQMMzutLAeBgfSlfF/s17a0krKiIuvXM4nZJjWatGTh3c5ok28sbUnqOjG8Y1eDxZclKQ9qUumNw0xJ/r8Vf9VfaRH1/n/6yf0h0AyxDXRdlLNk+gIPAQcmGJMLRRgHgoDY6yukFOKj2IXXAQYUECRzEuoNYd1DOw76gqHAriSBh5XELHJQnF9pHAhwEDirEO7VmwEHgIHBQ+0O2xB6BgxInR5vQgIPa6CinF+AgcFAt5ym0Bw4CB4GDch72BUUFHBQkrDxugYPy5EL7SEyNgzNnUmJh773HysqUKFuxDLVBThYPaVoS4IlrB5Xk3T0bLEONdQfdGzn6bQUc1G/uFEYOHFQolC7NTIuDnDF+5gzfu5efP297r+BlHBzMSV2wcsDi//Wfl52icKrPDTPMDmJ2ELODCo4rxjEBDhonl5fpCXDwMsIY4mvz4qD69BkHB9XfJgwcVDteMDuI2UG1Y0bv9sBBvWewxviBgzVKpGMD4KDy5AEHVUEhZgcxO4jZQeWHFwNYAgcNkETXXQAOutZH37/KiYOLFi0KDw+fP3++1WqVR98dO3Z06dLFdu3gTwPn5KRKss3+dUiPkc2CI30fy0qWJKSKMJ76ol/DKEnXHWzWrJnoh9QtW7YsNjY2IyNDngFcZ5H8ve5gYqPXNg6VakzWQTDTP+sb3z40LS3NnA+pi4qKSkpKqrORhh3VsQLAwToWvE53JycOLly4MDw8PDMzUywOUsqtVoUXDnLOjTM7mJM6d1Pq3I1D5+akqprwU2WM2UHMDmJ2sE6P5vW9M8wO1ncGhO8fOChc4nrcgWlxkFmt9M8/6Zdf0kOHOKVKUmAcHNyU+v5HiZ+93i1z/RBVhKfKGDgIHAQOKjmwGMYGOGiYVF6uI8DByyljhO/Ni4N4SB0eUieygnErCW4lETm+ZPQNHJQxK5rGBBzUVE7JnAEHsQy1qjk/5caYHcTsIGYHJTveiw0HOChWXwm8AwclSIKwEICDwEHlhKfKEjgIHAQOCjtyy+gYOChjVjSNCTioqZySOQMOAgdVQZ5yY+AgcBA4KNnxXmw4wEGx+krgHTgoQRKEhQAcBA4qJzxVlsBB4CBwUNiRW0bHwEEZs6JpTMBBTeWUzBlwEDioCvKUGwMHgYPAQcmO92LDAQ6K1VcC78BBCZIgLATz4mBJCf34Yz5oEFuxgilb7NpIC82smdpmd9+Yt368UTneqbUEDgIHgYPCjtwyOgYOypgVTWMCDmoqp2TOTIuDttWnCwv5sWO8qEjhStTGwcGc1DfWDnprxYB5G7EMtaiCxEIzWGhG1NiS1S9wUNbMaBYXcFAzKSV0ZF4cVJ8M4+Dg5jS1U31u2GN2ELODmB1Uf5jRcQvgoI6Tpyx04KAynfRpBRxUnjfgoCooBA4CB4GDyg8vBrAEDhogia67ABx0rY++fwUOKs8fcBA4qHy04GQxThYrHy3GsAQOGiOPLnoBHHQhju5/Ag4qTyFwEDiofLQAB4GDykeLMSyBg8bIo4teAAddiKP7n0yLg6ykhC5dSpOS6HffsfJyJYk0Dg5uSl13b6t9PaPe+gF3FivJvDs2wEHgoDvjRs9tgIN6zp6i2IGDimTSqZF5cbCoiM6cyS0W9t57rKxMSfqMhIM7hjQtCfBa/FV/VRN+qoxx7SCuHcS1g0oOLIaxAQ4aJpWX6whw8HLKGOF7U+NgRgYnBMtQq4I85cbAQeAgcNAIfyQU9wE4qFgqvRoCB/WaOSVxmxYHy84XnZjx2jHv6HPvfETLTHeyeMfgpiX+mB1UUiJu2uBkMU4Wuzl0dNsMOKjb1CkNHDioVCk92pkQBxnjuw7wqXPKu4882qHzxkG3HP/kR1pcXHP2DHWyGDiYnV1zymthARwEDtZi+OiyKXBQl2lTEzRwUI1aerM1Gw4yxn7ewjrdSj2SuSWZk0RmSeZ+/eljb7DjZ5jr7Dni4JycVEm2l39N6TkyvmFkg8eXJSsNaVPqjsFNKmYHlTZR39+nvuwXEt0gISGhWAlru5Zeu18LCgrS09Pj4uKy6wQHZ8yYQc33+vHHH0NDQ9skRL+6ceicTamm2qZ/1je+XWhqauqxY8fMlvk1a9ZERkYmJiZqV6/wJJcCwEG58qFtNH/j4IULtge1OW5Ou3H8yfG9hmYOrhYtWhQeHp6ZmWktL68SFbuE2ByDsb93cGV7a/+eseOn6LhnqWdfRpK54xaWwhb/z3b0Zg7Gfzf8x9uOHTs6d+7cLrHRCz8NdP4L50RL1f4JdLLJucyfSZVmL/865CIO+j7+SVINUdn3uHFobkqToiDvRV/2szVRuce/7Wvqow0Ho/7BQSdV/5H07/86/Wr/qMRMiY3DsKkzHFy2bFlUVFS/fv1mmO81ZcoUPz+/qPjAgXe1GnR3a1NtiTddERLdoHXr1o899pjZMn/rrbcGBAQkJSU5FSU+GkYB4KBhUllNRzwIGdalS/GGDXzzZseN5eczSisbFBby3FxHA9v73FzuOPHDGD9ylG/Z4mx26BB3cMVKS9nOnU42bNs2eu6cfXeLFi68Kjz8gyeesG7aVMVy715utdrNeFkZ37OnikFFL06ftpGc/VVQwLdu5Zs3082bf1i2JyqVOoKg/f2gR6052y4c2Xa4cPMOalfj6DG7m9zc3F6dO6d0iXh7Ya/3P0m2b0uW9clcP3huzj/P/81Jffu7G5c6GFRYvv3NDY7PCH79t5R3Pu9rd1LxZklW8ptrB1ferpGT+p9VA5dmVe6rwuydL/rN+31ohdnLG1J6j4zvEOozZ3YXR29LP0n+z8oBlVFtTnvj58FLKlx9nLTmwWu2jIzPWtjr3c/6Zv6aYt/jvI224B39VLx/6/sb59g7uDktc/3g9/7bx8lsyad9MtdVBv/0l/1bRzeY3LlzyW+/VcnR/v2OSbSt+HNpErdupWfO2ND84osxxk6fvnRo0T17HO8KZ1Yr++uvKvvavNnWKj/fPh4KCgompKe3rpPZwdDQUE9PTx/zvby8vCwWC7EQTy+L2TYPTwshxMPDw3xp96nIO2YH7X8yjPcGOGi8nFb2yJ+QJR4ezNeXV93o7NmspMRux375hTVt6mTD4puxzZsrbcrK6EMPscBAZ7M77uCFhZVmu3axdu2cbGhYKP/2G7vN4oULnwoPP+fl5WTGUlLYyZN2M3b0KO3f38mG+/rSJUu441KCX37JIyO5ry/z9f00Jt0zscyOgI5vvJKtoUnn2l637dar/vNZWMoJ73CbLE8+aWfZ3Nzcezt3/tNCyr09HLfzEQ0+/CDBDl7zNg79ffKVZb6ejjbl3h7bhjV7c80gO3i9+3m/wx1CnWzOh/l+Nfs6u83rvw9d8WSH4mBvJ7MD10f+Z/VAOw4OGhn/AyFlXhZHs1I/r9X/1+71f6hx7ua0z17vXhju62hT7u1x7JqQpVnJ9j2+uWZQztjmTjbl3h6/T245L/tvAJ27Oe3DDxLOxPo7mZ2L9vtkUS+7q6e/7D8/yq/EYnEaXXT8eHb2bGUS//yT9unjlEQWEUE//rgSB8vK6JIlLDjY2axfP3asktdZQQEdPNjJhgcHsxf+zf75v4iCgoKZ6em31wkORkdHp6SkvG6+1/333+/v7x/TMmjko+3SH2tvqu3GO64Oa+zXvn37WbNmmS3zU6dODQwMBA7aD27GewMcNF5OK3vkTci0pk3LHnqIT5vmuNHVqx0XZ2b79tHnnnM04NOm0Rkz2JEjdl/MaqWff84ef9zJjGVl8dLSSrPjx9lLLznbPPkk37nTbrNo4cKU8PBf+/e3PvKIoyVbuJBduGA3s/35f/NNR4OK9zQ7285wtnPFubnsqadsAU+b9s3dixoOqB4HW0/kNz1HO9/GIoZYY3ocuf3aJfvGP1L+v6/tE0u5ubnDO3d+uWnA+rHNsyddad/W39Fq4Tc32HFw7qbUz+d0/X1ypUGF5f/+3Tnz1yF2WlqwcuCqaW3tTire/Hr7Ve9/Ugln8zamfvxu7w23XOVktuKJDpm//O3q5Q0pfUbG3+/nuXponKPZbzdfmbWwl+N85Hv/7fPrbc6uVj/c5m2Hxagzf0358uXrHP1UvP98Tte5G/+Z/tyctvCbG9bd09rJ7Je7Wi3+sp+9g09/2X9cdIOlTZqWPfywY47o++8zh0llduIEe+MNRwM+bRp76im6eXMlDlqtNDubPfGEs9kbb/CCgsrxUFxM337L2ebxx9nKlfap7oKCggfT0/vXCQ5ioRksNGMfnGZ4g1tJDJ9l4KCRU2y2W0n2Hqb9p1KPPlUuHCTJPGAA+/f7NmY4c44t/Y4mP0CDB7Eed/Ofcmhp2d+nLB1vJbFDT72/eXnDxVtJomy3ktR7MI4BYN1B4CBw0Mh/PC7pG3DwEkmM9gVw0GgZdeyP2XCwvJy/9zW7clwVIvQfwIc/yXbs+1uYiyvRsAfn0oaDee972U85tOLSR+CgI+3V+B44CBwEDjoebA3/Hjho+BQDB42cYrPhIOf8QhH7ZAW74SFrs5SCRj2OtBl1bupc61+H/ma+imQzxs6co9PeoOFDaPL9dPd+yhg3Dg7mpL7zeb+PliS+vqHyJpIa8U6tAXAQOAgcNPIfj0v6Bhy8RBKjfQEcNFpGHftjQhzk3HZj65FDJWueeP+7kH45md8Wnqv+qSRnz/GH5tGIFHr7i/ToCWYcHNyUumncFSfjA22XPG5OE7QBB4GDwEHHg63h3wMHDZ9i4KCRU2xOHLTdX1JURGt6ZjFjfOd+OuAR2mQEW/It27Yt17buYFKjWWv+vqtXEEipcuvOtYO2ZajxkDo8lUTUkW3FihWhoaF4KokofWX1CxyUNTOaxQUc1ExKCR0BB9m77zquXeeUo7Jy/vlaGjucDnyE/e+H7cBB5aiK2UHMDmJ20Ol4YuyPwEFj55dzDhw0coqBg65xkDF+6iy7/zUWO5ze+vS29u07YXZQIRECB4GDwEEj//G4pG/AwUskMdoXwEGjZdSxP8BB1zhY8Yi71RtZqwk0dkBuVBOcLFZ6rSFwEDgIHHQ82Br+PXDQ8CkGDho5xcDBGnGQc378NJv4PPVKOOMRNapdciyuHVQyQQgcBA4CB438x+OSvgEHL5HEaF8AB42WUcf+mBcHi4vpG2/Qli3p8uWOz19xFMf+vrSMvfM1DbiRkhYvt0ru8sz3I1/bpHSSTAk51cbGvVtJsie0OH5VMO4stqdY8zdZWVnAQeCg5uNKZofAQZmzo0lswEFNZJTUiWlx0PYUu7w8npNDT52yP4au2iRRyv/Yz55dTBsOZKTr/oCkNZPenvlK9vDaMJyGbd3BwZzURV/3X/pJ8uu/Yd3BanOuwZfAQdxZrMEw0pUL4KCu0uVOsMBBd1TTSxvz4qDiDFHKV2TTDlOoJZmRJBo24si9n0zX9+ygsLUGHTEXJ4sxO4jZQcWHGSMYAgeNkEWXfQAOupRH5z8CB5Uk8Mw5Nm0+9ezLSJK11W2/PLd6wpwcPZ8sBg7GxWVnY91BJWPfHRusO5iampqfn++OdnpuAxzUc/YUxQ4cVCSTTo2Ag0oSRxnP3ctufIR5JJxpN/G1WWuHOE6D1e97d04WAweBg0rGvbs2wEHgoLtjB+2kVgA4KHV6ahkcIeTaa69duXLlOpleTzzxRMOGDR9++OG1a9dKEtfqn36eMW99eOIvLZLT78zs9uA7vSXZ7n2rZ7vkRgEhPhOe7yRJSBVhTH6xS2CoT8eOHVetWiVJEtetW/f999/36dMnDjhYywOHy+bAQeCgywGCH/WqAHBQr5lTEjchxNPT01+yl4+PDyHEx8dHXFzB/v43+Pu/6B/Qzd8/UNluGjTwszTsbfEJ9fL18JZps3gQQoiXj0V5VOm+Hv/y9YgU2TvwMUYAACAASURBVAsvH1tYHh4efn5+ygSuCys/Pz9PT8+mTZviZLGS44N7NsBB4KB7IwetJFcAOCh5gmoVHiGkcePGd9xxx90yvfr06dOgQYOEhIS77rpLUFwP3HHHf7t1s1osi/v2vU/ZXsaOHRsZGRXW2L9bWlyvUc0l2XqMiG/UIiggIGDMmDHKtVrXqlWhj8/0CROUN1FrOX78+MDAwJiYmDvvvFNtW3H2t912W4sWLepgdnDZsmVmv5UkMfq1jUPn5KSaapv+Wd/49qFpaWnmvHYwKioqKSmpVn+T0FhiBYCDEien1qFZLJaEhIRz586VyfR66623wsLC5s2bV1xcLCquc+fKZszghJQvXlxWVKRkL1u3bu3UqVPbxEYZqwa8mj1Uku2ldUN6jGgWGxu7ZcsWJb2w2ZSWlk+YwIKCyv/8U2kT9Xa7du1q2rRp7969z58/r761qBanTp0aMWJEHeAgFpq5uNCMSXEQs4O1/tMEBzIqAByUMStaxWTaW0lYURHNyOCEKHkqSYXaubm5nTtL+pC62NjY7du3Kx0VlNKJE3lwMN+7V2kT9XZ79uyJi4tLSEgoLi5W31pUi4KCgvT0dOCgKH0v+sXJYuCg0AEG5/WlAHCwvpSvi/0CB4GDgsYZcNDsJ4sTorHuoKDiktMtFpqRMy8aRgUc1FBM6VwBB4GDggYlcBA4CBwUVFxyugUOypkXDaMCDmoopnSuTI2DM2dyDw/23nusrExJYoxzspgxOmkSD2nI9+FksZLMu2ODawfxkDp3xo2e2wAH9Zw9RbEDBxXJpFMj8+JgaSlbtoymptJVq7jVqiR9RsJBNmcOHTuWiXxwAmYHMTuI2UElBxbD2AAHDZPKy3UEOHg5ZYzwvWlx0I3kGQcH3ei8+ibAQeAgcFB93ei4BXBQx8lTFjpwUJlO+rQCDirPG3BQuVacc+AgcBA4qKpk9G4MHNR7BmuMHzhYo0Q6NgAOKk8ecFC5VsBBXDuIawdV1YsBjIGDBkii6y4AB13ro+9fgYPK8wccVK4VcBA4CBxUVS8GMAYOGiCJrrsAHHStj75/NS8OMsYLCvjBg7ywkDOmJIuGwsFTp/jhw7y8XEnH3bPByWKcLMbJYvdqR6etgIM6TZzysIGDyrXSn6VpcZCVlND33uM9e7JvvmHKqMg4OMgYnTGD9+/Pjx0TN2SBg8BB4KC4+pLQM3BQwqRoGxJwUFs95fJmXhzEQ+rwkDqRtYiTxThZLHJ8yegbOChjVjSNCTioqZySOQMO4qkkgoYkZgcxO4jZQUHFJadb4KCcedEwKuCghmJK5wo4CBwUNCiBg8BB4KCg4pLTLXBQzrxoGBVwUEMxpXMFHAQOChqUwEHgIHBQUHHJ6RY4KGdeNIwKOKihmNK5Ag4CBwUNSuAgcBA4KKi45HQLHJQzLxpGBRzUUEzpXAEHgYOCBiVwEDgIHBRUXHK6BQ7KmRcNowIOaiimdK7Mi4OU0oMH6U8/8fw8E647SP/4g/38My8pETcigYPAQeCguPqS0DNwUMKkaBsScFBbPeXyZloctKWBMU6pQhbknBtn3UHOGaWq+u7GqAUOAgeBg24Ujn6bAAf1mzuFkQMHFQqlSzM5cXDRokURERHz58+3Wq3yyLpjx44uXbq0S2o066dBc3JSJdlm/zqkx8hmTZo0yc3NlUeriofUNWvWLCEhoUTkHKTaLhcUFKSnpzdr1iw7O1ttW1X2y5Yti42NzcjIUNXKGMYrVqwICwtrm9jo1Y1DJSmTOgtj+md949uHpqWl5efnGyObynuxdu3aqKiopKQk5U1gqS8FgIP6ype6aOXEwYULF4aHh2dmZkqFg0aaHVQ3StyyxuwgZgcxO+hW6ei1EWYH9Zo5xXEDBxVLpUND4KDypAEHlWtVMTsYFxeXkJBQXFysqqFQ44rZwbi4ONGzg3gqCZ5KInQkS+gcOChhUrQNCTiorZ5yeTMvDlqtbN8+9sMP7OhRhZcPGgcHGWPbt7NVq5hIUMPsIGYHMTso1+FecDTAQcEC17974GD950BcBKbFQVZURGfOZBYLe+89VlamRGHj4CCldNIk1jCY7d2rpOPu2QAHgYPAQfdqR6etgIM6TZzysIGDyrXSn6WpcTAjgxOCdQcFjVrgIHAQOCiouOR0CxyUMy8aRgUc1FBM6VwBB4GDggYlcBA4CBwUVFxyugUOypkXDaMCDmoopnSugIPAQUGDEjgIHAQOCiouOd0CB+XMi4ZRAQc1FFM6V8BB4KCgQQkcBA4CBwUVl5xugYNy5kXDqICDGoopnSvgIHBQ0KAEDgIHgYOCiktOt8BBOfOiYVTAQQ3FlM6VeXGwpIQuWUITE9l33zFlzz4xzp3FjNGZM+nAgezYMXEjEjgIHAQOiqsvCT0DByVMirYhAQe11VMub6bFQdsTe0+e5H/8wQsKTLfuIOf06FG2e7fCFXbcG7LAQeAgcNC92tFpK+CgThOnPGzgoHKt9GdpXhxUnyvjzA6q77sbLYCDwEHgoBuFo98mwEH95k5h5MBBhULp0gw4qDxtwEHlWuEhdXhIHR5Sp6peDGAMHDRAEl13ATjoWh99/wocVJ4/4KByrYCDwEHgoKp6MYAxcNAASXTdBeCga330/StwUHn+gIPKtQIOAgeBg6rqxQDGwEEDJNF1F4CDrvXR96+mxUFWWsr++1+ans5/Ws1NeGfx66/TiRPZ8ePihi+uHcS1g7h2UFx9SegZOChhUrQNCTiorZ5yeTMvDhYV0VmzmJcXW7JE4Q22xpkdpJTefDMLDeP79okbjsBB4CBwUFx9SegZOChhUrQNCTiorZ5yeTM1DmZkcEKwDLWgEQkcBA4CBwUVl5xugYNy5kXDqICDGoopnSvgIHBQ0KAEDgIHgYOCiktOt8BBOfOiYVTAQQ3FlM4VcBA4KGhQAgeBg8BBQcUlp1vgoJx50TAq4KCGYkrnCjgIHBQ0KIGDwEHgoKDiktMtcFDOvGgYFXBQQzGlc2VqHHzhBe7jw5YuZeXlShJjnFtJGKNTpvCIcL5/v5KOu2cDHAQOAgfdqx2dtgIO6jRxysMGDirXSn+WpsVBXlbGV6ygDz9Ms7NNt9AM5/TDD+n0J/jp0+KGLHAQOAgcFFdfEnoGDkqYFG1DAg5qq6dc3syLg+rzYJzZQfV9d6MFcBA4CBx0o3D02wQ4qN/cKYwcOKhQKF2aAQeVpw04qFwrPJUETyXBU0lU1YsBjIGDBkii6y4AB13ro+9fgYPK8wccVK4VcBA4CBxUVS8GMAYOGiCJrrsAHHStj75/tVgsPXr0OHTo0AmZXnPmzAkLC3vxxRfz8vLkiWvdunUdOnS4pmfUk1/0zVg1UJLtue9uvD6laUxMzM8//yyPVidOnMjOzm7SpEn37t0PHz4sT2D79u0bOnRoXFxcdna20NIFDgIHhQ4wCZ0DByVMirYhAQe11VMub4SQ6Ojom266aaJMrx49evj6+nbt2nXChAmC4po8ceKjEydmTpw4deLEScr2kZqaGh4eHhLdoNONja8b0lSSrfOgJpFxAf7+/kOHDlXWD5vVMxMnzpk48VblDdRbDh8+PCAgIDo6evz48epbi2oxduzYZvHxTePif8/OZkxgMQIHgYMCh5eUroGDUqZFy6CAg1qqKZsvQoivB2kWSOKDJNrCfYkHIeG+JF5YYFcFkv/zIdsJmeJLWijbS6w/8fEgPn6e4U38I+MCJNkimvo3CPTy8vJq1qzZlcpeV1155ZygoN88PHrExytr4Y5VfHy8l5eXn59fy5Yt3Wkvpk2LFi0CQ+KiWt+5/Pv9RcUCeRA4CByU7WgvOh7goGiF690/cLDeUyAwAEJI6xDyUV/yaX+JtruvIYFe5LZWJKufqKg+60u2tSCckN/bkOXK9jKnB7kiiFxxbdidmd0eeKe3JNt9b/Vsl9woMjJy6dKl65S9flm3Lm/gwHJ//98//VRZC3essrKyGjVq1KFDh9WrV7vTXkybH374oc+NY707LOt5d9nCr+jpAipojhA4CBwUeOCW0jVwUMq0aBkUcFBLNWXzRQi5PorsGk0O3GSRZ3uxKwnxITO6kL1jhQU22nKmgw0HT3QnB5Tt5cchpF0YaZfUaNaagXM3p0myvbwhpefI+NjY2O3btysdXZTSiRN5cDDfu1dpE/V28i40M+YWyzUfkGQWlUanvEDX5NDycu2nCYGDwEH1RaPvFsBBfedPQfTAQQUi6dYEOAgcFDR45cXB9PGWq98kSYwk88CB7LE36flC4KCWo2DFihWhoaHAQS011YMv4KAeslSrGIGDtZJP8sbAQeCgoCEqMQ6OtlzxgmdSqVcfGnAjfW4xyz9JS8tZuZVRyinjmpw+xuwgcFBQZUnrFjgobWq0Cgw4qJWSMvoBDgIHBY1LiXFwVINm94x58uTD8+gVY1nsSDbgEfpIJnvlY7boK/bZT+z3nfzEGUZpraYMgYPAQUGVJa1b4KC0qdEqMOCgVkrK6MfMOHi6I7F6keM9zHftIGP0jjtoTAzbv1/coJQYB9Njm127au22U2f5Fz+zW16gcek0eCAPHkBDBtOYYbT9zXT8DPrhD7TwgvvyAAeBg+6PHn22BA7qM28qogYOqhBLd6bmxcFx5NBwcnQgOTiSHBin6IYV49xKwjk/eIBv28ZLS8WNWJlx0L4MNWP8VAHftod/toYu+JzOfI/e8RLtdQ9tlEYbD+eTMmj2TttJZDdUAg4CB90YNrpuAhzUdfqUBA8cVKKSXm3Mi4Pq76Q2FA6KH7C6wMEKGRjjZeW8uIQVFrGz59lfh9mHP7C0J1jDgXTQ/9ENue4sRgMcBA6KLzK59gAclCsfAqIBDgoQVRqXwEHly+sAB1UNWx3h4KX9opQfOU4fmkuDBrDh0+nRE/RSG9ffAAeBg65HiPF+BQ4aL6dOPQIOOgliqI/AQeCgoAGtaxzk3HZ/8cE8OuYZGjGUfbyCqr2zBDgIHBRUWdK6BQ5KmxqtAgMOaqWkjH6Ag8BBQeNS7zjIOS8rY//5jAUPpDPepReK1F1BCBwEDgqqLGndAgelTY1WgQEHtVJSRj/mxcGx5MgN5FQncniw+W4lYYx9+x1/PZMXFIgblLLhIGO8oJD9lF3Ue9iCyLbTF2btyzvFXCwxWGE/fQELHMBe+chaUgocVDpYsAx1ampqfn6+Ur2MYgccNEomL9sP4OBlpTHAD+bFwdHkdAfCTPuQukmTbA+p27dP3BiWDQcP5bOpc2nsCOrZh1qSaOgQOuwJuvVPaq3uxmFKed5JNmspbTKSdrrVdn+xC3CsVsOK2cFnnnmmxHyvb7/9NiQk5JreUbN/HfLyhhRTbY8tS27WNjQlJeXQoUNmy/yKFSsiIyMTExOrrQh8aQAFgIMGSOJlu2BiHMQzi030zOLSUj7jHe5/IyfJVbb+D9EDx6gj61HKzxfyVdnshoeoVxJtPYEv/+my5ePih6ysrIiIiNatW6ea79WzZ08fH5+gcN+2CdHtEhuZarvy+gj/IO+YmJgBAwaYLfO9evXy9fUFDro4LOj9J+Cg3jPoKn5vQu4JIMfb2abKHLdj/assznw4zXZe1dHgdAfbN4eGO6zYN47kJTvbnO5A8hPJgTGVZgdHkJPXXWLWkRxOqbR5qSvp70O+a0xOta9iaVsyenSl2cFR5ET3KgYVER4ZVOX87+EUcvpaZ7OTXUjB1YTbZwfHkPwEZ5vTHUhen0pXPw4hA8PIc80DV9961bp7rrFvax5q+9b3N87NSZ27Oc22bUr99M0e6+6tNKiw/HxO18wNKX/bbE77z+pB3z9zrd1JxZs1D7V577997DZzN6Z+8H7i2gfaOJl9+3znzF+HVJi9vCGlz8j4uxo2zHvwAZaRUbm98ALdsIFZrfb0sz//ZC+/wjIy6PMZtNO13NeXPfJ/9O23WF5epU1xMfv220ondoc//mB7gpv9dfQomzvP2ey119jBg3aTPXv2TIyL+0/z5mXPPlfFcvlyXlxsN+OnTrH33qtikJHBXprNcnMrnxZHKdu6lb3wgpMZXfIeO3++0lVJCf/gAycb9sILdN26LbvLO91KK55T7EiEgQPZG8vZsRN8/1G2IZd99CN98i3afyqNSqUxw9lNz9HVm2h5ubrTxBXxZGVlhYaG+nuSyAam2xp6EwshPh4kwnx9D/MlXhbSoEGD6OjoGJO9wsPDPT09gYOVRyTDvQMOGi6lDh3yJ2SxxWL1JtSnynayUxWGO3YjKQusYkB9SFkQOTqoEs4OjCVnWxOrr7NZwVXkwKhKs8MppCTM2aa8gQ0l7Xd1zO5KHvUhpz2ItWpUhU0urhr9z5KBh4aTCzHOrqiP84NG8hJJub+zWXE4OR9fiYMH00lBS2cb6kPOtKmCg7eFkVxPUhzgVRJYuZ1t7Pf+h4l2HJy3ceivt15ZHFRpUGG8OT3+zbWD7Kj37hf9DnQJd/RTEuh1tpHfl69cb7eZlz30h6c7no/wdTLb2zPqzdV/u3p5Q8rAkfH/87CUBwWz0NDKLSrKmpnJysrs2Wbffcfi4/828PHmxEKDg2nvnmzbtkqbM2fYww9XOvnHIZ0+nZWXV5pt2sTatHE2u+oq9ssvdps9e/YsjIsr8PKiISGOlvTmmx2vWWR79tBBAx0NbO+bNqXLltkn7Vh5Of3gAxYd7Ww2eHAVli0oYMOGOdtER9PZs79cUxZwI3MEwYr3lmQWl846TqZX3kSbjGRhQ1joEBo/io59hn22hp0+V4WB7V1T8iYrK6tRROjNV5NVKabbXu5GAr1I92iyYojp+r4kmVwTQvr16/fLL7/sMtnrgw8+CAsLAw4qOT7o1AY4qNPEKQrbi5DbAkheJ3KqS5Xt6IAqs4OHhpETXasYnOpCTlxPDo2oZLgD4yzH+pGTVf2c6kKO9ani6uBI25Se0+5OXkcOp1a6eqkrSfQhXzYlxztXscxPcJodtOT3rmJQ4fbwkEqGO3CT5fBQcvJ6Z7MT3UhBq0ocPDDGkpfsbGMLvn+lqx+HkBvCyOMtg767v/WqR9vatx+far9gxQA7Ds7dlPrJol72X+1vPn2zx+sOs4Nvrhn0v393sf9a8ebHJzu8+0U/Ow7O3ZS6NCt5xfR2TmZfvdzFcXYweWT85JCQI9On07lzK7fMTJaTwx1mB/m+fXTBAjp3Lps7l3btyhv40meeoR9+yE+csI8VVlxMV62qdPKPQ752LXeYHWT5+XTRImezt9/mR47YXe3Zs2d0XNwrLVuWvvKKoyX/9lteUmI342fO0GXLHA1s7998k+3e5Tg7yHfupJmZzmaffsoLC+2uWGkp++wzZ5vMTPr778tXlXv3pdXiYGQqazeJXncHu+FhNnkmnfMJ/X0HLXYI0O5f1ZusrKyYiNCH21eOavv/7Rj+zQd9SbA36RtL9il73o+RBFmdQjpFENxKoqpYYKwXBYCDesmUO3Hi2sET3avQqou/TMZZhppSOnGi7VaSvXvdGTTK2kh1K8kvW1mLsdXMDja4gT65gG3dw3YfZHmnWHGJ+9OBTqoAB4GDTkPC8B9xZ7HhUwwcNHKKzYuDY2znlItiLp6kHqtoCsc4OMgYnT2bDx/OHa4a1HyUS4WDp87SKbOoV19nImw9gWbvrJyF1FAE4CBwUMPhpAtXwEFdpKk2QQIHa6Oe7G3Ni4PjbBdHHky/eImkslNaxsFBzmlRESso0GwqrLphLhUOMsZ/3caGPEpDBjOPPpQkUf8baadb6Ec/0KJid+4Uqa7HVb4DDgIHqwwIE3wADho+ycBBI6fYvDj4z/0oLs4OO/1kJBysgzEtFQ5yzsvL2fY99LlFJS2HbAi47rtbnz+5eiMtKbXfr6KxJMBB4KDGQ0p6d8BB6VNU2wCBg7VVUOb2wEEn5nPxETioaiTLhoMVwZ85UzA8fXLT+Pa/btgkigQv7gk4CBxUVS8GMAYOGiCJrrsAHHStj75/BQ664D+nn4CDqsa6nDhYUFCQnp4eFxeXnZ2tqjtqjYGDwEG1Y0bv9sBBvWewxviBgzVKpGMD8+LguIs3FI+9+K/5rh20LUBjtQq5h+KfagAOYqEZLDTzTzWY4r/AQcOnGTho5BSbFwfH2JY/LI4keUnmW2iGMTZzJh84kB87Jm5wAweBg8BBcfUloWfgoIRJ0TYk4KC2esrlzbw4OBrPLDbRuoP2qsPJYqdLIER8xDLUWIbaXnF4YyQFgINGyqZzX4CDWIbaeUxo9Bmzg5gdxOygRsWkDzeYHdRHnmoRJXCwFuJJ3xQ4CBwUNEiBg8BB4KCg4pLTLXBQzrxoGBVwUEMxpXMFHAQOChqUwEHgIHBQUHHJ6RY4KGdeNIwKOKihmNK5Ag4CBwUNSuAgcBA4KKi45HQLHJQzLxpGBRzUUEzpXAEHgYOCBiVwEDgIHBRUXHK6BQ7KmRcNowIOaiimdK7Mi4NjyeFB5EQPcngoOWC+dQfpunX0449YYaG4EQkcBA4CB8XVl4SegYMSJkXbkICD2uoplzfz4uC4ixRo/1fBI4wN9VQSxjilWIZaXDXiqSR4Kom40SWnZ+CgnHnRMCrgoIZiSufKvDiogP+clmQzFA6KH4mYHcTsIGYHxdeZRHsADkqUDDGhAAfF6CqHV+CgE/O5+AgcVDVmgYPAQeCgqpLRuzFwUO8ZrDF+4GCNEunYADjogv+cfgIOqhrowEHgIHBQVcno3Rg4qPcM1hg/cLBGiXRsYF4cHEcOp5C8JMuhNPPdSsKYdcsW9sOPrKhI3NgFDgIHgYPi6ktCz8BBCZOibUjAQW31lMubeXFwtOXUtcTqQ473JAfGEqeJwGo/Gmd2kDF6992sWTN24IC44QgcBA4CB8XVl4SegYMSJkXbkICD2uoplzcz4+CZDoQTgnUHBY1I4CBwEDgoqLjkdAsclDMvGkYFHNRQTOlcAQeBg4IGJXAQOAgcFFRccroFDsqZFw2jAg5qKKZ0roCDwEFBgxI4CBwEDgoqLjndAgflzIuGUQEHNRRTOlfAQeCgoEEJHAQOAgcFFZecboGDcuZFw6iAgxqKKZ0r4CBwUNCgBA4CB4GDgopLTrfAQTnzomFUwEENxZTOlXlxcIzlxPWktCHJTzTlncXTp7MePdiRI+JGJHAQOAgcFFdfEnoGDkqYFG1DAg5qq6dc3syLg+PIoeHkyCBycKT51h3knB86xHNzeWmpuOEIHAQOAgfF1ZeEnoGDEiZF25CAg9rqKZc38+IgnlkseCQCB4GDwEHBRSaXe+CgXPkQEA1wUICo0rgEDla74nS1XxpnGeo6GX7AQeAgcLBOSk2WnQAHZcmEsDiAg8KklcAxcLBa8qv2S+CgqgELHAQOAgdVlYzejYGDes9gjfEDB2uUSMcGwMFqya/aLytwsEWXpvcsuumRT26WZHtw6aT2/a6OjY3dvn27VAMROAgcBA5KVZKigwEOila43v0DB+s9BQIDIIT4epCmASROpi3Ul1gICfURGFiLAHJnAPkxkIwJIM2V9T3Gj3hbiKePV2BYUFBEsCxbWJC3r7eXl1dcXFwLxa/nW7T4ukWL6xTbu2HYrFkzb29vPz+/K664wo3mgpo0b948MDCwadOm2dnZAuuK86ysLOAgcFDoGJPNOXBQtoxoHg9wUHNJJXJICGnYsGGvXr0SZHpdddVV3t7ezQLJdZHkejFbrwgy15+UEfJUIOmubBdtw4i/JwnxIZ3CRUXlRme7RJDIBsTHx6dLly4Kc5iYkPBldPQZL8/0rl0VNnHD7Prrr/f19ZVtdPXs2TMiIgI4WO38t1ZfftCXBHuTvrEEOCjRsV58KMBB8RrX8x6Ag/WcAKG7t1gsPXv2zMvLK5DplZmZGRYWNv1asmUk2ZYuZMsdTo61JZyQQ9eR7cr28vmN5JpQkhxD1qUKCcm9nm4cTkZfQRo3brxhwwalOTx7tmTsWBoUdG7bNqVN1Ntt3ry5SZMmPXv2PH78uPrWolocPnw4LS0tLi4Os4Nawd+lfoCDqamp+fn5Qg/dEjoHDkqYFG1DAg5qq6dc3iwWS2JiYlFRkVRhLVy4MDw8fEYXsncsufSPjTbfjLac6WDDQbVPJekfS7aOFBaV+uVvdo8m41sSddcOUkonTuTBwXzvXnF5x7WDOFmM2UFx9SWhZ+CghEnRNiTgoLZ6yuUNOAgcFDQigYPAQeCgoOKS0y1wUM68aBgVcFBDMaVzBRwEDgoalMBB4CBwUFBxyekWOChnXjSMCjiooZjSuTIzDp7uQJg5TxYzRm++mYeG8n37xI1I4CBwEDgorr4k9AwclDAp2oYEHNRWT7m8mRcHx5D8BHK+OTnWnxxQdoVixbqDRrh2kHP65pv0ttvY8ePihiNwEDgIHBRXXxJ6Bg5KmBRtQwIOaqunXN7Mi4Pqb9owEg7WwSgEDgIHgYN1UGjy7AI4KE8uBEUCHBQkrBRugYPK71MGDqoassBB4CBwUFXJ6N0YOKj3DNYYP3CwRol0bAAcBA4KGr7AQeAgcFBQccnpFjgoZ140jAo4qKGY0rkCDgIHBQ1K4CBwEDgoqLjkdAsclDMvGkYFHNRQTOlcmRcHx5GDw8mRgeTgCHJgnKJlpY10spgePMi2b+elpeJGJHAQOAgcFFdfEnoGDkqYFG1DAg5qq6dc3syLg2PIia6kNJTkJ5rvzmLG6NNPs969+ZEj4oYjcBA4CBwUV18SegYOSpgUbUMCDmqrp1zezIuDeEgdHlInshazsrKAg8BBkUNMOt/AQelSonVAwEGtFZXJH3AQTyURNB4xOwgcBA4KKi453QIH5cyLhlEBBzUUUzpXwEHgoKBBCRwEDgIHBRWXnG6Bg3LmRcOogIMaiimdK+AgcFDQoAQOAgeBg4KKS063wEE586JhVMBBDcWUzhVwEDgoaFACB4GDwEFBxSWnW+CgnHnRMCrgoIZiSucKOAgcK/YrLgAAIABJREFUFDQogYPAQeCgoOKS0y1wUM68aBgVcFBDMaVzZV4cHEcOpZJj/cmh4aZcd3D3brp+PSspETcigYPAQeCguPqS0DNwUMKkaBsScFBbPeXyZmYctK0+bd9ustT4eBIjLUPNGeOU2v4V9gIOAgeBg8LKS0bHwEEZs6JpTMBBTeWUzJl5cVAB/zkBoqFwUPw4BA4CB4GD4utMoj0AByVKhphQgINidJXDK3DQiflcfAQOqhqzwEHgIHBQVcno3Rg4qPcM1hg/cLBGiXRsABx0wX9OPwEHVQ104CBwEDioqmT0bgwc1HsGa4wfOFijRDo2MC8OjiVHBpIT3cjhFPPdSsIYXbuWL13Kz58XN3aBg8BB4KC4+pLQM3BQwqRoGxJwUFs95fJmXhzEM4vxzGKRtYhnFveNJcBBkUNMOt/AQelSonVAwEGtFZXJH3AQ6w4KGo+YHcTsIHBQUHHJ6RY4KGdeNIwKOKihmNK5Ag4CBwUNSuAgcBA4KKi45HQLHJQzLxpGBRzUUEzpXAEHgYOCBiVwEDgIHBRUXHK6BQ7KmRcNowIOaiimdK6Ag8BBQYMSOAgcBA4KKi453QIH5cyLhlEBBzUUUzpXwEHgoKBBCRwEDgIHBRWXnG6Bg3LmRcOogIMaiimdK/Pi4BhyvAcpamTJSyYHxhKnJQar/WicdQcZoy++SFOHsrw8cSMSOAgcBA6Kqy8JPQMHJUyKtiEBB7XVUy5v5sXBceRgOjk8zHJgtPnWHeScnTrFjhxhVqu44QgcBA4CB8XVl4SegYMSJkXbkICD2uoplzfz4iCeWSx4JAIHgYPAQcFFJpd74KBc+RAQDXBQgKjSuAQOVnteuNovjXOyuE6GH3AQOAgcrJNSk2UnwEFZMiEsDuCgMGklcAwcrJb8qv0SOKhqwAIHgYPAQVUlo3dj4KDeM1hj/MDBGiXSsYF5cXDcxTtIxlz8d5zJbiXhnJeWsuJiRqm4sQscBA4CB8XVl4SegYMSJkXbkICD2uoplzfz4uDfdxYTc95ZzF58kaWm4s5icdWIZxbjmcXiRpecnoGDcuZFw6iAgxqKKZ0r8+LgaMvpDoQRYtJ1BydN4g0b8n37xI1IzA5idhCzg+LqS0LPwEEJk6JtSMBBbfWUy5uZcfBMB8JNi4MTJ/LgYL53r7jhCBwEDgIHxdWXhJ6BgxImRduQgIPa6imXN+CgSWcHgYPZ2UJLESeLcbJY6ACT0DlwUMKkaBsScFBbPeXyBhwEDgoakZgdxOwgZgcFFZecboGDcuZFw6iAgxqKKZ0r4CBwUNCgBA4CB4GDgopLTrfAQTnzomFUwEENxZTOFXAQOChoUAIHgYPAQUHFJadb4KCcedEwKuCghmJK58qEOLhvnMfvY6JeSps4IPHTa7psS0j+5vnU238Z3WTvOM9qV5+2f2mMZagp5QeOsVmTv026dlWbccWjnqZZK9jZ85wxjQcncBA4CBzUuKjkdgcclDs/GkQHHNRARGldmA0H948jK9OvvHHAMt/kIpLEKjav5NLuN/z4xchO+12uR20MHMzZRRPu+7vjJJmTZBY8kN01mx4+zrQlQuAgcBA4KO2RX0RgwEERqkrlEzgoVTo0DsZsOLhnjOeDKdN9kosukhC3/+uRbB03aP7uMT72ucBL3xgAB8utbMwz1LMPs3e84k3gADY3i5aWaTlDCByMiQh9qD3ZP85itu2DPiTYm/SNJXvHmq77q4aQa8NJampqfn6+xgdr6d0BB6VPUW0DBA7WVkGZ25sNB9ePbtzzxm9JsjMPkWR+Rb8dv46OuZQC7d8YAAe3/knDU6rpu6UPT3uCHT8DHNSsWLOysqIjQm+5xmfNyGCzba/29g/wIj1ivFaPMF3f37/Rv02Yx+DBg/fs2VNgste3334bERGRmJioWRXBkWQKAAclS4im4RBCrrvuus2bN++U6ZWRkRESEvJAW/LDYLIyxaLh9tbANs375DjNjVV89E86896gK1zsa3EiuTKY9Igmn9+ocVQudlrjT98MJClxJLpxy6++27Bzz+mde87u3HNu554zO3f+dWlKX37vkF9/a3XdZ23GX1j9y5+XNnH7m++//75x48bXXXfdli1b3HaiecPs7OwBAwbExcVli193MCw0LCgguEl0E7NtEaERFkIa+DSIjY41W98bhUf7eHlHR0f36dNngMle3bp18/HxAQ5q+idaLmfAQbnyoW00Xl5efn5+kZGRUTK9QkJCfHx8An29wv013kJCWnp3+ana2UGPHvtDQuKr7tE7xD8o2D8yOKhJcMMrA0M7eQe18/MNCNM6qqo7Vd1lP98GPo2Gh/ZcEZqYHZq0JTR5R0S3T6NiO1+a0pD4dI+E89XgYBLzuW5dREzbS5u4/U14eLivr6+/v79UoysyMjIgIKB58+YbN27UtpScvH399dft27ePwwsKmEyBUaNGOdUCPhpGAeCgYVJZTUdGme01emK3sat9+lEnJPLsyzuO3jZq9GRHPdLTx7Tv92+Ptp+SDj+STr96dt16/fBl6aOnONrI8X50+vhpvW494NPPdjWkR3J5ixt/TBs2rprYxt0dP+KMxXYHSZXNqw/tPGrtSBm7Vk0nav/V3Xff/ddff1VTD9p9deLEifXr16/FCwqYTIGtW7dqV0bwJJcCwEG58oFoaqlA9k6WeD+rIKeLVMS8+rKOt9Aff3O+co4xnrWSRaTaLrazJPOrx7Oft1Btb7+tZV8cm+/cR3vezTz6MM8+rMMU+tkaWlxSzc3C0xdQr77McX7Uqw/veAtbvYlS6ugP76EAFIACUAAKVCoAHKzUAu8MoEBpGV+/jd/3GuswhXn1YU1Gslv/zVZks+IS586VlfFXPqQhg5klmUcM5S8spReKnZHRuU39fS632uD1mgm03WTaZCTtfBtdv60awntyAfPuy1qNp9HDWFgKjxvFUh5lX//CL+1+/XUFe4YCUAAKQAHpFAAOSpcSBFRLBSjlhUXs4xWs4UB603M07xS7dGKMMf7XQdp+Mm08nLadRIc/SY9qvTJfLXvh1Jwxfq6QLVtFl//EHnuDBtxIn36blZQ6WfF7X+W+/ejK3+nHK+iCL9g369mR48yKeUFnnfAZCkABKAAFqigAHKwiBz4YRoGfNvOoVDruWXb2fDVzfuXl/M3lNGQwfXQ+/XwN+/E3Smk1ZrKpUW7lpaV89Ubachwb9H8072SVmBljI56kQQNpcTEAULbUIR4oAAWggNQKAAelTg+Cc1uB33fyK8exAY/Q/FNVmKnCYWERS3uCNh5BV148j1xSqv1j3NyOvMaGfx2mAx6mnW+lf+yv0rXSUtrlNtpiLFiwRglhAAWgABSAAlUUAA5WkQMfDKPAX4dpwn28861098EqzMS5jfxOnqGtJ9D2N9NdB/XX4+On+fgZrPUE+ltula4dzKORqXzAI8BB/eUUEUMBKAAF6lcB4GD96o+9i1Lg7DkbM8WPZit+d8YjxviR4zwihfa6l+8/JioAcX4LL/AHXmPxo+k366vs5KMfaeBANu2NKoxYxQIfoAAUgAJQAApUpwBwsDpV8J3+FaCUv/QBi05jmZ8634HLGN+6x3bfccpjthtNdNdXxvirH9OY4bYnEZeX/x1+eTmfPJOFDGbvf6e/HukuBQgYCkABKGAwBYCDBksoulOpwIbt9JqJdPh0fvGu4UpIslK+8CvqkcynztPrCizrttK2k9nQx+n+o7bVBxnjf+xnrSfSVuPptr8qe1qpBd5BASgABaAAFLi8AsDBy2uDX3SuQOEFOn4GjRlGl/9Ey8orIelUARv+JAseRD9dLe+60661P3uOTZlFI1LY/P/SohJutdomQYMGsFv+Tc9fqOypayf4FQpAASgABaBAhQLAQYwEIyvw4Q8sfCgb8ig9lFcJSUu+oSGDWPID9HSBXvtOKfvfOto0nV81jv53Ndu4k3W+xdap9dv4pYss6rWTiBsKQAEoAAXqSgHgYF0pjf3UhwJHjrP0py+uL/gGPVXAjp1ib33Bmo6gV99Ef9tRzUPe6iNGd/ZZsSr1nE9Y/CjaKI01HUkjhvKXP6zm4SvueEcbKAAFoAAUMJkCwEGTJdxk3aWUZe9gXW6jYUNYj7vp9Xey8BTb/SVLvnW+v0R3wjDGCy/Ynjsy7jmadD/N/JSfPadjwNWd/ggYCkABKGAkBYCDRspmZV/Onz+/G6+LCuzatXvp8j+um7ArMGl3cPKuNul/zH9/144dBlFn167d23N3b926e+dOg/So9t3Ys2dPuf2O68qa0PLd+fPn16xZswovKGBKBbSsJfiSRgHgoDSp0DSQH374oVVdvVq3bl1Xu1K6n2tatWrTqpU9rKuvbhV/Rauw6FYRMa2aX9Hq6quV+pGwazWG3rpVq7atWl1To530Bm6L361bt5MnT2paT87Otm7dGhAQ4Onp6WXKl4eHByHE4mHx8KzHzaN+9u5hIRdfHp4enq5fXq5/1uWvFX13rgd8NoQCwEFDpPGSTixfvpwQEhQU1FimV0xMTGBgICEkJCQkJiZGXGjJQUH3WCwdwsMU7iUyMtLb29vHxycqKkpcVG54Dg0N9fDwUJ7HmJiYNhERDxCS4u/ftFEjN/aosElISIjFYmnYsKFC+7oxa9Soka+vb1hYWF5e3iU1oeUXFTjYpUuXqeZ73XvvvW3btvX187muT7vB4xPrZRt0U8KgmxLqZde9h3Rq4O/TuEnMqPEjbrl7sottyl2TXPx6uZ+m3DXJvYaXc6jt981bxBMCbNDyYCKPL+RVnlxoGcny5ct9fHz+9a9/lcj0KioqevTRR729vRcsWFBUVCQutNLnnmNBQcXffltcXKxkLzk5OV27du3evfvu3buV2NeZzfvvvx8UFPTss88q3KOtv6tXMw+PsptvLjl9WmErN8wWL14cGhr66quvutFWXJP8/Pzk5OQ6w8Fp06ZpWbQ68VVYWDhlypSwqIZPvHnHx1teqZfto80vf7T55XrZ9ez//l94o5CEvr3WbVlx8OwuF9uBM3+4+PVyPx0484d7DS/nUNvvU4YN8vDw0MlQRZjqFAAOqtNLL9YVODhjxgypAqaUPvHEE97e3osXL7ZareJioxkZPDiYrlypcNmV3Nzc7t279+jRY//+/eKicsPzJ598EhQU9Pzzzytsyxhj69YxDw96yxRWWKiwlRtmS5cuDQ0NnTdvnhttxTU5e/Zs3759gYPiFOacAweBg0IHGJzXlwLAwfpSXux+gYPAQeCguBqrOFmM2cF6mZ/7eMsrmB3Uds5PuTfMDoo7qtS7Z+BgvadASADAQeAgcFBIaV10ChzEyWKcLBZXX/BcLwoAB+tFduE7BQ4CB4GD4soMOAgcBA6Kqy94rhcFgIP1IrvwnQIHgYPAQXFlBhwEDgIHxdUXPNeLAsDBepFd+E7NjoOffkonTKDbtnFW+ahiF6Ib6laSP/6g6el0/nxWUuKiy7X8CbeSBAQE4NpBXDvo4qo7924Qxp3FtTw0obnbCgAH3ZZO6oYmx0FeWsoLC7nim5cNg4O2QWm18vPneUmJQhR2bxwDB4GDWGjGBQsePLsLOOjesQWt6ksB4GB9KS92v2bHQZXqGgoHVfbdPXPgIHAQOAgcdO/ogVZyKgAclDMvtY0KOKhKQeCgKrk458BB4CBwEDio9rgBe5kVAA7KnB33YwMOqtIOOKhKLuAgbiXBrSS4lUTtQQP2kisAHJQ8QW6GZ3YcZEzh80gq9DUaDlIq9MJB4CBwEDgIHHTzjxOayaoAcFDWzNQuLpPjIF28mCcn0+xshVRkGBy0PaRuyxbWrRt9/nlWVFS7QeSqNU4W42QxThbjZLGrYwR+05sCwEG9ZUxZvGbHQTyzGM8sVlYp7llhdhCzg5gddK920EpaBYCD0qamVoEBB7EMNZahrlUJuWwMHAQOAgddlgh+1J8CwEH95UxJxMBB4CBwUEmluGcDHAQOAgfdqx20klYB4KC0qalVYMBB4CBwsFYl5LIxcBA4CBx0WSL4UX8KAAf1lzMlEQMHgYPAQSWV4p4NcBA4CBx0r3bQSloFgIPSpqZWgZkdB194gYeH01WrTHhnMf3lF9agAb3jDuBgrUrIZWPgIHAQOOiyRPCj/hQADuovZ0oiNjkOso0b6YIF/MgRJVpxzg2z0Iytv8eO0fnz6cqVrKxMYffdMMNCM1hoBgvNYKEZNw4daCKtAsBBaVNTq8BMjoNqtTMUDqrtvFv2wEHgIHAQOOjWwQONJFUAOChpYmoZFnBQlYDAQVVy4akkOFmMk8U4Waz2oAF7yRUADkqeIDfDAw6qEg44qEou4CBwEDgIHFR70IC95AoAByVPkJvhAQdVCQccVCUXcBA4CBwEDqo9aMBecgWAg5InyM3wTI6D7OBB9ssv/OxZhfIZCgcLCvjatXz3bm61Kuy+G2a4dhDXDuLaQVw76MahA02kVQA4KG1qahWYyXGQZmaydu3oL7+YcKEZtnEja9GCPvooKyqq1Rhy2Rg4CBwEDgIHXR4k8KPOFAAO6ixhCsM1Ow5mZGAZaqw7qLBY3DDDyWKcLMbJYjcKB01kVgA4KHN23I8NOAgcBA66Xz81tQQOAgeBgzVVCX7XmQLAQZ0lTGG4wEHgIHBQYbG4YQYcBA4CB90oHDSRWQHgoMzZcT824CBwEDjofv3U1BI4CBwEDtZUJfhdZwoAB3WWMIXhAgeBg8BBhcXihhlwEDgIHHSjcNBEZgWAgzJnx/3YTI6DbM4c1rIl/flnM95Z/NtvNCaGTp3KLlxwfwDV1BJ3FuPOYtxZjDuLazpO4Hc9KQAc1FO2lMdqchzkx4/zHTt4YaFCxQy17uCFC3z7dn74MKdUYffdMAMOAgeBg8BBNw4daCKtAsBBaVNTq8DMjoMqxTMUDqrsu3vmwEHgIHAQOOje0QOt5FQAOChnXmobFXBQlYLAQVVy4SF1uHYQ1w7i2kG1Bw3YS64AcFDyBLkZHnBQlXDAQVVyAQeBg8BB4KDagwbsJVcAOCh5gtwMDzioSjjgoCq5gIPAQeAgcFDtQQP2kisAHJQ8QW6GZ3IcpDk5dPFiduSICe8spnl5dMEC+tNPrKzMzdGjoBmuHcS1g7h2ENcOKjhUwEQ3CgAHdZMqVYGaHQfxzOJbpmDdQVUlo8oYs4OYHcTsoKqSgbH8CgAH5c+ROxECB7EMNXDQncpR1gY4CBwEDiqrFVjpRgHgoG5SpSpQ4CBwEDioqmRUGQMHgYPAQVUlA2P5FQAOyp8jdyIEDgIHgYPuVI6yNsBB4CBwUFmtwEo3CgAHdZMqVYECB4GDwEFVJaPKGDgIHAQOqioZGMuvAHBQ/hy5EyFwEDgIHHSncpS1AQ4CB4GDymoFVrpRADiom1SpCtTkOMg+/piNGEE3bzbhQjNsxw42eDB97TVWXKxqzKgyxkIzWGgGC81goRlVBw0YS64AcFDyBLkZnslxkBcV8ZMnueKF9wy1DHVZGTtxgp4/rxCF3RthwEHgIHAQOOje0QOt5FQAOChnXmobldlxUKV+hsJBlX13zxw4CBwEDgIH3Tt6oJWcCgAH5cxLbaMCDqpSEDioSi48pA7XDuLaQVw7qPagAXvJFQAOSp4gN8MDDqoSDjioSi7gIHAQOAgcVHvQgL3kCgAHJU+Qm+EtX77c09Ozf//+s2R6zZw5Mzk52dPTc+TIkRkZGfKENnXq1Li4uGbNmk2bNk2eqGbNmjVu3DhfX98bbrhBqqhmzZo1evRoPz+/oUOHShXYv/71r5YtW4aFheXl5blZOcqaAQeBg8BBZbUCK90oABzUTapUBbp8+XJCSEBAQJT4V3R0tPKdBAQEEP9rfEPaBTZsHBERqbyhKss7Q0O/DwxMDg9X0ioyMqphWFPPsH5eDSIbhgWFRgQ7bA0d3jt+X0fvA4L8LRaLn7+v8jC6hwWvCQx8OjiwUbiwIMODA4L8PDw8goKClChcZzaRkZHe3t7AQVXHCrXGhYWFU6ZMAQ4CB9WOHNhLrgBwUPIEuRne8uXLvby8hg0btlCm19tvvz1kyBDS6BbScY1v26VdU996aPpbb7/9tuYx/jZieIlfg6+mTVuowPkLs9/uNPRjj06/RFzdNeXBa8b+61r7Nubpjvb39fKmx8h4T29L++RGl997x7H/cgyy49M3X1luISuuDZv8RPvLt6rsoxs2Y57u2H1YXEBAwE033aR57mrj8PXXX7/mmmuAg24eNZQ1Aw6GNwpJ6NsLOKhsvMBKNwoAB3WTKlWBynztIPG7inTf55HMIlLYtPlWxlT1TJExzchQsgw1ZfzoCfZwJo0cyiw985r3GvDM1zfM3Zxm3+bkpNrf18ubm1/s4uvnNfju1pfb+5yc1CpB5qR+srg39SDbUuPmrx9yuVa1/H5OTuqEjM6hoaHz5s1TlI+6Mjp79mzfvn2Bg0L1Bg4CB4UOMDivLwWAg/WlvNj9So2DHn4NOn1hSbIGDWT/fp9Rqr0UCnGwqJi/8zWNG8UsyZz0PN08Ie2Zr290RKUqpOWAiY42Qt8DB1UNDuCgKrncMwYOAgfdGzloJbkCwEHJE+RmeDLjoJeX9/WpCwc+UpZ4H40bST/5kWpOhApxkFJ+MI+lPs78+pf7Jp9pnjTqmW8GOOIdcNBRDft7zA7iVhJcO4iTxW7+cUIzWRUADsqamdrFJTMOent7z5q96Gi+dfseNuARa7N0+s7XtLhEy3PGCnGQMf7TJtpmEh1y/x8det7SvEtrzA7amc/FG+AgcBA4CBys3d8otJZOAeCgdCnRJCDJcXDRokVWq5VSvm0P7fsgu3KcjQjLyzU7bUxnZvDghnTlStcPaiso5E+/za8cx+a8s61bt+7NO4Q983V/RwzS4+zgx7h2EAvNaHIQuYwTnCzGyeLLDA18rW8FgIP6zt/lopccBxcvXmy1WiuCP5TPUh+nMcPoW1/QomJt5gjp+vX01VfpwYOX06fi+827aZfb2c2z6Mq1ud27GwQH3/7uhrUPtP7s9W7zfh/qiLYavsfsIGYHMTuI2UHXR1f8qjsFgIO6S5migHWEg4zx7X/x4U/Sq25iby5nWhFhjTJRyudmsVYTaNZKtnWrUXCwTu53AQ4CB4GDwMEaj7Ew0JcCwEF95UtptDrCQc5tZ3QPHmNjnqHNRtHXPqaFRUq7WRu7YydpymO27fhpXvGQOiOcLAYOYqGZ2lSFgrY4WYyTxQqGCUz0pwBwUH85UxKxvnCwokc797Nxz9K4dDo3i50uYCLWI7RLV27ln66i10yk85bZLlgEDqo6lYzZQcwOYnYQs4P2wyneGEMB4KAx8ujcCz3ioJWy7X+xCc/zNhPpnCx29rzr+0Ccu6zqc/5pPvZZ2usetnWP7WpF4CBwUNX4AQ4CB4GDqkoGxvIrAByUP0fuRKhHHKzo5+HjfFIGjR9FX/6InTrr5hwhO3iQrl/Pzp6tliitVrYym4YNoU+9zc5fMBYO5qS+sXbwJ4t7vfN537kbRT1SBbODwEHgIHDQnb9MaCOxAsBBiZNTi9D0i4Oc8x172ZQXbGdyX/qAunfWmM6fzzp2pOvXV4uD5wrZo2/QluPoyuy/n4linNnBnNQPPkg6HRf425QrM39NUTXnp9wYOAgcBA4CB2vxBwpNZVQAOChjVmofk65xkFL212E2ZRa9ciydtcQdInS9DPW2PazXPXRiBj1z7m+ljYSDeGYxnllc+wOICw+4lQS3krgYHvhJvwoAB/WbO1eR6xoHKzr25yF+x0u0yQia8S7NO6XurLELHCwt4/OW0TYT6fcbKgUEDiqfGpy7OQ2zg5gdxOwgZgcrD6B4ZwgFgIOGSOMlnTAADlLK/zzI7nmFtppAn1tET5yhyu81doGDR4/TvlNZ2hP0gsNyNsBB4OAlNeTqC+AgcBA46KpC8JsOFQAO6jBpCkI2AA5W9PLEaX77i7TxcDp9gYqzxpfDwfJyvnw1jU5jbyyv8kA84CBwUEFVVZoAB4GDwMHKesA7QygAHDREGi/phGFwkHO+9wh7cC6LH8WeestGhJf0tZovLoeD+afZqKdZj7vptr+Ag2mqENDRGCeLgYPAQeBgNUdefKVnBYCDes7e5WM3Eg4yxo+dYo+/SZuMZPe9RgsKL9/tf36hs19ijWPoTz9xWgX7VvzOrhpHn/gPLS6pgpVGmh386N2E4gCvzenx89cPcWQ4Dd8DB4GDwEHg4D+HW/zXIAoABw2SSKduGAkHK7p24jR7+HUaPoRNe8N2Z4lTf50/Hj3KNm7kBQWO35eV8f/LZK3H061/On5te28kHJy/bvCH7ycs/l//uZuw7qBzorX6DBwEDgIHtaom+JFEAeCgJInQOAzj4SBj/Mhx9uwi2nQkfXAuPXW2yrSfEvkO59EON9M7XqLl5c7mxsFBPLMYzyx2Ht0af8ZCM1hoRuMhBXdyKAAclCMPWkdhPBysUKi4mD8yn4WnsNtepCfP1DRH6KCq1cpf+ciGkj/8Vg1HAgdVnUrGyWLMDmJ2ELODDsdXvDWCAsBBI2Tx0j4YFQc553kn2dNv09gR7IE5NP/0pV2v/pvDx1mzdDp8Os0/XQ1EAgeBg9WPm8t8CxwEDgIHL1Mc+FqvCgAH9Zo513EbGAcZ42fPsRffZ43S2IQZ9NjJamb7nMRhjL/zNfXrzxZ8wSgFDrp/T3EFNWJ2EDgIHAQOOh1m8VHvCgAH9Z7B6uM3MA5WdPhMAX/iPzR0ML9zNj16wpnw2ObN9N132dGjFc8sPnuepT9tvXIsPZzvbFnhzTizgzmpb/044IenO36ysOe87KGq5vyUGwMHgYPAQeBg9X978K1uFQAO6jZ1LgM3PA4yxk+dZS9/RJuNsj3d+FB+FTnorFk8NJSuXFmx0Myv21nj4Wzusss+6c5IOPjxO72tXpatw5phoZkqY0LTD8BB4CBwUNMcLLEYAAAgAElEQVSSgrP6VwA4WP85EBGB4XGwQrTycv7KRyx0CB3zL3owr5L2HJehZozdOZu2HEuLiy+rtJFw8JPFvakH2ZYaBxy8bL5r/QNwEDgIHKx1GcGBXAoAB+XKh1bRmAQHOeenC9hLH7AWY+it/6Z7j9hmAynlxc+/UNwwovTH1ZTS7XtYzDD2SGb1p4krBAcOKj9TPHdzGk4WAweBg8BBrf5awY8kCgAHJUmExmGYBwcZ4xeK+bxltFk6HfkU3bSL/5bLX7t/9TNXPf/Rgj93H7De+xptPIKt3AgcrO0dJHZkBA4CB4GDwEGN/2jBXX0rABys7wyI2b95cLBCv4LzbNYSFjmUtptMI1IpSea2LYm2mUSj0/6fvfMAi+Lq+vgAkrxqEhVjEjXNJG9MNyamvekfqFgxEXvX2FAUVKyAhSZYAQFpogIqoi6IBQUB6Uiv0kR6L0vfdu98z7K47G4QlzLMwJ555tHZnXPPPfO/98z+uDNzB83cjeoauxIaRgfFqCfPBuCgCAcNDAyw4i2NjY1r165tw8ENV5JO0LVeTjxOS9XHrhsIp6H+v1/CkwML6jK7WPNrH3ext4tdPS7Yhc++2jXnr5nKyspdnUxh34BVAHBwwDZdl4ErGg5iTD4pImfswsoiEBT/+wcm/kCnvJD0u4tltQMclIcCxTaAgyIcXLlyZaziLaGhoVpaWq+NemX13r/ML+nRsppd0jPz3E5L1dstl48Y/crkKZNcLtn7BV3rYr35wLuLvc/bdTPIu2cFn+ewb7//9Y//KSkpyZ5A4fOgUABwcFA0478OgsViDVdVPbVrFyoslFrLyrDMO9pqa7GMTWEhrq6Wcsnno4oKKT9tRbDk0xkYYy63E5vycnGNCKH9+/e/qap6+cQJfn5+h3FR0b9rxOXlHQbPIiS5XKnAOByRjaCgMPB+1dva/PZxQTEOtm1o7eE05RVLehMeck2N2FV6evr/fvppyqcjTpz/9dzdaeLV9e60MzGzxRhkkzTPLnKWq3+HgcjSOVBTalaXRC3HkBliJ+INh9CZNokd7xG2jZvrcm+6eK9ow8V/2pnoOeIa11hNUfuPyooVH8qYOQdOt4kXziNjnahlnahlkzDXMbi9Rpbtj7XvDk9YNOGCj4ZD2EzJNxefie2sxnvTzsR01GiTNM8hbGYnxxigKQ7eOlFrldm3H40Y4XrkiKSqqLCQbGwUTe4j0ha3tuKSEhkbVFoq2Y7CqSDr6mRtRJ0Qd1zixwIBLiuTNSsqIpuaxDWy2eyZ6upvqKmVl5eLG5eKDREOKikpKSvkSrQtSkqEEo2LMl11i45eeOzKXS4qKipd7h+QO0UHT0VOgU/aFQAcpL0JKAmAxWJ9oaSU++GHSENDav3nH1xQIFXlmTNo+nQpm+nTkamZlE1REdqxQ8qmzS1OSOwwwxhlZPzbBuno4MJCkZkIB/coKeV/9hlSV+8w1tTEFhYdrkiSLC5GW7d2GDw7CpyVJWWWkoI0NZGGBldjuuu0E0P+r3Mc/FSjoGjaEilv06ahU6fErtLT02f/9JP7K0OeTFIr+P518Zr/0xueV/4Qw5lN0rzrjv978tubYgPRRvLC950eaHaYxWuFbftMxqbg+9cDDn4tSY3OgZqPNcfLmOX+/talS7+LXa2xmvKXilL4+GEyZqnz3nUInyXGQbuo2RFbPhHZFE9Wq57wavmnIwq/G33H4tszjzpQ77yfRtbUcTKustXHyhyjv8k3eb+8IWOW8ve74uCtE7V0zb45PWRIwcSJUqpqaJAsFsnjiYXFCQlYW1vWZs0aMiOjw6a1FTs7o2nTZMyQqQmWoH9cXY3Wr5exwbNnk3fuiKYTIkmSzWbvUlf/pr9w8OPxry/87StFW//++fP33xz10suqn3/30c8zJiva+vUvn7z0H9Vx48ZpaWkt7XJZtmxZl/ufu7PHBZ/rse92vP/++zA6KD53DbINwMFB1qDth8Nisb5UUip4/z3yl18kV7xiBc7Plzrm06fR779L2fz+Ozp0UMqmsAjp6kratG/HxXeYYYzS0jqx+ecf8hmAinDQUEmp6OOP8c8/dxj/8Qd55EiHK5Iki4rwhg0dBs+OAmVmSpklJaE//iB/+YX3y+8ufxxV+eM5OPh/BUW/z5f0hn77jTx2TOwqPT19zk8/XRmmkv/ZiOLJauK16Bs1STizSZp3w+Gn/B/HiA1EG6nz3nWWxsEInU9kbIonqwUafiUmKpukec4B07PVx8qYPf3fG5c9pHBQW0Up+q2hMmYZs8Y7hM/swMHIWVEbJ8rYFE9W8zf7RnLk74KvRs4fb8qY5f76xqVLUsh7/9DXBT+8LmOWPvtt29j2ea3bcPBbe5UhxR9+KKmqcPvaNSkcjIvDc+bI2ixbTqalicXHLa3Y4Swp3QnJX37BB40xhyM2I6uq8KrVsq40NJCfH352KwCbzd6trj5FbVT/jA7qzP6x/Iqhoq15F/Ys+WPSqDGvGVivvRBlQdd6PtKclqrNPPXU3hwxderU9PT0RsVbtLW14d7BjpPS4NoCHBxc7fnsaFgs1iuqqmf09cmcHMkVFxQgiREXoXlVFZmbK2kj/Ch9rU1YpLhYykbktqXlWYVt/7e2dmJTWCjmAxEOjlNV9ba0RFlZHcb/rpHHI4uKOgyeHQWS5AOSJFtacFvwKCc36G7pewsFnVws/gNr721tepwn5S03l6ysFAefnp7+y08//e+TEdYuv1y4qSFez99Ut4uWulhsHz7r/K0OA5Glq/80Sc6zSdRyeqApdiLeOBsyQ3y91SZpnm3sXLc7U8V7RRtutzTsojpqXGM15fX/qKxZ9oGM2bm706QuFsfPdQ6cLmNz4aaGw0Ppi8WP5rjdlq3x3G0NO4nL0zZJ8xwfzjjvJ3uM5+5OFQdvnai12uzbT0aMuHjwoJSqOTkkmy2+dCuUt6WFzJNWPidH+OeB5G0GCJHV1bKdMCeHLCsTD/uRJIn5fOEw87Oe0L7x5AmurxdPOMlms2erq7/ZX6ODevN+bvI1UbS1wstohcZkBX+yWFNT8+nTp+ITiOJsLF68WEVFRXGOV6GOFHBwcDa3oj1KwuPjmHT0my5Skr5rkPgTv6yBrC4hmRsmZVp98DxKktRns8mIL1j/ewMeJRHdOwg46JV8kpZV9EwxLVUfvyF8shhwUOYUCh8HgQKAg4OgETs5BAXBQYxJLo/MK8YOLKy5E42Ziz5eht6Yi1T/TzDkD97L6vwvVqGPl6Ip61F4EpJ4LEFWscGDg8LHSrTsYuaciZ0rHsz7N8/18hvAQcBBGB2E0UHZ0yh8HuAKAA4O8AZ8TviDHgcxxuxG/CgDW3pgDX301RqktQ/ZXkORKeStCNJKJ+TgRFOH07nRacg7CH+9Bv25DcU9lrz2KCXcYMLBizf+L/ePt4J3f2En/bxwLxFQsjjgIOAg4CDgoNQ5FD4MfAUABwd+G3Z2BIMbB1taUFAc2nQMfbIcfbAYrbNErIeotBLz+MK7yBAiOaZHOSNGcwODMUJ8AfkgDk/+B32zDoUldT4B4WDCwavnf0UqSqnz4J3FnSVGH30HOAg4CDjYR8kEbpiiAOAgU1qib+MYlDgoEOCKWvJmGF5tLnzdyBer0QYrdDsSVdSIHy1tVxGZmZGvvYaCgkTjgTw+6RuK31uA1PVRZGonRDiocNDtV6RMpGoBDvZtSkl5AxwEHAQclEoJ+DDwFQAcHPht2NkRDDIcRIgsLEfON5G2EfnREvTLFmTsgsNTcE09yeNLPckqEkMGB0mSbOWQPg/xt/8gdT0clYoEAinVAAclrwW/cBsuFgMOAg4CDkqdQ+HDwFcAcHDgt2FnRzA4cBBjki/A+WX4+GX8/UakNht9sQo5+qCnJVhiquNOjv/fOEiSwoHCm+F44jL0sw6KShFPTiIsDjj4QgSUNAAcBBwEHAQc7OTMC18NZAUABwdy6z0/9kGAg43NOCIFH3ZD329A/12KtPaRrrdwfgnJ4XQyHCijRKc4SJJkcyu+HoK/WIWm7cSJ2R2XmAEHJWnvhduAg4CDgIOAgzJnXfg40BUAHBzoLdh5/AMaB1s5ZGgiWnsUfbQUj9HCayzQvWhcXk3yO7su3OnxPw8HMSY5XPJGCPpytXCSwpj09vsIAQdfiICSBoCDgIOAg4CDnZ574cuBqwDg4MBtu64iH4g4KEBkRS3pH40XHcLj55MTl+MtJ1F0KmpqwVJXdrs67vZ9KDRU+BLk/PxOBxK5PNI7mHxHG2nuQvGZQucpKWk//vjjhElqh+5MleEeyY/9v73GasrLQ4fM0vn0eVVbJ2pZJ2p17E3Ucr07LWrzxJunvhdOPUjNrNSAg4CDgIOAg3KcicFkICkAODiQWkv+WAcEDormhW67QVD4pIjdDTRtJ3prHv5xEzrqiRKzcbMQBOU/aAlLjEmBoFMWFL7uDJMtHPLqA/zVGiER3o1CJnapEz/9YXDgoHD26YS2VRIT+5QLAQcBBwEHAQclTriwORgUABwcDK3472NgOA6eO+dWVCZIzkEcLi4oxZYe6MMl6NUZ6KfNyPUWYjf8+4Ao+cY7CH+wCA2dhl76OU9ZTX0w4GCfYt/zBhcBBwEHAQcBByk5KYNT+hQAHKRPeyprZjgOHjl6br4hT10fGdgLb+P7YDFaeBB5+KPSKkSlKrK+c4vIvw6QxJ8k8Vsr8c6eCV+PHfAXiwEH1dXV1NTKy8tlG7tPPwMOAg4CDvZpSoEz+hUAHKS/DaiIQISDRkZGDUxa2Gy2gYGB8pDh/53q/bKGQOX/8OuzWhYeqLsZwi4orq+v7+9YQ+PY8/ex1WawlX9vJr7yf2/KV3uv/WkZPqtjDZvZsS35fX9tLzvyzUv/UZn2z8fPD2OmZXi/Bxk2c7HRpJEjRx47dqy/26zL+oqKiv744w/AwSZfE+rWCi+jFRqTAQcBB6n45QKfNCoAOEij+BRWzWKxlJWVJ0+evIpJy8qVK7/66mvijSXED7nEL2zlX9kTZ95fvnxFn8e4f9Uq+1WrdOXwu2jxim9+WTXso93Ex2dfGf/1JPVx3895R7x+N/tt8TYtGx9+q6asojR+4mvPq/27Oe98JxHw93PeUZ/zjt6ct5fOeedH6e+f56En389++4Ov1V566aUffvhBDo37z2TJkiVjx44FHKSOBZt8TQAHR781UlNTE3CQwh8wcE2HAoCDdKhOfZ0sFosgiFGjRk2gfvnggw/kr2TkyDHEqGmvf7Fnws/HJ/xqO+GHA/KXld9y76hRSUrKWmPHiot0HeTbb7/78vC3hvxn+Mg3h6qN61hHjxsm+bH/t18Z9ZKSklIX7fhB2yI+zAkTJswcNzaTIE6/+uqn778v+X3fbo8ZM0ZZWXn06NF961bSW9dNJmkp3n7vvfeGDh0KOAg46JV8kqL1+A0DwEHqf8GgBhoUABykQfR+qJLFYqmqqurq6qYxaUlNTd24ceOQIUNMTU1TUlKoC61s+3bB8OFPzp1LS02VpxZfX99JkyaNn/jaZvsf9137P/G61/tP8TYtG1r6nw8dNnTbtm3yHEVaWlpqauoTD3esrFwzf356bKycpXpgdvTo0REjRhw4cKAHZakrEhUV9eOPPwIOAg5SxIJeyScBB1VUVPrhJwyq6H8FAAf7X/P+qJHhj5K4ubkJZF4b3KeqPG8a6udVwuRpqF95ZbipqenzIpf5XjiJYkQEVlZG69bipiaZvX340cPDY9SoUba2tn3os/eu2Gy2OjxKQuWNg3CxGHAQcLD3ZypmegAcZGa79DYqwEHytddQUJDwRcVyLICDcogkZQI4OHz4cL15P1M6DsdM53DvIFwsljoXwIfBogDg4GBpSenjABwEHITRQemc6MtPMNEMPFkMj5L0ZUaBLwYoADjIgEagIATAQcBBwEEKEqvdJeAg4CDgIHX5BZ5pUQBwkBbZKa9UwXGQNDcnR45EwcEKeLEYRUTgIUPQP+tJuHeQsjwDHAQcBBykLL3AMT0KAA7SozvVtSo4DuKiYhQdjdhsOXUeNPcOCt/IXF+PIiLInBzhW5spW+DeQbh3cP/ZjdQ9wNu15ytJJ64knejahqK98CgJPEpC2WmVZseAgzQ3AEXVKzgOdlfVwYSD3T32ntkDDgIOAg72LHcGdKnFixcDDg7oFuwieMDBLsQZwLsAB7vVeICD3ZKLJEnAQcBBwMHuZs0gsAccHASN+LxDABx8njID+3vAwW61H+Bgt+QCHIR7B+HeQbh3sLsnDbBnuAKAgwxvoB6GBzjYLeEAB7slF+Ag4CDgIOBgd08aYM9wBQAHGd5APQxPwXEQJSRgV1dcUkJiLI+CgwYHhW8lKS9HZ8+ikBDM48lz7D2zgYvFcLEYLhb3LHcGdCm4WDygm6/r4AEHu9ZnoO5VdBw8epQcPVoxJ5rBkZH4P/9BGzbAvIPUZS+MDsLoIIwOUpdf4JkWBQAHaZGd8koVHQfNzGAaasBB6tIMcBBwEHCQuvwCz7QoADhIi+yUVwo4CDgIOEhdmgEOAg4CDlKXX+CZFgUAB2mRnfJKAQcBBwEHqUszwEHAQcBB6vILPNOiAOAgLbJTXingIOAg4CB1aQY4CDgIOEhdfoFnWhQAHKRFdsorBRwEHAQcpC7NAAcBBwEHqcsv8EyLAoCDtMhOeaUKjoPY0xPNmoUSExVxopm0NKyujo4dw62t1PUzmGgGJpqBiWaoyy/GeoaJZhjbNL0PDHCw9xoy0YOi42B9PS4qkp+HBs28g8K+yOHgwkJcU4MRoq5rAg4CDgIOUpdfjPUMOMjYpul9YICDvdeQiR4UHAe72ySDCge7e/A9sgccBBwEHOxR6gzsQoCDA7v9uowecLBLeQbsTsDBbjUd4GC35IKX1MG9g3DvINw72N2TBtgzXAHAQYY3UA/DAxzslnCAg92SC3AQcBBwEHCwuycNsGe4AoCDDG+gHoan4DiIW1pwTQ0p90t7BxUO8nhkdTXZ2CjnYzQ962FwsRguFsPF4p7lzoAuBReLB3TzdR084GDX+gzUvQqOg+j6Nbx8OUpNlROJBg8OYkxmZuIFC5C9PeZwqOu+gIOAg4CD1OUXYz0DDjK2aXofGOBg7zVkogdFx0F4Z/G6tTDvIHWZCReL4WIxXCymLr/AMy0KAA7SIjvllQIOwjTUgIPUpRngIOAg4CB1+QWeaVEAcJAW2SmvFHAQcBBwkLo0AxwEHAQcpC6/wDMtCgAO0iI75ZUCDgIOAg5Sl2aAg4CDgIPU5Rd4pkUBwEFaZKe8UsBBwEHAQerSDHAQcBBwkLr8As+0KAA4SIvslFcKOAg4CDhIXZoBDgIOAg5Sl1/gmRYFAAdpkZ3yShUcB3FYKDI3R0+fKuJEM4WF6NAh5OuLuVzq+hlMNAMTzcBEM9TlF2M9w0QzjG2a3gcGONh7DZnoQcFxkBQIhHNQIyRn2wyeeQdJUnjUPB7J58uJwnJKJGMGOAg4CDgokxSK8BFwcBC3MuDg4GxcRcfBbrbqoMLBbh57z8wBBwEHAQd7ljsDuhTg4IBuvq6DBxzsWp+BuhdwsFstBzjYLbngncVw7yDcOwj3Dnb3pAH2DFcAcJDhDdTD8AAHuyUc4GC35AIcBBwEHAQc7O5JA+wZrgDgIMMbqIfhKTgO4qIiFB1N1tfLKd+gwsGGBhwZgXNzsUAg5+H3wAwuFsPFYrhY3IPEGehF4GLxQG/BLuIHHOxCnAG8S8FxEJ05gz//HEVGyvk4xaDBQYwxjovDEyag3Qa4uZm6Hgw4CDgIOEhdfjHWM+AgY5um94EBDvZeQyZ6UHQcNDODeQdh3kHqMhMuFsPFYrhYTF1+gWdaFAAcpEV2yisFHAQcBBykLs0ABwEHAQepyy/wTIsCgIO0yE55pYCDgIOAg9SlGeAg4CDgIHX5BZ5pUQBwkBbZKa8UcBBwEHCQujQDHAQcBBykLr/AMy0KAA7SIjvllQIOAg4CDlKXZoCDgIOAg9TlF3imRQHAQVpkp7xSRcfB48fx22+j0FA531M3qJ4sjo7Go0ahrVvhyWLq0gxwEHAQcJC6/ALPtCgAOEiL7JRXquA4iAsLUXg4yWbLKfSgwUGSJHF9PXr4EGdlCV/cTNkCE83ARDMw0Qxl6cVcxzDRDHPbpteRAQ72WkJGOlBwHCSF8+9hOScdJElyMOFgx7FjTF3fBBwEHAQcpC6/GOsZcJCxTdP7wAAHe68hEz0oOg52s00GFQ5289h7Zg44CDgIONiz3BnQpQAHB3TzdR084GDX+gzUvYCD3Wo5wMFuyQXvLIZ7B+HeQbh3sLsnDbBnuAKAgwxvoB6Gx2KxVFVV9+7dW86kpaysTE9PT1VV1draurS0lNLQKrrjPTQ0dMqUKe9+PnLXpd/NHmiKV9PAjm3xl/25sdjo62HDhu3bt687R1NeUS5cKV3s7OxGjhxpbm5OaS3ddZ6dnf3rr7+qqamVl5f3MHPkKwY4CDgIOChfroDVgFEAcHDANFW3AmWxWEpKSq+//vpEJi0ff/zx6NGjCYIYO3bsxx9/TF1oiydOPDbx4z/lruD9998fOnTokJeU1cYNHfPuKxLrcIltye/7afu1119WUlIaM2aM3Icy8beJE09P/HjjxImfy1+m+5Zjx45VUVF58803u1+UwhIfffTR8OHDAQebfE2oWyu8jFZoTAYcBBzs1k8SGDNfAcBB5rdRTyJksVgEQYwfRnw3hlnr2GGEEkG8/yq1UdkOJ+qViE0jie/lO/wvRhHDhxAvDx/y7ucjP5ysJl4/kNgWf9mfG29OeEVZWXnChAm/y71snjyZSxA+Y8dO++UXuQt12/CTTz4ZMmTIRx991O2SVBb4+eefR44cCThIHQs2+ZoADo5+a6SmpibgYE9+maAMgxUAHGRw4/QiNBaLpUIQWz4nkrX7YVWSs5YkbeKficQQJeLwt0TifAoDK/2cEAwh8n6TtwrWNOIrNeK9L0bu8frDInSmeDV/OEO8TcvG0kOThw0bZmhoWCffUltbW+9/Dysrt65YUVdSIl+hnlg5OTmNHDnSysqqJ4UpK1NQUPD7778DDgIOeiWfpGg9fsMAcLAXP01QlLkKAA4yt216ExmLxRqiROz8iihYpkT1mr9U3iqeLhUSqqoycewHIk/uUj2Iv3YSgYYQFepKBUuFCuQvFa5d+AmYRUweTUyYpHbozlSbpHni1TpRS7xNy8YaqymvvDLc1NRUzs4gnF8nIgIrK6N1a+GtJHKK1gMzuHcQLhbD6GAPEgeKMFkBwEEmt07PYwMcBBwEHOx5/ryoJOAg4CDg4IuyBPYPMAUABwdYg8kZLuAg4CDgoJzJ0gMzwEHAQcDBHiQOFGGyAoCDTG6dnscGOAg4CDjY8/x5UUnAQcBBwMEXZQnsH2AKAA4OsAaTM1wFx8HK/xHN44hSTUIR7x1MS8PqGujYcdzaKmdv6YEZvJUE3koCbyXpQeIM9CLwVpKB3oJdxA842IU4A3iXguNg4UKi6C+iYLHC4aCwy3I4uKiIrK0lEaKuBwMOAg4CDlKXX4z1DDjI2KbpfWCAg73XkIkeFBwHZR4iVpwni/utLwIOAg4CDvZbujGnIsBB5rRFn0cCONjnkjLCIeCgJBECDvZ5pwQcBBwEHOzztGK+Q8BB5rdRjyMEHOyxdIwuCDgIOEhpBwUcBBwEHKQ0xZjpHHCQme3SJ1EBDvaJjIxzouA4KLx38G9FvXeQyyXLykg2m8SYun4JOAg4CDhIXX4x1jPgIGObpveBAQ72XkMmelBwHKz4lWh8nyiZqXiPkmBMZmbihQuRgwPmcKjrmoCDgIOAg9TlF2M9Aw4ytml6HxjgYO81ZKIHBcdBeEkdvKSO0rQUzTv4z/Qp2ecMFG1Nst8+/5cvRr7+qq7Fcvv7xrSt9+ip2shp86gxr/3555/R0dElirdoaWkpKytTmlzgnC4FAAfpUp7aelks1lAl4tCnRNHfSlLrfKJgidSLjAsX/Mvmb6XCBVI2BUuIQu1OzEQzubS/Dnip8OKsVF1tVRdqd9QoemfxaCXC7hui4C8pY3lrXNI+4Nd+a+Bzaqz7UuqdxS88xoBZxLejicmfjTzm+btLoKZ4dQ6cfubRHMm3FdtFz3F+0GEgsnQMmWEbP7fDLFHLIWyW2Il4wz5ilo3kS5Dj5zoFzRDvFW04P9CUrHGN1ZTXhw87sXcvLiuTWquqpeaRwRjX1eGyMlRWhv38hO8sXroU5eXhpiYscckY83i4slLKT1kZWVlJcrmS3RE3NuLyclmz6mrJq8+eHh7vjxjhYm4ua9bcLGkm9FxRIWODq6qwZI0Y44YGWZuyMlxXJ+kKCwTCgjI6lJfjlhbxMbLZ7Bnq6mPU1MrLyyWPqM+3RTj41qhXv/v4bUVbv/lo/OjXhqkMURn3/hsfffmuoq3v/nfsEFWVkSNHTp48+UfFW0aPHk0QgA19fkZhhENoV0Y0Q58HwWKxPiGIxBFE03tSK/tTokhLCvWqfiQapW0a3yOqv5GyKfqLqP1Cyo/IbckMIZyJcbB4Tic27M+Ionnt3kQ4uIUg0tSIxnc7jBvfI2q+la2x7rMOA/FRFM+RwsHiWZ3Y1H5O1P9XCgerpkhV1/Se8JCrvuuoMWAWoT6asB+hmvLrG1nTxonXzOnj3K/92cF5SfOunvslffbbYgPRRuyaj5yCZ3SYxWsF7f1KxiZr2rg7Ft/YxHVQo1OQZtLC92XM0ua+43G1o8Y1VlNmqQ6J/fJLtHCh1LprF9nYKO42uKUFWVuLDLC6OkkQeMIE9Pff2NdXErzw06d40yYpPwsXkuvXk2lpYlckSaLr19GKFTJmaPduks8Xm/l4eJioqmZ+842s2d27kmY4NRWv3yBro6+Ps7PFrjCHgz0vocWLZczw6dNSwdfWIgMDGRthnA8e4GczLLLZ7O3q6pPURvUTDr768t9EMoIAACAASURBVHdvv6po6zfjX3l9mOqQIcrvvzfyiy/epGv9kqaqP/pIbcgQZTU1te++++7XLpfffvuty/0DcueYMWMAB8XnrkG2ATg4yBq0/XBYLNY3BFH5EsF7VWptHksIiWqZknit+4rgviZlw32NYE+UsinWIhonSNmI3JZNlcLB0hmd2DS9TRTPbfcmwkErgqh4WcpSWOMnsjU2vSNlI6pRfDugKP7S6bLB814lmt4lGj6UwsG6z2RdcV8l2F901Bgwi5gxmvB/Wblq3LDad4eL1+oPXvW6+FsH5yXNu3n6h4qJI8QGoo0c9XEuAdM7zOK1Ylf9V8am9t3hD3d8ZiuBgy73phd++7qMWfknI73O/yp2tcZqykoV5fzRo/F//yu5olmzyLo6cd9FjY1YX7/d4J13hDj42mv4o49IJydS4t0kOCMD/fKLpB/h9k8/4agosSuSJPGZM/irr2TM0Nw5JI8nNrvt4eGprFz7xhsyZvjiRcmxRhwZiX/8SdZGczqZlCR2hZub0bFj+JNPZM309CRvf8QVFWj2bFmbSZPw1avigVI2m22orv5Df40OLvn6jQidSYq2Bm74ctYnaqNGDd2z+w+P8wsVbbUwm66mNvS3334LCQnJ6XLJzc3tcn/nO3Pbls73MeDb2bNnw8Vi8blrkG0ADg6yBm0/HBaLNZIgbD4kyqZKrSWaRMHCDgwqWKZUPJcolbYpnUoUz5ayKVgkfCxDxlXZVOEVZMnRwYIFndgIRxAXtXsT4eBEJcL9M6JEo8O4dJospAprnNFhIK5aGPxSidi0idJpsmYlM4i6z6VwsHhOZ8cogcUBs4jvRxOaH73qfPy7q+d/E69eF351CJsphjObpHmOQZpXLnYYiCw9vP6UvMJrk6B13ldD7ES8ce7OVJsELbG3MzFzLl/6XbxXtHHF/TeH0I4a11hNmTB0qPPGjSgyUnLFSUmSg3CkQICzs4UGERHY0VF4sXjuHBT0gCwpEaOSkPOamnBcnKQfFBmJY2Mxmy2ZBrioCEVHy5ihpCRJV1c8PH549dWrO3fKmOGyMkkzzGbj2FgZG5SYKDW0KRCgggJZm8hIMjtbyhWXi5OSZM2io3FFhfiaMpvN/ltdfXx/4eCmH8eWGH6vaGvOnimLJr3++uvDrCxnBgesp2UNClgfRFPV55znjxkzXFNTE95ZLHnSgO1BoADg4CBoxE4OQdEfJfmaELxElKu3s6PiTEONMRYOyL38MtqwATc1ddIz+ugreLJ4+PDhgIO0sGBwGwsCDvZRKnfPDTxZ3D29BpQ14OCAai65g1VwHCzVIGq/brtI3TaUqDg4KBwnKyrCR47gmzclb7yTu+PIawg4CDgIo4PyZssgsgMcHESNKXsogIOyigyOzwqOg8Knp0XPICsaDgqfBEHCm/wEAvElVCq6NOAg4CDgIBWZxXCfgIMMb6DehAc42Bv1mFtW0XFQ4lmZgmVKCjQ62F9dEnAQcBBwsL+yjUH1AA4yqDH6OhTAwb5WlBn+AAfFj04DDlLRJQEHAQcBB6nILIb7BBxkeAP1JjzAwd6ox9yyio6DS9seIhH9q2ijgxgLLxOLVsp6KOAg4CDgIGXpxVzHgIPMbZteRwY42GsJGelAwXGw6C+iVJMQvulE8e4dFL5TJDZWOOO0QEBd3wQcBBwEHKQuvxjrGXCQsU3T+8AAB3uvIRM9KDgO1nxD8IYR5RoKh4PCiWZiYvCYMWj7NtzcTF3XBBwEHAQcpC6/GOsZcJCxTdP7wAAHe68hEz0oOA7WTpKahlpxHiUR4mBEhHAa6nVrYd5B6jJT9M5imHcQ5h2kro8x0zPgIDPbpU+iAhzsExkZ5wRwEA0hKtSVFO1iMeCgurq6GryVhMp3pcBbSeCtJIz7wYOA+kIBwMG+UJF5PgAHAQdhdJC6vITRQXhJHbykjrr8As+0KAA4SIvslFcKOAg4CDhIXZoBDgIOAg5Sl1/gmRYFAAdpkZ3ySgEHAQcBB6lLM8BBwEHAQeryCzzTogDgIC2yU16pguNgzbcE7xWifKpC3jv46BEeNw7p68OTxdSlGeAg4CDgIHX5BZ5pUQBwkBbZKa9UwXGwWIso0yAK5yvkRDP19Sg4GGVmwryD1KUZ4CDgIOAgdfkFnmlRAHCQFtkpr1TBcVDyDXXwkjoqehvMOwjzDsK8g1RkFsN9wkQzDG+g3oQHONgb9ZhbFnBQkggVZ97BfuuRgIOAg4CD/ZZuzKkIcJA5bdHnkQAO9rmkjHAIOAg4SGlHBBwEHAQcpDTFmOkccJCZ7dInUQEO9omMjHMCOAg4SGmnBBwEHAQcpDTFmOkccJCZ7dInUQEO9omMjHOi4DhYNpWomUwUz1XEJ4tRUREyMyNv3SJ5POr6JeAg4CDgIHX5xVjPgIOMbZreBwY42HsNmehBwXGwdhIhGEKUqyvkk8UREUhFGf3zD8w7SF1mwpPF8GQxPFlMXX6BZ1oUABykRXbKKwUchGmoAQepSzPAQcBBwEHq8gs806IA4CAtslNeKeAg4CDgIHVpBjgIOAg4SF1+gWdaFAAcpEV2yisFHAQcBBykLs0ABwEHAQepyy/wTIsCgIO0yE55pYCDgIOAg9SlGeAg4CDgIHX5BZ5pUQBwkBbZKa8UcBAp8KMkWEUFrVsHOEhdmgEOAg4CDlKXX+CZFgUAB2mRnfJKFRwHK/9HNI8jSjUV7sliEmOclobV1dGxY7i1lbp+BhPNwEQzMNEMdfnFWM8w0Qxjm6b3gQEO9l5DJnpQcBwsXEQUzScKFiseDpIk5vFwRQWur8cYU9c1AQcBBwEHqcsvxnoGHGRs0/Q+MMDB3mvIRA8KjoOSryQpWKYE7yzu8z4KOAg4CDjY52nFfIeAg8xvox5HCDjYY+kYXRBwUJIIAQf7vLMCDgIOAg72eVox3yHgIPPbqMcRAg72WDpGFxTjoIiEGPLv06XEls8IVSXC6gcib0n7oB0TYguYRUweTUyYNOrgnanWiVoda4LEtuT3/bW92nLKK68MNzU1xQxb3N3dR40aZWNjw6i46urq1NXV1dTUysvLKc1PeJQEHiWBR0koTTFw3v8KAA72v+b9USOLxVJRIlb+l/CfSfl6d4a8VdyZQSz6gBiiROh/SdyRu1QPDiFsJpEwkwiaqSQqe3cmcbdLHRx/JSaOIMZ//Nomux/3eP0pXnd7/SHepmVDS+/zYcOG6urqpsi9PE5JqUhJyU9JSZW7SA8MLSwsXnvttX379vWgLHVFIiIifvjhB8DBEsPvqVtz9kxZNOl1wEHAwf74JYM6+lEBwMF+FLsfq2KxWARBvKpKjB1G+TquO1W8MoQgCGLES9RGpTOMuDeM0BhGiGMTb3QqyJj/EKrKhIqq8muvvzzyzaHiddRbHdviL/tzY/iIl5SUlEaMGPGO3Iv6O++Ev/OO6TvvfCR3kR4Yjh49WllZedSoUT0oK2eRd999V05Lsdn48eNffvllwEHqWLDE8HvAwTFjhmtqagIO9uMPGlTVHwoADvaHyv1fB4vFUlZW/vTTT7WoX+bNmyd/JR9//LESQXw2ktAYT+Hq+irRpETsep2YKl8tP71BvKYqhNRf3qQwqh4c8pejCBUVlW61o8GvvyKC8H/vvYWzZ8vfLt21/Oabb1RVVb/88svuFqTUfubMmWPGjAEcBBwMDlhP0XrOeT7gYP//okGN/aAA4GA/iExDFSwWS1VVddeuXQVMWvLz87du3TpEidg/mQjXIiLnKVG0FnxK8FWI9J+VIkW1aClFanVVl+f/EZ+PIr5UI65Pk46qy1IUBS/p1vQ7YvjQoQYGBvI3Y9mNG1hZuX7xosLMTPlLddfS2tp6xIgRR44c6W5BSu3T0tJ+/vlnwEHAQYpYMDhgPeCgiooKDT9pUCX1CgAOUq8xHTWwWKyXXnrJxMSEjsqfWydCaP/+/arKxLEfiLylSpIP//btdu0kogcvqfv2dSJCi5CMJJ/KICUret623S/EK8OHmZqaPldT6R3CBzsiIrCyMlq3Ft5KIq1NX36CR0ng3kG4WNyXGQW+GKAA4CADGoGCEAAHAQcBBylIrHaXgIOAg4CD1OUXeKZFAcBBWmSnvFLAQcBBwEHq0gxwEHAQcJC6/ALPtCgAOEiL7JRXqug4+DUheIkoV1cqWCq8+CvnNNSD5GJxZCT+z3/Qxg2Ag9SlGeAg4CDgIHX5BZ5pUQBwkBbZKa9UwXGwTIOo/Zoontu9dxYPAhwkMSaLipCpKfbzwzwedf0M3koCbyWBt5JQl1+M9QxvJWFs0/Q+MMDB3mvIRA8KjoMyT2Yozuhgv/VFwEHAQcDBfks35lQEOMictujzSAAH+1xSRjgEHJQkQsDBPu+UgIOAg4CDfZ5WzHcIOMj8NupxhICDPZaO0QUBBwEHKe2ggIOAg4CDlKYYM50DDjKzXfokKsDBPpGRcU4ABwEHKe2UgIOAg4CDlKYYM50DDjKzXfokKsDBPpGRcU4UHAcL5xMls4mChYr3KAlJ4pYWlJFBlpaSCFHXLwEHAQcBB6nLL8Z6BhxkbNP0PjDAwd5ryEQPCo6D8FYSeCsJpWkJE83ARDMw0QylKQbO+18BwMH+17w/agQchGmoYd5B6jINcBBwEHCQuvwCz7QoADhIi+yUVwo4CDgIOEhdmgEOAg4CDlKXX+CZFgUAB2mRnfJKAQcBBwEHqUszwEHAQcBB6vILPNOiAOAgLbJTXingIOAg4CB1aQY4CDgIOEhdfoFnWhQAHKRFdsorBRwEHAQcpC7NAAcBBwEHqcsv8EyLAoCDtMhOeaUKjoM13xK8V4myqUoFS4mCZUqK81YSjDGOjcXvvI127sTNzdT1M5hoBiaagYlmqMsvxnqGiWYY2zS9DwxwsPcaMtGDguNg0VyiTIMo0Fa4eQeFOFhfj0JCUGYmFgio65qAg4CDgIPU5RdjPQMOMrZpeh8Y4GDvNWSiBwXHQclXkijU6GC/9UXAQcBBwMF+SzfmVAQ4yJy26PNIAAf7XFJGOAQclCRCxblY3G+dD3AQcBBwsN/SjTkVAQ4ypy36PBLAwT6XlBEOAQcBByntiICDgIOAg5SmGDOdAw4ys136JCrAwT6RkXFOAAcBByntlICDgIOAg5SmGDOdAw4ys136JCrAwT6RkXFOFBwHy6YRNd8QxXMV7sliYUcsLkaWluSdOySPR12/BBwEHAQcpC6/GOsZcJCxTdP7wAAHe68hEz0oOA7WTiIELxPl6gr5ZHFUFB42FG3cCPMOUpeZMO8gzDsI8w5Sl1/gmRYFAAdpkZ3ySgEHYRpqwEHq0gxwEHAQcJC6/ALPtCgAOEiL7JRXCjgIOAg4SF2aAQ4CDgIOUpdf4JkWBQAHaZGd8koBBwEHAQepSzPAQcBBwEHq8gs806IA4CAtslNeKeAg4CDgIHVpBjgIOAg4SF1+gWdaFAAcpEV2yisFHAQcBBykLs0ABwEHAQepyy/wTIsCgIO0yE55pQqOg5U/ES1vEaWaCjfRjPCdxamp6Lff0NGjuLWVun4GE83ARDMw0Qx1+cVYzzDRDGObpveBAQ72XkMmelBwHJScgxreWUxFBwUcBBwEHKQisxjuE3CQ4Q3Um/AAB3ujHnPLAg5KEiG8s7jPeyrgIOAg4GCfpxXzHQIOMr+Nehwh4GCPpWN0QcBBwEFKOyjgIOAg4CClKcZM54CDzGyXPokKcLBPZGScE8BBwEFKOyXgIOAg4CClKcZM54CDzGyXPokKcLBPZGScE0XHwYVE0XyiYLHCvaRO2BF5PLKykmxoIDGmrl8CDgIOAg5Sl1+M9Qw4yNim6X1ggIO915CJHhQcByt+Ixo+IEpmKB4OYoyysvDy5cjJCXM41HVNwEHAQcBB6vKLsZ4BBxnbNL0PDHCw9xoy0YOC42DtJALmHYR5B6nLTJh3EOYdhHkHqcsv8EyLAoCDtMhOeaWAg4CDgIPUpRngIOAg4CB1+QWeaVEAcJAW2SmvFHAQcBBwkLo0AxwEHAQcpC6/wDMtCgAO0iI75ZUCDgIOAg5Sl2aAg4CDgIPU5Rd4pkUBwEFaZKe8UsBBwEHAQerSDHAQcBBwkLr8As+0KAA4SIvslFcKOChQJcrVFe7JYuE7iyMjsepLaP16wEHq0gxwEHAQcJC6/ALPtCgAOEiL7JRXquA4WDqVqPmaKJ6riDiIioqQiQn28xNOQEjZAhPNwEQzMNEMZenFXMcw0Qxz26bXkQEO9lpCRjpQcByUfCVJwTIleGdxn3dSwEHAQcDBPk8r5jsEHGR+G/U4QsDBHkvH6IKAg5JECDjY550VcBBwEHCwz9OK+Q4BB5nfRj2OEHCwx9IxuiDgIOAgpR0UcBBwEHCQ0hRjpnPAQWa2S59EBTjYJzIyzgmLxVJVVd2xY8cTJi05OTk6OjpDlIg9XxMhc4jQuf25KnVR3cU/ic9GEV+MIq5qSIX0cG5Xpbpw2Fe7Dk8hhg0dunPnTiY1ozCWkydPjhgx4uDBg4wKLCkp6X//+5+amlp5eTmlOSl6lGTK26/t+HW8oq26P4/7/M3hQ4eqTlX/aNXKbxRt1Zrz6bBhqv/973/19fUPd7kcOXKky/3P3dnjgs/12Hc7vvjiCyUlJUqTC5zTpQDgIF3KU1svi8VSUlJ66623JjFsefPNNwmCeGsoMXEE8clIqtYfRhLTRhKTxP5HEJ90Wd2EV4n/KBNDVYgPX5UOqctS1MUv9jxuGKGsrDx27Fj5m/G7SZPmTJr056RJX8tfpvuW7777roqKyvjx47tflMISX3zxxSuvvNJvOKispDREWRFXJUK4KCsrDVFRpm0dQk/VKirCo1dSUlJ90fLSSy+9yKTz/T0u2Lm7Pv1WWVmZIAAbqP35pss7tCtdylNb7927d8cr8KI1frzp+PE/KKQC344fbzl+/Mrx499TyMMfP378559/XllZSWmCNTU1BQUFBQYGBsACCjxHgUHcPShNLnBOlwKAg3QpT229XC63pr+W2tra/qpK3npqa2rqJGxr2xaJL+TdZOChyYTe6aHV1dQwrklk4pbjY4/Fr6urQwhRmmDC+R1hAQUUVQFKkwuc06UA4CBdykO9oAAoAAqAAqAAKAAKMEIBwEFGNAMEAQqAAqAAKAAKgAKgAF0KAA7SpTzUCwqAAqAAKAAKgAKgACMUABxkRDNAEKAAKAAKgAKgACgACtClAOAgXcpDvaAAKAAKgAKgACgACjBCAcBBRjQDBAEKgAKgACgACoACoABdCgAO0qU81AsKgAKgACgACoACoAAjFAAcZEQzQBCgACgACoACoAAoAArQpQDgIF3KQ72gACgACoACoAAoAAowQgHAQUY0AwQBCoACoAAoAAqAAqAAXQoADtKlPNQLCoACoAAoAAqAAqAAIxQAHGREM0AQoAAoAAqAAqAAKAAK0KUA4CBdykO9oAAoAAqAAqAAKAAKMEIBwEFGNAMEAQqAAqAAKAAKgAKgAF0KAA7SpTzUCwqAAqAAKAAKgAKgACMUABxkRDNAEKAAKAAKgAKgACgACtClAOAgXcpDvaAAKAAKgAKgACgACjBCAcBBRjQDBAEKgAKgACgACoACoABdCgAO0qU81AsKgAKgACgACoACoAAjFAAcZEQzQBCgACgACoACoAAoAArQpQDgIF3KQ72gACgACoACoAAoAAowQgHAQUY0AwQBCoACoAAoAAqAAqAAXQoADtKlPNQLCoACoAAoAAqAAqAAIxQAHGREM0AQoAAoAAqAAqAAKAAK0KUA4CBdykO9oAAoAAqAAqAAKAAKMEIBwEFGNAMEAQqAAqAAKAAKgAKgAF0KAA7SpTzUCwqAAqAAKAAKgAKgACMUABxkRDNAEKAAKAAKgAKgACgACtClAOAgXcpDvaAAKAAKgAKgACgACjBCAcBBRjQDBAEKgAKgACgACoACoABdCgAO0qU81AsKgAKgACgACoACoAAjFOg5Dja3tCakZvoHRfoHRd4PibofEnUvOEr00T8oksvjIYyra9mtHC4tB8rh8p4WlobHJDmcv97ayulBDFweL/VxruiI7gVLHV1RSXkPHPamyNPCUif3G5t3W1y8eqs3fiTKoson6d6enrsOOMdUo7bvMb+FnZKYnl/bSpIkxripuaWuvkGiCM2bGGP/oCiTk64rtx6srqmTPxqEUC27gcfjy1+EOZYtrZyAhzEHzO0OWNjXNzQxJzCZSEorqi7duLf9wHGH89dldlH08YVnmGd9uLFnAfD5guT0HMeLNwqLy8KiE0SngodR8eUV1ZIOuVxeZXWtQCCQ/JK6bR6fHxIRb3bKdf0OU/m7dGlFlZdvwPYDx21dvPo8ttZWzgWvWwKB6DTSx+4xn5P3OOnCWUcje7+6FpHIuLmqMPFxIZdPSY29PwDE4zxJj3e1dzzieKe0kbYgG8uf3vW5ceDg8RupDfj5RyXgtmQmxZy1trfwCGvgdmHYuQvUWOBq6+Z8K76+tZ9S4FkcmN9cGx+bEJ+SfufalX0mF+Kan+3p3//5DRVhgf7m5qdsQirlrplf8STjysWLOw3PP6rrRQ/BgqfJKWkNvfAgEXHPcZDD4eY+Lfp7jcH8tbtDIuKjYlMiY5PvB0f9o2+ycutBvkCQ/aRg4y7zG7eDMe52D5OIsIebtXX1/g8itVbuWKdv0rMA+HzB08LSBev2/LV6l9/90IhHycERcbYuXrOWbk9Oz+5hWD0t1tDY7H0zcNrCLRlZT3vqQ6Ycbq2vvnb25F8HbtW09yVcmx62YtV286tpJEnyBQIn9xtb9lo2twjpkAkLxri0vMrgsPWWvZbdatOyimp9o5PX/B4w4Si6GwNfICivqJ67XM/qzEUul9fd4v1m39zS+jj7qYa2TnhMUv9U+sIzDIfLc3K/sXWvVQ/6sAAh1u0gC2u38sqaOnZDTELa9IVbl2zcH5eUIfM3kq//w00G5klpWf1z1AihyupafaMT2w+ckL/G5pbWzJx8DW2d+yHR8peS39LZg1VSJv9vofyOSYwEzY2ljru27XAMaRKIfkpQ6mXLOZutK+raTk3cKl+X855BmRxEww9Np0cijJn95NgWvb1u0Q3tMXdqKPtla3GK7RnP8NzaPjkUXmv9w+vn564+HVf/L1zgVPi6nL8anstBGCFBU93jw+u2WfqktmkoKE58eNT2akJpqxyC4orYW/M2ngrMrnvhgTbXFHm4Xb6a+u9oZHWQ4zNuqch1cvNPLKxrbm6Jv35mieGVZlG4nDJvZ48bMfn8/gIPxGvNfBSw5h8z/8p/6fzcI0GtDXWe1pZ/HfLvDQ2SJOaWJ5+8/FiepnpuLM929BwHSZLkcLlTF2w5YOHA5XX8SvncDfHwvkOSZElZ5bJNhjf9Q7v1y/0ssD74H2O8bLOh/TnvHvvi8/mai3T1jU7WsTsGyRzcrpWWV/XYZ48LOruzFm/Y3+Pi/y7Ib651MD2052ahuAtjboWroZF9aAVJkgKEnN1Zm3aZ8/kv+JsPY5ye+SQw9NG/q+jzbzDGK7YYX7rh37VnjHFlVa2l7QWRWWV17dZ9VgEPKfkh7DqSPtmbV1AydcEW1p3gPvFGnRP/B5EL1u0pLhX2n35YXniG4fH5zu6szQYWL+zDMtEihHzuhhgcOt3Y2D7gkFdQoqGt4+VzX8aSJMl7wVGLNuzPys3/9y6KvuHz+XNX6DtevNEt/w9CYxas25OTV9itUs8zbmxqdvX0Fe+9HRAWFBYr/ijfBsaCpsSYzBfSAapL1luuZxfwVAwcrdUJRmYXqhvbxvs5Fe6WJ874pbwQBzHi5j5+UiU+38kXZY+sML80ceMKPefIFwICbmkoyy2qFvFfa/4jo4O2ARntH3tUdUchzGv2cTyhbR7UyahZa5m75Qmn+4/bRMO8gogVS3feSK5tAypBftSd7cZOkUUvZgyMWkKvXruU1dJR6/O3Giuf2h63d4ln97oFMIdd5mznESkiKcy7c/qgwfnI9ppbi52PWp8Pyek3HCRJMjnAfen+q906MAG38bSR4f5bxc8XTL49qM7TxC6+rg/+gugVDsYkpE1doHPpuj9qi6S+oYnPF6RlPhHTEp8voIsFSZLMySucvkg3NCpBPlE7sUrPfKKhrWPjcoXPFyCEG5uEaZWVW9DSo6vPnVTQna9091mddrzUnRIvsG2sSN25zeJWfjvpIgEvPy32wrWYimfXC1Db0rUXhFBqRs7KrcYJKZldW/bJ3vyi0tnL9B5nv2CItKau3sLaTfLHm6IrWX1yUC904n0zcOaS7WmPc19oSaMBxnj7geP6RicaniFUPwTzwjOMPH1YJk6E0IPQR3+t2pWZ00F4bpdvzl6ml19UKmMs+sjj9+t9CI8S02ct0wsK7wZ+YYz3mtjqG52oravv9BC69SWHw73gdcvu3FVxqcjYFPPTbuKP8mxgxEsKZO2/nPEi7XBJ+LW5Kw4H5nPaYAVz2BWRQffuxRbwu/cLiAqTwywvhPTH3UtY8DSUNXelZeQL2BO3Vud72p0Jzq6XYxxOHlGlbLj15cf2GR0OKHmBcyx4fPv87HXWyd0fp8KIW1re/WJSYXb7A2qpuHbW1sYvVVQSN+ce3LLPNfQFPwrdrqYbBfjXT5kYeMa/QGdph601KVt1zG8VdIw0Se+X/5Mg1P7Qhcjy7mVDZ+57hYMnz3rOXqYXm5QhHCnkcE1PunB5PIwxh8sNjohzvHj9qM150d0tfL4gKCzWwtrN4LC1vZt3XkFxcVllQ2NzayvH3fu2jcuV+gbh/T1NzS2e1/zDohMbm5qDwmIdL944bu8uEAjCopOMjzqIbpxCCKVk5FiduXDA3L7ry38O568t3rA/r6CkswMXftfQ2ORw/tq94KjnGXhcu6OhrRMYGkOSZHUt+8btIJHl04KSi1dvG1k6VFbVkiSZkpFzwNwuReIKcmZO/gkHj237C9RjhAAAIABJREFUj3vfDORwhfcgevncP2h5tqKqNjI22cjybHRcighYLazdQiLihH9epGdfun7X9KRrcnp2SGT8AQv781f8mprb/+qqq2/QXKwb1VZKFEN5ZY3jxesGh61dPX1FItexGzyv3d1neuYK676Lp4+4rPTRCSozIm2tnUxdAuOCzq884F7S0D6yixFqamxs4SMBQhnZT71vBpqdPldSXtnU1BLxKNnFw+cK6x6HywuPSTK0cEhMFV4awxjbuFz5a/UuzcW6rpd8RZfk+HzBg7BHh487HTrmFPEouam5JSQiztmdJWxKhKLjU42POmQ/Kbh9P+y042WfOyF5BSU2LlcOWjk+Lez4rc0rKD7h4LnXxNbZg9UicbXazs17826LKokbB++HRBsctnb3vnP5hv8px0sY41sBYcs2G05fuPXkWc+w6MSHkQlO7jdcL3WMZLRyOL7+D/ea2Jqdcs1+UiDqvfHJGRe8bp+wd0cIxyVl7Dezu/sgUvR3jqSAjxLSLnjdOmjlmJaZezswfL+ZnffNQMn7xiqra62dLxtaOIRHJ1qduRgVl1JX33AvOOqMq5eT+w0en387MMLxwnXJvyjq6hv8gyLtzl29dN3/aWHp2QvXjS3PipGXx+cbWtj/vdaAw+HW1zeecfW6HRAuCqm6lu126WZR22gcQjgpLdv89Dnz027u3neCw4WdSry0tHLCY5JcPX2szlxs5XC9fAL2mtjeeRAhEKBadv2dwHBrp8tePve5PN41v6BLN/y5bfdZcjhc37shhhb2R447J0rjfk1tvbMHa+ehUxe8bjU1CXtpZXXt1AVbbJyvcLm88163zE6dkxyTEwhQSGS8yQnng5aOIZHx4sBIkuTx+UlpWS6ePuev+HHabjXOys03tLAXjzKWV1Y7Xryx18TWxvlKfb3wRMHh8mTOMNW1bBcPn12HTrt4+JxyvCTqw14+AWanz9XUsUV92NmdJerDwRFxhhYOKRk5kmGItzNz8pdtNnT1vClufYTQ4g37t+0/3tAode9mcWmF372wU2c9bweEiYoLBIKo2BRLmwu7Dp22cb7yJF94oqtjN8QnP/bwvmN37mp1LTszN//wcSfRWUVUCiEUm5huYe1mdNTh5r2H4kgkNxBCjxLSjI+ePeHgYWx5dummAwVFZSRJXvN7cMLeXWx541bQo4R08UfxRmV1rdbKHcLW4bW3TlNzx00gZRXV1s6XD1o5RselWJ25KPrTLiPrycFjjo9z2n9lk9OzPa/dxRgnp2ev0zuiuVj3gIV9wEPhuZEkyZiEtI07zcTVyW5gfllmgoO9q6G5w8nrSfUI15dkudufWrBi904Hn/C0Tm7FxkjwOPrB0eOOpzzvnT91XGuPbylf9GuL+a3NtQ0tbSzIK8pM9fO5ecrudl4LFjRWxUVGXrxwyfFhOeI1xvqzDp64FFvUQJK4pbb0lqfL8tU7N5hd8ArJE4XHb62PvHfL/KSj0XHPkLx6Aa/lcVK8t5f3+Vvx9VyUHx94zCOstbEyJjzM1eWiZ1RZfkqU1VEbU9d7JY0dV8Oq89PdnC4YWTjY30wQgybmN91ytdE6FCi+ZY/fUH7rkvuhU1dCc3LueFx9lF5GkoKUh7d26e+bu/rIGb94bnNdamyMp/sVG58MEfa2BcnNjQ2ytnbaa+ZyPaaQg0jE5+SmJ127et3pamh5C67MjDx+3OVqGltW8LbPdQUh6zdaPSgsun3Jfa/JWeeAvGbhuBwvPyPZ94bvKbvbhW3Df5jH9jhmsdAqohmTHHZ5dFiYq6u7e1wDRrzS3Md3b9056RpQJBA2mf1Ju1PeCXUS/F5bmHHR1f2gmc2pq5HP7uwk+U1lNy56HDrh+SC98JrH9YAyxG9tzExOuHrlmuPtFESSDdUlESEhzm7ewZkVJGq46XHJI/bZJQVBY9gdX4sT9vuPXYop6Oy4cGv4BetlO5xTakRx4Pp41qJNR8PyW0mSm5eWxLrGsr8QXNL+twOvKC3GztbZ0MzO+IxvTE5ZSVlleW1TdVnBw8AH9ud8HxWz+a21PhfP77MJKOxICFLQUHLzyhWTo7bGZ3wyKiR2SAjNry+5cfH8oRMedzMS9289dCm+mMSC4vQYi6NOgU/aLlxjVJKdes1f+Fv/76U8yGnJvotPnz6+4OC41/Li7SyJUXJeffSt6ybHzl1Lroi5w/KOEvVY3JAfb3vK4bDdjZDU7LBHWS3t+MkPtzc+4pXw7OO/q5L3m57jILuhcfNuC62VO+8FR90PiTa3djO0sBdV29jUfMXn/l+rdx20ciRJksvjnXa6tGKLcXJ6dk5e4bxVO2cs3rZyi7Gff6j3zcDF6/et3nZIdGqLS8qYu2LHjdtBtez6W/fD/l5tcPKs590HEYs27NNaubOyqqa5pdXFw2f3EZvH2U9Zd4JnLN6Wnvmk02Plcnlrth3W3Wf1HCoSFiourdDZc/TAs7Bl/LS0coyOOmho6/j6P3wQ+uiAub3v3RCRTUlZpa//w6WbDujus0pMzdphfGrrPquHbT9yDY1NZ1y9th84npyeHRaT9NfqXYUl5aw7IWu3H5m/dndQWOxBy7PTF+kes7uYnJ6z/cDxuSt26BkK7wFKSMncZ3ZGQ1vn5FkPh/Pep85e0lzUwX83bgct1zESDU5wubzA0JhNBhYhEfFPC0sXrt8bHB7L4/EMjzoYHT2blZu/+7DNAXO7f99mLuA1Rt2+tvOk3+Pq1ur0wNUrd+50CW3kyf5Jw+fzE1IzDQ5bL964v7qWXVVd53bZT0Nbx+H8NS+f+8JGX7Fjn9kZkiQRQr7+D/9eY7Df3C4++TGPxy8pq9xvdsbC2q2gqMzY8uw/O0xz8grvh0TNX7v75FnPB6GPlm4y1Fq5Mykty937toa2jsHh08aWZ89dvvn3aoM9R2y4XOGfE77+D1fpHgoOj0t9nPv3GoNTZy9x2u6Z4/J489futjpzQXQLXU0t2+SEi7Hl2Zy8wuP27lMXbDl3+SbGOCk9W2fP0dW6h8JjktKz8gJDH2lo65xqG1jFGJdXVOsZnThu715SVuni6fP3GoPi0opadkNASIzWyp0mJ11CoxJ2H7aeuWTbXhPbhrbxYMmOERGTtHm3hYa2zjG7i+ev+JmedJ2xZJv4rqmMrLwdRie9/QLjUx6v1TuitXJnQmpmeWX1xau3Zi/Tu+Dl53ntrtbKnTuNT0k+FFLLbvDyua+hrbNlr6Wx5dmLV28v22y4ZMN+0SNQFVU16/RMTjh4lFfWnHTwnLdqp8kJF1FInjf8F/yzR0S08SmZc5brRz5KDgqPnbtix0PpQfHmltZHiekL1u1ZufWg0VGH81f8dPdZLd10IPtJQVlFlb2b94zF26743HO8cH3m0u2mp1xbWzkVVTW7D1ubnz73OCf/nKfv32sM0tpyTSBAMQlpq3QP3n0QwecL9prYiup6GJWgoa3DuhNsduqcvuHxqQt0xLfYVlTVmJ06d+S489PCklNnPZfrGIkvIJAk2dLKCQyNWbHFeK3ekeK2+89i4tNmL9e7cTsIY5yakbNhp9n1Ww9ynxbpGZ5Yp2fCrm+UOcOQJLnniK2rp29eQcleU9sTDh6iPrzD+NTijfubW1pFfXiqdB8+csJZsmXF2+anz2mv3S0CU9GXWbkFGto6tq5efOlRwIzsPGd3loa2TkLyY+HPLI9v7+a9bLNhYkpmXkHJKt2Dmot0V2wxZt0O9r4Z+PcaA32jk/eCo3T2HF20ft8mAwuR86bmltNOlw+Y22U/KXC7fFNDW+dpoexfsAKB4FZA2B4T2/SsPJ+2856e0Ymm5pZL1/1X6x7SXKQrul2ntq5+1tLtnd628TAqQXOxLutO8DE7d1HrRMe1D65kZOVtP3Dc2y8wJj5txRZjrZU70zKfpGflGRyy1lyk630zUBSnseXZvaa2GOOC4rK9prbz1+72uRvyJL/9UldweNyspdvFGkpuYG5DiI+XqZN/bh23KjloyaoDvnm8hqqymFtOC7baBCVmF9fI/NxiXmNVgKeTpXtoZasgN8Zv1Uq9HayiTu5ZQdyKvMfHDxovNA+pQyS/sS4p6t7aNfvcHjdE37tt4+qyYtnu0w+ySBK3NtRmhF5dtMbY7V5yZmkjiQXs4nT7044XHmRySPLuBeulx0IEPG7Zk0jdRTrmXo9Sou7v2blX2/haU0NV2B3v+cv3HfcN974bnRgfvktn144r6YjEgtb62FsX91i4xxQ0cBvKzloc3XE1V/STzGOXnzQ+ZBxQ2XZuxezizDOnnd3CC5sby7xdHRatMgzMrCdJfmFq5J5te1afDE4rqOQ312XGhf/zz06TwCrRGbm5puiCtfXus0EF9dzm4ri9O8380quRgFuRE6Ozctsux9C0pDDLUxf09ffMsYwQk6iE8vgx6/T87aeczpw74ex1xPiI5mID34QqEnHLc1NM9h5YaB4iAhBOdcGBnUaWkY2YxK111fHhfktWm/iWCUjErSyvuHzMaInVvbqyrItuniZ79szXs02qEJDCw2+I9rt88PT1xOIGTl3mbl3T3MJajARVufGmRqe8HxVzW6vcTlgt1HXI5JP81qaykuS963eZ3RT2uqaG2gw/lznrjgQm5fq7Oy9bY3Dwdj5GgrKsWPNDpy4+zG3lcwPtjuy80P7HhsRBkXV58RvX7zJkPXk2jNES4npymeH1Ag4mEacsK+GA/t7N9jFCEMf8KD+PldtP335cy+c2RLhaai7ZsX7Pcaub2TV1NY8uHv1L3z4h64mf+wVTE0vNhfpeGUKXWMDLig7cd9jlbmo5j1Nmrb/z4s1kyQDatnFpZuxRS5cbSZUtDcX2h4wXbLeNL25mF2dcdXH+e6nuiYASJHTF9XU+tfhY+9+KUk5Q43WTnWsPOlidvmDjemWH3t4Za6zCS4TN2FJbfN7W0eJGam1L4/1Lbus2GrlHFwoPpvaJ4VZjp5hqbnPllWNHztx78uzvI46v2Y49ruESOClVlfwfeo6DqRm5C9bt0TM84R8UeeN28GrdQ2Jaahvrypm7YkdolHAYIDgibuaSbeI7SzbuMluuY5SYmtXQ2JSZ83TJxgP6RicbGpsEAuR6yXfqgi2iUYGSsso5y/Udzl+74HUrMjYlKCyWw+WedPDYus+ytLxKIBDYOF+Zv3a3aFjx3weck1f416pd9m7eXVyt5vMF+YWl1TWd/QlCkkUl5at1D63Zdtg/KNLz+t0lG/eLf95EJGR3zltDW+fICeeSsspWDkd0OVJ46/o+q+oaNo/PP3bm4oadZtW17Mrq2g07zbYfOO7kziqvrNZcJPzD2uSkS+rj3LXbj5idchXFL6LP4PA4Pl/A5wtmL9d3vCB8SBMhtGmX+T6zM01NLQhhv3uhc5brxydnYIzDY5L+XmNQWFJeXVO3Ts9kh/HJpuaWzJx8UUFpWQRpd8/vOOpV0HbDDapO2LTcwCm443YcaWNy614rY8uzLa3CM/WDsNjpi7YetHK84nM/+0nBCh1jJ3eWyD45PXvmkm3JbQMtLa2cHcYn7c5d5fMF1bXs1dsO7Tez43C4deyGuSt2OJy/5uLhEx2fGhQWK+JIDW0dS5vzrRwuQkjf6ORq3UNFJeV+90JXbT0YEy98nIUkSQtrt3V6RyqqakiSTM3IFdE5xrillXPU5vzWfVai+/r97odOW7ilvFJoxufz56/dbeN8ReQhIytvxuJtdwIjSJIsLC7XMzxhaNE+0pySkaO9bs8FL+HD2k1NzbOWbj9m527jfKWopOLv1QZmp1xlfv5Jkmxsat6611JDWyc6LgUhVFJWNWvpdtGwcV5B8Yotxl4+9xFCdeyGbQeOL9ts2Ng2chb5KHnW0u1ul/1u+ocGR8QlpGTKdMsHYUJmPWBuV8tuQAhbWLvNWrpdxHlpmU9mL9NLz3pSXFpZWFw2e7n+FdY9EUWt0zuy2cBCdHH2fkj09EVbg8PjMMbGRx3yJYZaRTo0t7TOWrp96SZDEbwGPIyZsVhXNDLte/fhjMXbnD18HoQ+CngY8zgrr6aWvdP4lNnpcyIQr65ha2jrXPUNIEkyOj518cb9D8IeCQRIdIE4IztPIEAObtemLdxid+5qbGJ6YkrmtIVbRXfctnK4BoetLWzc+HxBHbtB3+ikntEJycFRUXj3Q6K1Vu4QjYlyefzVuoeS0rIjHyUv22x41TcAIeGwhuf1u7OX68e1XY5ITu84w5AkuXjD/tNtY8MBD2PCohNFPjfvPmpseVZ0JfdBWOyspdtFfTgt88kKHWNRu4ssxf+WVVTPXqZn7yZ1w7GH953pC7feD4mWaTWSJK/6BixYt0dURXhM4swl28T8dMDCftGGfY8S0jkcbnrWkwXr9hy0dHT19K1vaNI3OinKeg6Xd9Dq7H6zM7XshtZWzpHjztrr9sj8BYsQuuobsHb7YdHweVxyxpwV+t43A5uaWxJSMw9aOW7bf0wUv1Pb7cViRBMflGTrRDxKFrVOcanwyQ9Rp/W9+xAhVF3L3rDTbNlmw+bm1vjkx3cfRExbuDXnifBew+pa9uxlen73QoV3FQsEa7Yf3n7guOQfSxev3v5rtYG4xo4N1Bx92WHXqdsFDTws4Mb6eSzccf6x8GFb7sMzhptP+9dxZG8kQ5x6XxfbNUfvlbQ9OVKeE7Nuvfmt59yD11qVb7rXyPQhW4RQebE+K/WcIsMCgtLKWmvit6418owpaguGn+ptu2iHY2qVcEipqeSx2T4L58hS4Z1z/Do7UwvTO8Kh4ta8iEUL9KyvRwYmFVaW5yflVGCSTLjnqbXEyDG8oEX484t9bU1nH7nHEbQ+unVJa5XVg6eNwot0uDXUy1ljpWNaGw9W58ds1T3xsEo4owVqLLA5bHH2XiYPYeFImM3ReVudsxqF8VZlxmzcYOiU3P4IRHFa6MoNJ4JFl15R0zUbq03WgZXtQ4U8D7P9+p4pwpHOp7HLlulbXIu9F/W4rqHO2eLQRs8nnbCyoMbJYMf6o9ezqlowiTnljzYt0r3YdoG1pTRr/44DYtFKM0PXbD0T1x4FmRV6eel+r/bZJlCDi/F+8yt3r/pEF9TWB9ocWr7fM7cRYcSP9/dab3nnaQMfk6go2nvzPueC6paGsmzzg6cuJle3DTIIfE8arjkZIIoNVURv2nDYN1k0CshLunJ6kd5ZT/+Y9IrmrPTHBXWcxoqsQ8ZnWFlsPiYF7Nzje43OBncy1hPm7Th7rXX7XYMkKagvsNpnuNc7VzSs0VSYor91v10bDSJ24vZ1e4/ez2rrYbgh7Nzs9VbheW1TUuDWIGvDTabul25FpZY2pPhfnrXMPFiIuWRNdqiB6YWEcqFo7JzQLRsNfeNkR6/5ZfEHjY5fiSkStiJq9LU8sOGoXykHN1dXJAffnL98v0+usNn4LVWmu4yOhT8b+OzIClJQmbhlua7RhfCKZj6JBSVhVzUX77gYWU6iRp+zNkdvJLQIg0bZ10//teVkdGGLsIflJ65as/tEYBEXk835j5KePmswXsmxjdv2uUX2/vHinuOg3/2wqQt0AkLa+f1OYLjkrTY+d0JmLt3Oa3vExMb5yl+rdmW3nVZq6+rnLNffus9KdL0v92nRrKXbbV2Ev9y17PpNu8zX6ZmIRLt1P2zWMr2Nu8xF160wxtHxqXNW6Hv53K9vaDxmd3Hxhn2SfCYhtfAi5v3gqOmLdOPb/mqX3CX/dlxSxvSFW6/eFP4EkiR5wt69ulYKHEMi42XuLq+sqp22cGtoVEJNXf0JB495q3aGRiVgjLNy8zUX685Yso3d0BgZmzJt4dZ1ekf4fEF88uO/Vu+633a1GiE0b9Uug0OnRdU1t7RqaOtcvyW8PF1YUj57mZ6rpw9JkvUNjRt2mh057tzU3HKZdW/Ocn3vm8IfSz5fcMjKcdrCreev+Il+O0V+nv2LeWVxOmv2nAsrbDt5oYrI63PXmgQ/7XwKnsrqWg1tHXfv27htOW7vrqGtY3bKtaWVk5KePWPJtoys9gsuHt53Fv6zV3Th+PwVP+11e1If55ZXCp/kXbv9cHmlcEqOwIcxM5dub2vKZ3/RYbzniK32uj2iFuTx+et3mG7cZZ6cnq2hrWNywkWEC8IbnkxtV249WFZRjTEWXbsX3QufmpEze5leWduUHxhja6fLG55dq0pMzdJcrOsfJLyzGGPs5H5j4T97RZzh4ukzdcEWUVckSTIuKeOv1btE6Hw/JGrqgi2rtx3i8fnJ6Tkzl26XvPXwmYxkeWXNnOX6h485ib4RPWEQHZfK4/H3mZxZscVYdINpYXHZmu2Hj9ldFJm5ePjMXbHD0Nxe8vqp2CfG+Lidu+az+1z5AsEBc/vZy/VF6l31DRA/QhQWlThr6faElMcY49jE9P9n7yu82zi2h/+5UpqXNGkTJ7ZjppiZmZmZmZmZUbbMtizZYmbGhdnvrFZSHDtp07y897XvV52caL0auHPnzsydi8/eRZbV9xDt0OjsX71iXQNTHKNztE88bO2ffP8qqHd0nvhzeGrlF/fow1NcsVhS2/3CI7q0vpfQegMAyhp6n72LJOxAMAxjsPnfvQrqHZlDUdQvKqe0vvdB4xqtPi6z8gen4NbeCRRFW3omPELTCfyPza698IjePTxXqjSxmZXuIen3RYOOdiQynOT2ji4AACcX1KS8WoVKExCT98YvUSbHd3B8KrvGnrpEEIYW93cYDMOKajrx9TK75iB+q/L6Ixr+/rWNhvfJF0+cwz7p/NE5OPPUJZzgOAnYLBCUkF391DXisdAOABCdXp5hJ4bGrrHnblEHx7j8Q63ReYZl+EblEKQ7u7zz05vQoLh8gUgKI8izd5ELa3sAgOVN0nevguZXd9UabVZps2tgCueReeL59e0Lj5huq38ehmFTC5s/OIUQlI+i6CufuIFx3MFFpdb+4BQck1GhturTHYi1bhqfmB2jyQxBEEG0BANKZ/FcA1McRFvbNuTyPtl6HQXVLQO/uEcRGOPwRP9yjaho+siOOSG7+n1M3v1O8WcANLRdT6+4TrLKaNIeLwyGJjfs8HGFOzDRM73DSqav7IbKH6qKaLs+gSUr9uhXlI0e5+Thj3beD2UxEW0v4H3hlk2Hj2y3F3qmVNfNcSAMlW/3/BZcss/BLRkAJGlOTQ2sWLdGUQAbQ41OqZNSk0UtvGvJSU9q2VCYEAwg1/M937uUta2dqD+AhYxX5bzOW7KdtQDpLUp1qdzTyJgZUTGBgxyC1wGoYbGj9ru3VSd6XCp0u9jinj6stiAAWE6Gap3jeu+s/B9qFjWkp3tWHRJCxPPVAaegphv7png82/Ymfdo6FKC7GHLyyJyj2X0WgakxOTKo/RQDCHV9/GfXgprJDb4e0cvpiSGpXfTHnhwAFh54vYtp3eIS/jeo9jLybVj3Im7hzT1f8woosSMNnE01uBcs2qFAFmqyIzps5hyIkhTsHZ9SPn1rxoCBlxscE958pEcxi46TEZnZS5GbDNqLjUmvwPyJcykC0L3BqsBKG/8HEE1dQkLhnNV0AaD8pdbXEbVnYpwdBxZRQ1KKS87QLtXOaQFkv6s4sHrNZLHIeNTi1Kz41j3lh1mwTzkwN6bHvi3bsUGLYXLaYUBA+hDTpsCmk+bf+ZUfWn1nIMacs0fW6LUEJ0RYN1eS9CquhSq18uh6erpvuF/u8D5bCRDTREP508RZOS7yVXamxGYNH+tNZv4NKT4mr2yR9cChBiDqwcz4wJIFMc7yAUR9lx4YkzVOgzAMoKaV3vpngV0sGO9TdTn61q9sX/bIkweg/I2Bn12SVphE20B7PPXEOXrwWKE8GnQLKz8X4VIYgJqWK9M9Mka51isBsMhaU5Ofvy9auVURlx8rUgAkPHJ/E5Y7cvEATjvK/sT317OD+ZXt/3oX6TCmEYplxEFIdJ6aX5+SX0883zG5r3ziByeWODxRc/e4a2DKyiYJxSULYGFt7wenkL2jc+II+e5VUJ/9uIpMKX3tm0Cj46Zd1i0Jbegc/e5VUEVjX03LYO/oPF8oeXxZJwojCFLTOvSrV+y/E/WwsWv0Z+cwBwt4dkVDUZTJ4ROWUgCAte0jXIXUMojaHdrLG/ueukRUNffXd4wMTS47/JF7RuaeOIcdkC8JxuWnt6GEoGVkevWpSzhR7Oj0+rlb5OGpTSo2t7L73D2KMG9aWNv78U0ocXJf3tB/cArOq2ivbx9p65u8pjIcThICkdQ7POtXr9hPnHPAtN/f8DK4/lyJXzognbitMOd14ij38XqzYnB+dddhqqhQaUITi/7lGkGwbt3Dc66BKY5DNySxiHDg1RuMbsFpr30TatuGqpoH5lZ2HUKOmPSK37zjHFOJYZhQLHsXlJpd2my24OJxBpv31j8pz+r88d2rIIdtnEqt/cU9mjjhzBZLWmGDk28CoQTPKWtNzMEV1nhrIqmTb0KN3bC9umXwjV8i0Z3JbAmKKwiIySOA8YvKcYhSMAwbnVn7wSlkc+8YABCbUfHCPXqHdAYAGJhY/MEp+P71hugIw7D51b3fvGId2uHu4blfvWJVai2DzX/jn+ig3rmVXZyrOMfNajEMC4jJexeU+jk5NIHh9zF5BBMsFMv8o3OD4gsI3jEqrYw4oQEAOWWt7sFpVmm0JSUft2TYO7IpMgAAozNrPzqFJOfVOqB1PACASxzdg9MIqaEFgpLyar3CMwm7Q88wXAqutLvPK5Rqj9B0j9AMtdWiF8OwgYmln96Erm0fUm6ZPziFPA6qwuWLX/smeIVnKlUaFEW9wjOLanC3bqPRFJla+tIzprplsLKpf3ppy7EoHLARDwCApy4RUwubWp2+vLGPL5QQl6USu2GcyWSOzax86RlLSL/u7zAYhrF5Qo+Q9F/coxw3wPnV3WfvIglzWwLDv3rFEjRM7EIOGr4PSXZpi0dI+n0zVpFE7hWW6RWWcV9ULFd6bTBhAAAgAElEQVSqRRK5wqqcHZm2qVMZbP5rn3g8TqFA3Dk44xacNreyQ1zVyup7f3AKJoK8bB2c/uoVy+YJLRYot7z1u1dBlU391c0Dw1MrhC3yfXgwDGvpnXjuHkXsrgajyScyOzi+kChzekV76hJOo7MtENTUNfbdq6C69uHH4yJmxyM04/7swDBMoTHvE+3YzNoT5zCCaAEAvpHZVc0DAIDj85ufncMDonOJYJ8rW4c/vgm5H05Ipze88IgpqOp4ADlALdujbc/cchqnN4bGFoaXT7lKk3WzBOrzuV9dYicv7x9sRG1ktbXAp2KNOO9RHbciISG27/ShCNHWEzifa3mXOmQL7QeLyyIj3XPGcJYD1c1W5npmjXFxzgsYuGehgbElq2KrzEVfmhDrWzw2MbvSN7ayesrVW7VuANINVhX/EFRHFhDcmrUPWJAVkdJilw+hBnpScGL1roB3POHimbdid6KAdbL63IxnSdZII8AwlJec2EOyIMAiZ2THJqdPcwluRUrdD/JPrDggTArRibp872o7ZwPM/YXpiaMUQuA0U5j4Jr6FaTfTQ5Un4d6xZetsABtn2ip/8i6cp+EMquR01D28jmmwMUMf8A8Q+mLPc7/iHQEhNQO66yUn18Q5ihrDwMFYg2vmpA1pqK4rOyV3Brd2wFkQMzs7NLF1nzh2Ud5C4zP35M59HoaLykhuHnFNRxqAAfFW22++OR0TK8MTi8NLRwwr44bq6amhqe27hAMWUN0sePpnTV/gQmgAq4YLM/2KFiRWcPSsk5CA6MimXbldNowaaKl+EdFVI5OzK/0Tqzs34k8fTRAj0S+mcIOQ+OIAn60MOkd1cWwIAOt9Na4583qCXYIk9bmFCc0Lh+eUxfGhkPjKYav9JYYBxfnKK5fQtJ5DtQVAekVxcmr8DB/FgOFm4Y1zVFbLzOjU0sDU1hnXJnUmkENgSH275+wa2bCLewkBFLpcHv71XdLYnVUcaFA15qT7t13CGLAoeT1Fae+yh6WGh6JbgOin60qeRQ7igj4rds4nWp/6VR0JJa2picHVWxq8BjBKqLHvoxL7HbakwCQ4y4pOcM8cFjiwAxDW+vCPztFdB5+Rn98D/Q8fv54ddPJNSM6zGQs+6MZsgZ66hjsOdVywR758659UWN05s7Qtk6uIDQuGkZrWwafO4SaTeWOXnJxX9+RtKIeP20dLrGI2Qu1INA7BcEZx0/evgxUqjSOuzWPzOKKwyWx+H5tX1vBQhvEAzt//0y04LTy55H4ZuVL91j+RYAetNoJDnmEZ8VlVBqOJYEw9QtO9w7O4AjEEwcQb4kT3i8pNyMbNbtRaXVB8gXtImlSO+6CkFjZEp9vEgVklzQ6hqU5vcHmfnF3aYjLhOujyhr4nzmGEJdnY7BphXWQ2W4guEAThCcT7R7hM4pbBeekZk1/50MUPGMUN2VnOOStEiEHa7oSvT3TsKMdmfHB/kNYQM9llLc/eRSqs0tBrKuOVT3xpfQ8xa+9j88rtiBVL5T++CVm1hpjh8sW/ecWFJZdodQaHDAyGYZlC9YNTSHFtl+MlhmE7pLPnbpHEiYKiaP/YwjOrqK+2bei7V0GXFJsL7fjcOiF/xQPHyJVeYZnN3biIFMOwZ25RhLIPguGotLKf3oQSzhMGo8k3Mvt9XD5hX8hg8518E2rtNgO/uEfdDzwUGJtPiAPFUvlzt6j0ogajyWw0mbNKm538Ehx89n30RKeXZxY32Xx3NNoX7tF1bfgBfHB8+aNTCOG3pDcYf3GP+s07DraGJubyxT86hUwtfNpFAMMwAsOO9bK0cfD8XSSxEJRKjZUPw31I1Rqdc0BybEYFDCOdgzMBMXnP3kUQytze0Xmj0YQgSHXL4A+vgx/EScY1IFbdfUZREzGJuJbcO47Qa7N5wh/fhOzeCxbIYPPf+ifFZlQQBKZUaXwis98FpYok8uGpFdzB9p4mmjD3XNk6/P51EKHdvmNyf3obSigWhWKZd3iWb2SOWqtzEMDnlq1rYEr3yFxVywDBlK/vkH96G7psj5N3c8v61Ss2Jb8OQdD7O8zpFU0qUwAANq3SeoIfQlA0u6zFyS/xPg3Xtg0Rw/eLynHQ8P3JxRn36Nzo9HJijRM/XVzfPXkb1j1sk6oSV9OU/DrqHXtiHjecdfjUAwBOL6nuwen5le1Ti5sCkRSx6riNJrN3eGZibi1BUTEZFdHp5WqNTqnWRKaWff86WHUvRvrj0JKxmZWRqWWEljajqAnX2ttVFnkV7X5RuDnKBQU3RMavB4eP7ZwwYnbOrvBoqUyOgJgdAMDq9uF9on3uFvnaJ54gWp5Q8tObENLJpU5vqGzq//FNaHZpC4KiMILUtg8/cQ677+A1NLn8s0v47qOugUU/VFv4JLyPqTdD94NUA9NOd83PPnWUxyGaEUlJeHQ2wZ0guvX+1nfeyQMnD40p7bNm6s1Niu85sp3+9IV3nik9+7h2G1HcpoTHp4zc4uwHQGk7U288CzeV1oMZokV4xRWts4w4UERVvD2zSpgRkxAxZmOgiC4sN2NuYZUUKSF+Q+hjpW4JbSw1RJuuexbR4mAWpLRNf6+E2gtcf4eqz8O9k7r3eCjARFe7Pr6pI7iwCL+GD1fl/uxdc0yIcRBJdnhy9Y7de91wFROQPkp41cD8iuDIgIJZuW2Dthx35b8MLjsVGiw6WWlyQnDPrZWPgjfq0v3L5qxabAJe+/+QcrCs4G32ooyQDSK6pZYKp+xlqxLX1JqZnDJyQYwcVZBC/NLnr21iSOP56NuA/H22NXI7ou7LSHJN7mXrcdHp+crQC7+Gcxx4ZL8h+VVcK1tusMAOYQhmPBt/FVCwScddZWENtyo11Snapp2HxJSY4NicWS4xIMrmhJNn/ryQYFWtqKEvvnWNa9uim8wQYhev2Adz79tICvTKmmfip6f1g45V5wW3HtsZLmNtanLmzK1jUjXCu6ba7u6lkyuGSK4x2kLPAGh3uO3Ju4IdK3OqFR8Hvi9YwjX76N1sy89uiTMXctNHpGHvjWDdloZ+fptD3CwMSnppatrPYb0c61B0suuYwPQuqhK1qDc29xtTo9P6Dg2O8Ej2ZmC1MCc+KWyQY5scvaw6Mzd+kmsQXPl6RxYsCglGc3O4+embhAGqldFUieQ4kwv4V1vvfWOK923ycGBRDVcXP/WrP9c86sbe3Zd/fw07CADYPTx32BI97mxr/4QwNClv7IMgWK3ReoVnjs6sKpS4RR1xxhB+xAnZ1REppYcnV5VN/a29k55hmVOLW/vkC1w25hZFOrGJyoitsKKxj9CfyhQqgUg6Pru+sGoPNfQxENdUxg9OIWvbn42Eh6Do8iZpaePg8eaLzzgAlze4mVpFUz8EwxYLpNXpbxmcxJya3Io2oVjG4Yuml7Y3dsktvRPvglL3yZeVzQMmMy6+evI2dHXrUKZQ8YWSqYXNifkNnkDyw+vgQavdFX4d90tssFsEvvaNL2/orW0bZvOELzyi8yraYBg2msxNXWOeYRnE4ao3GCNSSmPSKwYnllhc4S7p7Aen4IqmPqFYJpEpdg/PhyaXR2dWK5r6YAQxGE0p+fWPIz6gOmF1RoZT6gRDqeFc77c39/q8z+y+FN8whJZHVCSVK4PiCnyjsgcmFkUS2ezy9s8u4YRySq5Qf/86qK1vEvfngKC5ld2XnjELa3vZpS1iidzlfcpb/6TD02ulWnvH5DV0jp5cUFe3Dp+8DXOYcxGnaefgzI9vQnR6A4qiFBrTJyJ7ch7nlsZmcGb38PQaAMBg8wPj8vMr24k5otE5T96G7ZDO+kbnVWrtU5fwwupOvlAyPLXi5Jvw0jO2d3RhYXWPxRW+8UssrunqGpo1GE1bBydPcHOuZcIJPSAmr6imC3d+N1taeye8wjIJSeraztFPb0MJrb1EpvSNzM4paxmeWnHIhgn6Uqo0PzgF943i/pU6nSGnrCUksYjg27b2T35wCl5Y37u5YyXl1T51jYjPqppZ2r5jclt6JtyC0h5bdDlodnZl58c3IWqNDkUBhyfyjczuHbExH9OLWy88YgYnlotqOik05kuPmLKG3on5jbL63tSC+risqvnVPZ5A7ByQRKExrXR799Izhi96aK1CSNom5nBfKKsLTnN8djWB2Lq24YCYPEIhS4AkV6p9I7PDk0sgCEZRlBB0nVuZid3Ds+9fBQ1OLqs0WqVau7l33DU0a7ZYMkuaHWLXnpG5Fx4xDR0jhA40JLHoN++4zb1jQoba0T99f107kIBhmH907lv/pLa+SYJpO7mg/uoVOzqDO5To9Mbs0paE7GrCe/3eDtPbNTRDmL4hCPI2IKm+Y4QI1BwUVxCSUDgwsahUawgallhNSx00XNnU77hYOsB4H5OXXthAAEDQan3HyHevgo7PKSazRaPVC0TSpu5xn4gsCIZjMircQ9J7hucIB1uNVucdntU+MCVXqh0XQkL4/eRtKMmqRNZq9d+/DkorbKho7FMo1WmFDYSyWKFUc/ni/rHF1UfR+xJyajxC0tk8YffwbGVT//evg+dWdlp7JywQ9NIzJjq94oB8mVfRVliNq8unFjYptzZDDsegiNkhVCXDUyvE7Mwt7yys7hFES6ExcaJ1CU/Oq5tZ2mZxhVNWF7Ed0llj11hr7+TPzuEVTf2TC5t6gzEhuzo+q2phbY8wwDAYTa6BKeHJJRJrmAVHp9aj0zjXXvXEJXuCItUYjCq59OzgYOlGBQzi+qysN8W79DsmTf2xFwTMywuKTOg/0uq1Zzvbg0NtroEFa8eUvRu7IO5eB6j2LMovuXX98uLgSgpBZ70lb2KaLuUwBoD4YsPdO7n7WEDlKgAKrfTW/pYyxRXxb3gKDBakBkV4V67xFDq9Xifmc1Y3j0U6i4y57xtctnufQwWWw4ZU75xhqREFAJFRd4L80rp2+TDA2HtDLlHNcqsUB9KJO3LTQyoXrDwjKt0Z+DUgb+Hkbv1cyjpedfdM7LxQqpWy07X5zPTstwVLYiFDqDAhvCWP98WbFM7lEUUFA9Vex5vQssPr270zAYyoRrISAgpm5LhnHSqj7fv6JBSOXRoQTM3dDw4sWJdZlYlmbt77qNyBvZNj+oOId2YJPS0mOWNJYpWqoryLvZS8zn0ruKj2LNwvvXf/5uLgSg6hwqWm16Fl+5fUjQsFCsw7TbkucS3H1zcHLLNFchPmG505gbss4F4RTSXO5TssDlOqMlKGi//lkzd7KdDojWql/Ob0aOOEJdzsee6bM3su1igkW6vzqeGx/oXzJ1SOBME45GVXz7Tha/H5rQjDwFxbxbvCNVyvbv/Aov3378LjOzYlaoNer+Oz71ZXdgRaO5tnL4YZDoKDSy/FNmYIg8XZ4al1W9Tbs0uxAaBqUrB/9tjp3eUJDZerovr2ssqWlQuuWKk14agkmkHNuraiXNdqspUtB5yNdpekHiabSuVpRTuDz95GlU+dyXVGnVbNvLmYnj+VOzTTVpo+nut78iZ9nKqWizkzfcPpGTk+TWQ6nS7VWKSX467B1WcC2cXREel0PdI9smXpgkTBJVz3P3LWScD7nDHCOQq1XO3MJVfPSxBgYB6/84zIHLtVq1XUk+2yguKnAe1HAhFbquHNNY2eqQFu6SooTs3M2bBNuJZPSYhITp2xiZ/5QsnkwuZ9N7j7/f7h859mB01my/DUintw2nevgiJSSx0RFu731De2+LNzWEFVB+EBQBiEvfKJD08uKazuXFjbM5lx/b3BaErKq/3FPbqoposnkORXtr/0jOkfWzSZzXkV7W/9k+4bwRABDlwDUwhX3GJrCA+HvMHRu1anH5pc9grPJAzzHRd3RwHiwWyxeIamB8TkPTjvrY4IyMzS9vvYvO9eBbkFp2WXtWaWNMVnVbm8T/7BCTc7K2vo9QrLbOubMhhNHL7ohUdMUm4tYQ7F4gi8wjIJCEtqu3GTMhgemV79zSuO0K8tbRz89DaUafUcNJktPzqFhCYWXVMZhydXT5zD/KNz2/qnimu6Cqo6mByby55ao/OJyHJ5n7ywvm+BIMJI60enkICYvJzy1qmFTZ3ekFPW+i4wtaFjpLV3Miaj4hNGTohhu7/xqXNcaG5r69wZmbTq6RGf0b95I7LaQX+MHQ5f5BmW+S4wBXdqQZDc8taYjEqiyNUN4/vXuMcD4QneP774s3N4RnETmytEUdwj+Llb5Bu/xIScmvqOUTqLh6JoRVP/c7eo+9HOLBYoIaf6qUt4bdtQfcdInPVoIQ5muVKdlFsblVbW3D2emFvT2jtJaJMxDDs+p3z3Kii9qJHO5OHGdnXdz95FhiYVj86s5ZS1Wi1QBw1GE43OeeUd7x+dS5zQcyu7378Oyq9sJ5yylzYOPELT6ztGimrwUCCnl1QiLl19x8iPb0IIIPlCyRu/xICYvJML/Nf7uFlY2/v+VVB0WnnX0GxBZXt5Q6/DDI7NFboHp/3mFZdR3HRNZXhHZHmEps8sbxtNZregtNjMyt9JjJFT1vKzc1hlU3+TNZzK+Nw64cGDYVhT19jPzmH5le0yhYp6x37pGePyPrlzcEar04dbXVW2D055AvGPb0LiMisHJ5azSpqqWgYegA0AIFLaJObWtPVNZZY01XeMEIOFYPg3r7jCapuzNjFYFAVLGwduQalVzQPl9T2p+fWEYInwX0nKrX3pGROTUVFQ1TEys6rTG8xmyy/uUS1W21YMw4pru62TO0ywRMubpOduUa984uOzq2vbhq/tVqf3EUs8x2dV9YzMORa1Tm+saR10D0lr7BpLLagvqOpwSD0dOwxfJClv7PMOz6xvH65rG3ofm0+9YxHer55hmZ6h6es7ZBRFH9FwcHJe7SdTTRZUdziM52gMTl378AuP6O9eBYUlFacXNsRmVvpEZv/0NnRifgOGEY/QjJeeMT0j8wTMV9Y75K9esWFJxflVHdOLW4REv7V3wtvuDsXmCb97FfQ+Nv/sigYA2Du6eOERY+Xqyssb+j65X03ObzxxDguIzRuewj3Wf3oTkl/ZLpLIURR18sNDLhRUd3B4orKGXkKUbjR+ZBBstkDE7BBUUdM6RMwOvlgYHIJos0qbr6kM3HMuPHNmeRuC4Tn8ihIamli8un24to1flhJyqgXW6GAE4Q2MLxlNZgDACj6/kcQV7uGcAlRM2Q0LiHz5Picutz6vcWLplGOCUVTJyU9MdkrtmdqlaS0fLTEMmBeaCl/4ZiSVdI7u0qgT1f/yTKkaO+Tf5x3s3UDUaSeXmMTaqUOWBjaLq2PjQur21LjbK0rZHH/tGl80ecRRGgFsmagvfBldP7h0LNBYMAxdG2h64Rrlk1SZUtRWN7J5I9QiAKXMNXrmTd93cgYGVo5PkGtC8+zexebqcnFlzxCJR6j+jCpufXFl1sDO1t5BS31rYefarc1EDD4eqH7ikVI6TOLqEC3vOjE89nV4aU7j+Oq1uKMg+be45oktitKEWo77f/NJL+1aIrE0CEAuunL+5Z1eN06yKohRNW0rNbWsa/Foe3OttLKtfYVi1auCu7l6j7R+lRVpiJTs9zY8snzihGu1TLSjBfeJUQraKyqS2tY2SWfz0zMNPXMHDCLENAZRp1+7xqU1zR6yNAhm2WnMfuqdUT91IjICDJF3pCS+eF/cvXatgADveOWVR+68AOeGEIuhOSfJKW1g/Zynh4FJcpURHf9LQHZsbkNe/cgsia4yo7DgMNQn0i2mLK95Zu/kKD083jmhbfqYDWHY6fLgr84JecO7VLEeQw3lSelFGx+HQ0f1Kx0VL9ziAtNq0ko72qb2adJP2cJB9My02ju5fZZ0h0Fu0VHVEyS6EgKY5XLwt3eJ2e0LZzwdzkhCooLomKfucR5RBfGFbY2jO0yrUtuk4iVFZDRdEQH/0KP27BfhVaObVLkZoDpea3bac6/kiKzazIqegZVzkTU2zwfUAiC72fV0C3WNqSxsnzu841emJbxN61055xlhICL1vfZISirrXzjmqK+WXziFJTUsXogfWnaqRTe5GZWV0wc7JPLI4GjToI14EA23KDb+F//slMrBif278Y7qJz4lXSunQo12oTwruX5yg3y1MjeVXjFyZ1sO6PFUa1D+qNBqXIhh2PTS9nevgr46Qu2fZgc/4OXzTwiCsnki1GoeuEM6dfJL3Du6WN44yCxueu0T//3roIbOUYJVV6m1PIFNkqHTG8RWj4HPN4zBMEJn8e6zib9T+Pd/MhiMKrVVJP775R79qtJoFaoPls1Klea+iNFigah37AdprB61YXvBF0pN1i21vX8Kd3Ggcyg05gPWHgCA24rdC3xNoJcrEDuuO9RbFgTBfKHklsG9D8xH/aJmxsU5hadGAQbpVedX+GbwyQ8AgMsXf87sks0VOoLu4saUbL7j/Lb65xppDM79N4+70Or0z92iVjZJd0wucWF4UEYgkt4yOIQa1PETPsB7WbAIFTmBAb3BwOYKiWcAAJPNN9hjqplMFu7HCaYNBhOFxrwvDHN0QTwgCMIXSh5rigEAGUWNb/wS75jcKyr9MZ4NBiOTKyDAkMoUDrPaB+0/+BNF0Zce0YMTSww2XyCSflC9WMtBEMzkCBzsHU8oIcwM8Ig5UjzuEhE+ky+SmMzmaypTplA5qMLREQTBmSVNESmlEpnid4SUjvLEg8lkod6xH1uzIQjC5YvuQ/WgosFoYrL5jqB9xMXvlsn9farAMEwkkT8uo1RpaHT2/SB5Vl2BbYdBEJRgjAQiKZtnowFCwM/lix+QkANODk/koGHHS+JhZmk7s6T5MQ4fFCP+lCs1hLsPAODw9NrlfcoO6Wxj9xjXU/vG/+AUTATCfFD3lsEh7sPEexhG7lg8h6Htg8LEn1y+2MHk8UVSBz0YTWYOH99pra54WkKE/8kWHC+Npo9m5z7RiqXy+2BweCJiL4Jg+OaORUwNke/HESZJpdZGp1ds7H0U5NLRF/GAGGSHB+RDquiDkAXAYjp1/1bx4c29OrBZd352fafEf0T1wpMLluGDUvFeOfxn3c35tQjn8B58gEUjPbrg2qy2AFCLeQfXwg9sMgqJ6Dfrexcs+SMz/w8tAe3F0tNXYZ07nIP9o/0rrh76mHOFjdQT8jqJItJ+BACsFpBOGRobzMAg5eySqXIrKGI2/ZJrPztQw9U5VWKw4QDVCI4/HqlZrzjcP9o6Y6vtBnYfQCOeUNPd6QXvntvLxwVQFf92a/f0SnBf4IkjjXJBlept/UJKztEF22DTSgMNj3p0I37AolsXFCpkMegKBwqBRacgWdGiu1daI+aQLvAAgBiwcK4uL/lWtgzDzBop6YypfmTieB9ggEAc2vXyzgVbfs92834J/Bnqbem4lTkYLPj2mirU2qFCNdcXtwojLh42Smjlec3bHJ1axJobG0tJzn7uEhJUNid5xGQaFdxrlsyx8aKwmXp+tn5Ik+g/c0BiQCe8Pbxg6Sy4hzWXQWdYXcjxfQkyXJ1TeEQoX1h7fnAm0n5mzKiFf3OxsX/F+5h6UYP06OhapLPgnigiDokmtS4DI4Mpg8y6iyPyzhnLdoMCAFJcpMWXb9DtFGVNveEXmX1/FT/E3+/+/R9hBx09arT64PjCebtKFzee0+iC4wuySps/tx076v7fedDpDcl5dX5RX5lb+W+HqOWNg9+84wgd698IeDyUT2R2Um7NF/IKXzi0w9OrX9yjPikW+sIW/rCYVmd46580bPd4+MPy/5cLGIym3PI2B7vzhagwmy0RKaWELp5gRrU6fXJebUJ29ecMJb+w5b9yMZlCVVTT2d4//ZiJ/yuD/aWwAehguPl7z7rzfz+Ax5d2+U+5P8bA0foyifeBAfpkBWDRjjdWxU3hwf9sH9TC3e4Oyern/PvR+exN/n/9BmaVYLi9b+z4g8+NQqXpHJy5b5f1ZyH8z7KDOr0xNrMyPKVEYE3yq9PpV7ZIb/0Sj85w47A/C+v/ankWV/ibV1zHwPT/6gDvjwtBUN/InPDkkvvq4/sF/rLP5PObf7lGTC7YQpF/EzhRFE3MqfGOyPqk4vKbdEF4Q//0JpQwRf1Wbf4PtzO1uOWIo/SFw7RYoOS8utDEIsJT22DNxOMdlknEzfnCRv5exVRqbUpe3ebeyf8qv4saVY15Wb8Uk35HVPX3mrL/DWg17Jt+u6P350YELNqxhvJ3BasSu2AVmFWrzWW1C/Q/TGz9uTb/Uu9R2LAyu3TIVt23/IcgWKPVO8ScXwHwf5YdxDA8TltVy0BsZmViTg2Roe539HRfMYC/e5V98kVibk1IYlFSbs3GLplwRfy7D+pz8MuV6qrm/pDEoui08obOUYdd4OfK/3XeL67vx2dXhyQWZRQ1ElZf/z5sBqOpsXM0LKk4MrW0pnXwvj3Av9840YLFAk3Mb4Qnl4QkFpXUdf9ZLudbgfH3aueOyb2mPvTG+MMhSOWquvbh2MzKhJzqmIyK6tZBLt8eU+0PK/8NCxyeXh9/nLfwbziIz4IMTOrT3bWUlLyQ8sUrvhK654D82TqPfkCMKiaTJ9TYVZmPCvzz4mswAGvXN6m/o+O3tglMCu5IV2dOZW/r0FzfyExT1+QE2Za47ms6/UvVAabrzdVT3sc2AN8Cwv84O0gAiVidXh0mL98C8v+RNiwWyGA0Ef8em6P9jwzSPgwURY0ms2O89td/g2+T2eIA+1vZORC5VRzN/iewQPhQO7r431TqfWvEEd5FX9cqgqIGo+n/wkZHBI79Oiz99WsByCiXK6XWfwqN4fdCn3x+MLCWV52TlziAZ+n95/PtMAAgywMrzs+2bTEZlUq1SkdkuP5ssb/bDygE3RcLfjPw/0vs4DeD95+G/sHAPxj4BwP/YOAfDPwdMCCm7IZmDQk/Gd/17wD/PzD+n8LAP+zg/6np/mew/2DgHwz8g4F/MPDfwgBqvtneJRPR//9bff7Tzz8Y+DoM/MMOfnCRp1YAACAASURBVB3evqQWrODcrS2v1LcsUO1hkr6k2j9lAGRk065npuYaxo9s4RD+LyAFjyzA3V7faOmfvxPiMbGAWUPeObyR/c1wgBpVl8dHw0NjDetE/FVUSDs/ZeLZq/+SH4hDvZqdnq1tW78XCuVbQmqQ8fe2ttrbB9YZf3MzMki9NzdZUt3TT8ajg1nE9PHZ9a1L3tfpUr8livGgM5CYfbe6tNzQs0rE9/3G7f9+cwARUm+ObHmWPxRVKmRqrcHy/0k6aFaLD/f2eroHp0++KIMZMMt2T3+nJGpQK0USue2fTPPYpBJBYDP8mdAqH7DyzxOOAYCiAgZtcX6hbWCR/7mob59HFQoZWdTrmamZ5umTz5f6c7/8bdjBWwa3pnXQPzp3dmXnzw3xG5U2W6C1naPUgvqEnJov8oYBkIwv6KvKf5k684mA+t8Iqv9+MwC28FgsKv9b5MT5DPTAYhQK7vIiIiM7Dj5T5JOvUY2QfcMSmz9vVqFXSW9ueerPhTH7ZKv/rZcAAJVMNFeT4xTbRJFCGECvVkZeOoeXrj4Mav+HEAEU4rFYTNkf+UQCRCHiX9CE9qhjf9jwFxWA9crzo/UAn4R6Cs7IIlJy4Lvw+K4/NZVf1NH9QihsZjNYt3g84fuvv+AZNQsox6kxCS5lBw8izn5B5S8pAnQywWxf8y+eZaT/XJALgKgkwguakEi/+yVg4WVQSMrjUBgS0xdgzajkNZc3NG6yqQeLLrHDGICO+mtehlSs3jlStT3uFpi1SgqVKflzYD1u5wveoBYJX9BfnPYmZ+qjMIBfUBWPxScVXN/x7ofQ+6J61kIANt6Q9yZ3qA9sBFGjtKWx+4JvT6Hx5S1+o5IWtWR9tOsXl8QJ+pehBJj2hyaPFJ+hBgBLOYzh5rKnr0Lc88a3rvkm+OGI11oLnFKGbOAjBtYtk6f4I6+PbzTYb9cMMKnlVzdfQLSIiXPHYEu0X3cdAigi5V0VR8V6ZU18iBbzxcNALUY+l5IRHJnQd/zFlf6g4N+GHVSqNHXtw9+/DmKwbOk6/mBk3/pnPDqxSPr8XWRGUdPvZJj4uFtkoCwnafLuz55QHzfyV/gLaAUclTVtNqyTNRSVRLaffSpNwLcD1cxMC0lp22H9mRbN5O6SsOIxsf6z11Pa3mxQfAv5L8ueo7rp4vSQihUZBAAKL3TV/Cuw6Uz1uWion8UNbFE2FxYVLHEe7NYPKyCGjYE2l9g+e4z7h79/9d+imxW/8FrrGQSUByPPPdJGjh/mzfvqxj9ZEVYLy7MLEnsvv4IsDUJaUmRaKelhaodPdvR7L1GjgCd7fNcAKLTW3+CSt/xvd/D5zhHT3niPS2zfzZ9yN4TUM43VATmTvD+6OGAYujXYkj54YgbAoJSe0eXAJGsqbx85l1l3hc8BhgrONwIjCiZv/oND/9A3aujOTs0YPf3w5kufIMpMu19S06XELr5FTXyO9PFUPm4PQLr96bGWRYrKHtPEVgbWbraXucY1UqT2Nh9X/k+/QS0HE50vInrYvztJ96AAxpvZmonb3yl+Nd/yi1vekuyTmxI4X+r1zrCzgwZmcWJ+07otAf29Xv7ijyj3aMk7JP+PidbIq07KKp08/5Lb1CfHjGoYGcGxKcO0L6G0xy2gOmpCUGrvAe/xT1/35m/DDiIIUlzb7RyQ9HXj/Ca1eELJd6+Cuodnv7Q1hJ8enjnJcOTb/tJ6f7VyiOomO2XAlhbxvwKc6XLSOahol/W3u1n+W9hBVbSk9zHFC1w8hTliGawpS53Fn/92n7Ohcu/iWSvkKG2m2S1ljGtPo/QXHAvnfM0nuPr4ywQon4cfSHZ7i8bpj+8iiEXfnJORsfBxVq7PN/QX/AVVkcODctbpH7YySC0/5qj+WqBqjiP80kePhf82VEBKGs4coD2eysctU7YmQipXH+1TKPdg2TsgzDmli/n/7/KJmnW95XkBHZRP8m6Px4K/sVyX5wx8/noAT5Qm/ZI85MgK8qAR6t7c0Pbfjv97MIj/2p9AebXp7Jk8dPclhPYJqLSHQ29CS0m8b3bf+Nuwgyaz2Tcqx5EX9RO4+c+/ml7c+u5V0Mkl9cu6AvrzAa+YBobyw2wpheydPTLpmsfjsrZPP8PUA1SnEJNJ5NWdYxJN4jAcg4wa6uXl+vbh9glDTTjaA0gpEVGub7aPOXqA6iTcne3DS44SJTRH5xd7FAlx7TCoJAdHVEdOKAQysW+pm7tHa3uXXA0EmfR8Dufk9IomUKMA5lKv1vZtFmuoUX1O2s5NTncrW78TKhQyCY1K2ztnf8j0AxClkLO3T17dObngEnm1gVGjYNzRD0iXfD2ADapT0tHeFdfyGRUEChvolKv1naMtMlWis57JwLTdUuyVOcY1wCru7ebuOUf9AYeoxcim3WzuHK2TKPYcSJhJp2LS6aTDEzaeuxLD5fBcxurW4f45Q8CiM5QIZNRx2ayTk+tb2QfdDWIxMKk3OB72rxxN2ScXaOQS2g2VRKYqdLq7y4u1bfK11aTPVgCF5Xz23h4+8Eu+LXEBQBEx+3Zl50ZuvV8DFJEJeVSBHiCwSia9oVAPrzgmCNXJBHskquLBJg2AkLz8xjNnWYDvDihkGuidoNiJBwBUymPt7pPXdk5oImtyRYBoFbI72u3eCUODAqNasrd7ylRBKpnkhnJzdM02ExZLAJJy6HsH5NVN0t4FS6LSaXUGowUyaVVMOuPwiMI1AdhiFPF552fXlxwFniyOdbu2dcrAk8DbPygkYt3t7h8tbZBpQu0no7ChFj3t4mx994wm5tYlJBRMXuCVgWW3p631RIViqE5I3yFdi4kpxoBewr3lyswIqlPJ7m5v9w8uxUYA6+UnB0eHNDHysA+gVUg/PR0orJKKqTfU3XOuGQCzXkO/pR2cUOV6GAOoWsRZ3Trh2kxzAGzS3l5dbewcrZFu7OmqwO5wrU/J8ue4QaNaenJ8tr51cHAjsNIwgLQy8sHR+sElXSRjMoRGAHRS7vrMiIdnUs0aXan7QKsE+kzys6jwohX2h1QKJq3i4vQcX8tn7M9pqGGTlnJ+vrJ9tHNK11g+0IpSxN07OF7dPr7mEdwYMGlVLAbjiIxPJUAgpRQnANI1D8UwnVywt3t0wn5smoQa1Qr63d3B4Y3ADABsloqEV5fXJJoUBahCwFrfJBHJzWCL5uacXJ+Z/Cq8YvlSbKcJoBCw90nHK5tH1g0H1SjwnYFEpinMqFnJPyBfixQaAY97fnZ5zPkgGgSwmc+g7eyRV3ZOqVLcpBoxyMmk0xsRkUAWQ40K6h1Xa0IAYhbzeefnlyc0CYRCEvo16fpTewhA1GLezu7R7jmTPt/oHFFzKjIT+w+JdMXXo5BefrRPvpNY5Z8AUYl5+/vHqzsnZ2wlcdGCjRoOk0kmn91ILAADBjl/fWbE1ze5bPnu8VTa1wPxDTT0rbjE8qVbfNXc/2jFt0PTqx2pUd65I5/MtowvcLOGcnGxsXO4sn1C5Sk0Or3OYLKTPaqTcPb3yXsUoVbGJV9zYBQn3Qvy8S5VTmzpsEnPoLPFBofmCZi18vPjk7Xto+0zjs46TwYFMy0qp5eihgzqC/LxGpl9P+8aipgYN5St3cPV/SuRI88bxChILDnmf5rfQ/U3ib4R8X1H9wdrfwZ6IX3vjKWDAACwQiykXFPIlxw9AhCjlsNikclnNKkF0ivI+yQSRWBGAGIxUM7OVsk8470rL6yXnRydbB7RxWrZ8RnD3jiqFnMPSSdrWwdbJ3e2TczsIEZ8d9qz706fPGcQs+6Ogi/8jUOqmFhyqEUq4F9eXh1cCs0oLGdT90/pGr1ewOOenV4cc22YRRFIyLrb2iWvbh8dUgUqnV6rM5gRBN9zKNSDY7oaBqjFwOdwTk8vTrl6gJh5tOv1gyv7RoePwKTBB7VBovCEYvLRtYAgRoAcTHT+GtnPto8DA4haxCGRjle2jo7uiDPEjgD7N8Dhud3YIR/TGNNVeT65045oiqhFd3t9tbVzuLx7KSYS5dlrfeH3V7KDV1T6yPRKaV3P5Q199/A8t7yta2j2vgqVwxc1dIykFjQMT604op1t7Z9UNvU7gg8vrR+s7+CBl48vbgbGlyqbB8RSBYsjqGsf5gsfqpYEIukT57BbOscxMJ3eMD67nlPeWlLXTUR8RRB0Y5ecVdrS0jPRNTSj0dkOfrVG19wznl/ZfkC+7BmZOzq9xjDs7Oq2rL6HemdTRx6eXE3ObzqqwDCyuL6XV9FWXNtNucXLIAhSUNXx09tQozVRLAwj++TL9KLGuvbhquYBFlfgAMz+YNmqiA8qnbVmzcaXv+xiMa9iYIfCPduZzkgt8Gy8spf86FtwuZlT0jG2f8e8PS/MblkS42sF1XIaKxtbFs7YHHZnbU1k6zFuhgTr7q4ucpJT31UeSoW3FRWNgQGRITXLZkg93d7k8z7OJWGIZZXKcM/X/P1TuqlWuoOV4x0ddeMkBpfdWV0e3HZqUEsOp3qc/NMGSNzb1aHYlKLXnol1p/j5CMk4EwPdb9ySyxbJl3QencHoKMz0Ll+xaxNQ2s5MWsXo/p3o6mAtJLpsgqoDGCJl0/ubq14FtZ4qFBM9PYkJyb/FNvM/zuxJjNmiZDcXl5X2b1PYoq3J3vqFG3ywOk5xbFLSwBXjeC0hp87dNy7HIVlBtaOtrYUDuzQuf66n1T11hI5rx1CVgDHYWPPCI39ThDNBWsltYXHbNl1MIW/HxVQtiGGNTHKx3uMeWDRDldnQDSmG2joap48ZbHpjSUlwF04V9z4Il0LKS850i+/tn14YmNuoKMhzje26tu2T6OX6RErVBIkuvNhZ9A8vm7/TAwxTs8hVhWXP3DLmOTiqEaOmu6Ikc1ECLCYOk1qTkhhWu6SUMUpT0p57le892HIBvDXc+jJuTGo9+gGeGlhi46FR4/lcX1bd5AlDeLa7FJnefqREMdTMYzKHa4tcc2c0JnlnWcEvrnEdx2ou47wwKj6ydlELAYCYThZHfSPLR0kMDv2qIj3TPTTTOzK/b58j4fMWBhqcwxopFmDUqqhHM/5+6Y0bd1raWnZG0WuP6MThW4IHQYzyuc7WnI4NCpu33pgbVj4j/3AbsCEMMijHO7pKp89v7yh1FeUuPukTZ1Y8A4hL56pgoGZTmtvqXXxyx2+keB1gWq3JTmreUECwiEFpKiv5LajjWiroamyLi0t+ndqvNH9ggKx9IDwq+ZPTASx6Bp3emJfhW71tAfDt8VZ+dt4r76zuQ55JzSpPT3/qEtV2iNu3mTW89oaO9uUrOv2qOCM/bZJtbdnYnJ5asPDJOx4iu94sKO5YOWMzb/aj46olSgOwaCeaGlIHzulsem9VaUrHoQ5F+JSTmsK8n0Ob50hXYtVDxzHJRotHajdbZbvZWaTXVVWdkyT63cVRcmJBm9XC0oZH+5dJQqktrm6cJjMFkum+7u4TK9JQ083SQEbZ4OEt/+pwPTGjcV+BYgCW8XlrY80uobUUC0DNBg7jsiA2IappE9Eym8oqvP3jfHPnhA/QCSAxmz3UUuUU2XkHAcSguaWdJEckpo7daIXXFSVlbu4R0XWbahSzGKUH69MB78L884bXLgV4M4jxZLonu276lCEgL3QEZg8ZLJDg7qwqN98jZfyWf5ubmPoyuHiZfHdyuBoemFZ9KCV4FsSiXejvLRrYvmGzh2orPDPnEJ1ocmQ8NDAubYzYDIFyr98vqZEqg1CL6nJj3u99fPYE7W5vxscvxrdgTGW6xzhYccW/3M6vHj6gCw9W5iNCo/yLF6UwKmPfDbXXvQlqPpPLBuorX7rHNq5zUQzfrDLKB3fvxFcHa1FxxGaF6sXc+eFuV5+ccTYEMEREPa8pzHsa3DBzcPF4Ku3zg38DA788PDK0clH6QE2Mapd6+0ksRn1kZFDpnNS+V96rC8wyenV2bkrj4hVLeLw2GhSW5hWWGVkyzNciGEB5ZxtxWV3LF+yTpZXS0oKoumUzDJ8sj0WEJLzLnBNZp1JyS46JqdoiLuAYJmOcFhQ1da1e0Tn09ryCvmP8qiC7nPSOaaIrlXPdLVFRKc998w7sdABruD0VVU2zJyw+t6ckL28a33jxj/kqPihr8+6DGNj2Hv8CGlL/L24pvaRPCzKAPdUYChuYZ7vJ0SlR9TsqBJhkAiuGsyYo4vGe7rjouLcp3SylljTRGR6R+rNH6bHN8xpoeRfZKRX927S7s43K6kbfnAlrtzBrdyoyrrhj9YonYLdXlHiGZnhFFDat0nBiNKmW+ztzOjYuWbbdSfjIXsSk5nfWNpdMHN+xWWONNcHFc0ITwBANZX8jOjI5ovuafbYeEhTnltxGZYlODleD32c0nGtwokVNR+Nt4Zlt21Q+7YKUlJDtGZ7pHV27IdWwr8gF6VleeUtSBEBqyfbSlH9ActOJ9nprIb2g5I1nRifZhiVERa+vaB7epbHuzupLK9+Gd1CshzKALT3leUG2UxkXYVxvz6dWT+/f8o8mu5xCKg7EDxYthmHw6dJoYdsSjSuYG+ny9ojIGGdYrwfAIGU2ljW2LF0wWDcV0TEd05f3Ju5LH7+SHTy5oCbm1nz3Kqi8sbe+Y7i8oe/HNyH7ZFweYIGghbU977DM1e3Dmzt2YGx+cW03BMGLa/vB8YU/OAUrlBoMw3R6wzPXiLr2YRRFlzYOPEMzPELTtw9OfSKyX/nEX1Md1wLbSLqGZn2jclQaq8clADe3rKi0st7ReS5fHJxQGJVWhmFYS++kV3gmlc7uGJgJjCvQaPUAAMot0zkgqX98kcMX+URm//Q2lCeUnF/dxmdXf/86aG5lF2fezZbg+ILw5BK9wQgAuGVwwpKL69qHhWJZWHJJakG93mBUqrWBcQW5FW0EQBeUO7/oXL5IOjS5/ItblFpjFdjcQzuqpye6BxdM4mYBAEX4Z6vuAaVrLJxpkHNIQd5x1ZcP5RG4BwB5ISiybImmRAHGu9yJSWraUaB68U1eZFx6H9maFh1wdqeeOSdPMfHTxawVZ8akFm0yV+fXGArNdGF8cPUy7kuBmtZbyv7lnbvJwakFNck6ytrnRQikE3XlZmUPnmhggJiUvZUlIZ0XGEDoSz2/+BaNrh12r9F5d8ch75Marmx3lpP59jcxvTbKBPr2jKScGXzvAIiJutzjFVa6y8YnFEPkLYkJ/sXLSgQAxDLdXPaucvt4d2ObIpZstLyJaRY+uq8YZKyq3JKsCavpGqrsyC9qWLvDMEx5s+ftl9aycTW8cKxFjCXxiTnLPAwDsF48XJwaXjkvteaDh9l7zq+D69dxRhwghsmG8idxMwScvLMJ/8Qu3IwLUY91rVqvX0C93ewa20SRmDAMQFp+a3pq8cSlHgawXtJSVBDah28u9z+wkpkbm/QqsXWbJkcBJrjedfeIqjmBAGK8nm/zjqo+FlrvG4i0NiIyvGZTA+vP9i9WJrqeuFcdWZ0GdOLrmNCcaYGVP4Ck1dHRub2ro8MrG0cHZZ0bD/wKUMjYkp8dPcp4cOKhkGFnqOnXwKojfA/DUK24ODnVp51gX6DZqpyk3u3dqem1HVJG2QRNjwIjM90nvHDiCgKYhLYf7B+fu27jMI+HKp9Hd1v3ORxnpIEKz8I56zQD8+2CW0Du6PJOU/++kH0ZFRybMMq0XkTM0x3NyV1HWhQDkH63Pj24bFbxseYXNSkmGsvTu3bx3QuYV2pzXkU0XNwLrgFg080tR3s59DagZJupxqdSQYn1Di+ZpUMAQ43KjpI811rSzsbmEVvFWmx4kzKgfsgOYoiG/8npwKcM6BtSk4tW7KlEUEN/UUZA9dLmyNAmRUClMHGRlYpVm5HbuHpnQYFZwSxOycqYw62QUeVhSFDews1Dx2cAUO7JamBM3SrHCDCg4R2Gx1RJlAaLnJscnVVxqIYBZqYudm3i1zXUomvNS48Yoj+YOxw2VD+SFRPbvIVXAKiKeRQVlDF+LkMApmJfxMfk9zxSLyvZZykxORVLLHy+EVltTtnQlRzApoOJjmc+xetsXLaAGpTtRTnODcQdBlyOV3vkjBMrFlg4OcFxpSObo12TFyJhT362R9aC5PHJgoHZpiKfml1bLRMtLiizZ/twbGiJJWOVhURG1G5bhd5AT9t+6xpevSnBR4qYSdP9PgWzHCNOENTltoCsQYMFRfXCmoys0M7j5dU95t12ecMMSw0rWev+IeUHUlyVilo0i20VWV27WghFzKrx2hLXrCUhi8ORU5PfJ1RaLcwArBkvTPXOmcLldBiQX2y89Upv26ZMblOu5zqb5i4/yjAGYPHZYlR85fqdCufNmOR3npEFi3iaWoBAi13VHmWrRzsb++SDouzWA67mdmPQK6x09dbK6CDy7qx0/+JlmVWCfjDV+Sqqz3qDw0/c1rz0sJ6rT0zl/d0BIPSNsR9ehbftf+SKCxDT9cpk+64YNjGzvMOjG7Ye64oBZBytL33iW0uYBZvUouSwyPhZmZVpBkr2SXJm4wbfKjrlbXs6RxVPXVlUNPLxdU5sklf1oZXbAeS5NpfkIbxxgGrYB6mJxcO4lhxoGeTouILxKx0G4L3mnKCy8Y2piblz8fl0289uOQdWOjApOHUF5bkzTBPAUIuqrzArf9Z2HYI5Kx7emeu0h/JO6yozLpZnvAitOLTCdh8Zj56BWXAZERRfuobTDIZh5Llep8iO+e313Vspb6zIJaVtbX5ucJe7P9r6nXPRsRVHBhmzIKuy6diqNUEExSHhsT24GFLDOQ/2j4poOyVUMOdrAy9cS3cIiTNqXuprS27bxXcn2EDsTuKPDGEBrOU1ZmcktO8YrXMN3S47uyXMXeDrXcM4CQ7OaNijz26cUpd7ywcOtTBQsta9Q2vOtbgzH39n6FfXuJYtDgowgKi6c7N/De26s+5+kJyVk5CSPG1Li0w/mnUPqtmknU9vXOq1l1G+qd1kHgaAQXJbmJBVt8Y2oxhi0ZelxLvWHBEHP2QQpkRm91KtSgMAsXZG4wsGODoIoNDNbOfzgKqjjw00AWQ4Gm8KzuynKiwYQO92Z996pE1y8IUNaQT1JdWN21x8TWo5ZWGhrTOUR5Pyxy++kh3EMCy9qPG7V0EzS9swDEMQ/OxdZFP3GIKgUwub/3KNWN0+RFEURpDatqHvXwdLpIrTS1pj19i7oFSjCVemrGwd/uwcvrxxAAAQimV+UTnpRY1NXWOXFPrkwqbe8JHkBEVRj5D0wupOIm8Hjc5xDUwZGF+CYYTJ4bsGphIJf2MzKz1C0oViGZH+y2S2cAXigJjcvrEFIrFmakG9T2Q2iqK3DM7Q5PILj2hCUnhFZbz2iW/sGsW9O9XakMTC1t4JGEZEEtmvXrE1rUMQDLM4gl/cok7tmuLhqRXngCSZXKlUaVLz6x5hGsgvVv/lFD9Bw2nTpBZUZRUWbttUtyLqkk9wFfWhTgnTi2iZcWm5cyziDgwZdXyJBoZNs+3VPwc0nFvVoBgG2NsTz96Gth/jvIiKu+cXkt/YP38i0KMGeoZ/VNHkJYzngwaK/eF/uSWOnCpwAOTcvpkjLQIdz/X/GtN3q0NhnXShvz2xdOhCagKwZqKm+Ne4zpGtK40Fpe1NuATXntsWFTxYnB7WTiJWNao6iQxIm7qSYBhQ0Q9D/CKT+y4NhHQekTXGJbinDgstADYpypLSUlsnFk4FJsS8Up4YUDKjfnhLRrb7awKLppQ2thNRSCQaE/7H6eLA69CqjolNlsqM6s5DAnNn6EoMQGezPT87Jc3QNIQiEWLtvn4dVDKO86awVlqckh4+ISLgVHKOI4MSE3pOlTCiVlk1JKhhoSAmqGxOYsZlZvvjnc+ih5h6FNKKp7vbkirGqHbhjWMqpZQDf7+Y5NFbYoCC6x13j9jGS4viZsfXIyx79MZEwIGIq0Ij/fKmZBBALbqBqoLf8resIKI3s3XOsa0ik3XFcve8PeLyujYuxAaAL42Hx41Fx4wLzxtjWHlrBxAYJmeSgwOSCjbFhO4X1YoLkpJ/y9/Gi5iZ2eFJec1T20wdClAId/QDWsraby7xoxc410dZ7fzVs+yImErUOFSY9Cpt1DaxqKY5NSl7glDpQheDVa+Dy5rmT+UQEJysuXml9ePbHlCfTwantF5KTbBZsznR7x/fuHar/EgdAyznE63ukQ1kEb5mgVnWmJrqX7ljF1s4RgIdNaS4pnbjOmgA366PPndOmmXgO6teykyLSsvsmt6gSCDEOFOcFNmy/dg6W8E4/dR04JciVHkYFpi9TP9whl2tD7z1zx8+t2nWAKRd6ah1y5rhG1FIzR9saU6pn7eqg1DuYqNbQuuN3GGUYQMYNssrMgtKNrgICgtuDosy8mtnr0wwihoVzfnZLyIadtg61KJVW4nLrKHEBmeO0h/OHQ6b/DLUI7J+jQMDDNZJ20sK/Vuv9Sii5lHqy6qKBg5sdgYOPGHwUG1JcMOu2sbAITKJzAijasFFVFBy5qqI0BWiBkVLYfZPGet4PVTTnZGQ2k+o8ICRuuTqlZjfsXatgCyy27SohJQxFlHrQyd4LVVpfGrFJiEiBfrTQbfgvOq+7VsVZOKQvN6FlS3x8YkGyPXiwFPnrCUhvjY1vKPY+IotoQm1GM7WpmITK8ePBQgAas5lVFh26egqmaVCAQrDCMDAzWS1Z9YwfnkDMH1z5F1Q1YHIBCDt5uRAbH7PNhdnE43Xk87+BSs4/wH0HHKwb2T6GH5JwAByNN39a1TT4OKBWA8D/DBxKEZxQjOKaclhiXlTdCPeFeCSl1955i9bRWeIRVObkZXaPLZ0ITKjAIZgDfssNjgmue9SZ9+sOjPS3FOHOTgBogMVeUHt5zZ8Q4zY4MzeS6s49iN8ffQHsGiGa0u+96o7/3j+xLTT9ulTLYIhsssw97DUnuMP6lx7A5BeXpAY96aKTOyIau6Bn2ds0b4KH55Z3JGdUTJ5YY3hulObYgAAIABJREFUAgyXc6/dk8cv8J+UzLMA//jyA0JqpWpITY7pPbHeD3llcfHxbQfEBotaDFy+HD9BLLzCkKiIwr6pUyEEqceqip7HjAmtwoGDsdbA4jklAgwK/kR7fUzRCFVOHLiocKnpuX/ePsumu7eDjH+jGlZacLRP3v9j7yq8Gkm2/j83uzuuMDgMOhAsuLu7u7u7OwQJIXgggSREIELcte07nQ6ZDMPOzs57u9/uO+TMGbq6y/pW9a1fXatpwde7Qfs81msY4uwtuPrmr1qhMjRYlf8po3P2gGcAFP3JeP/09kESx2BS95UXPE+Yt+wcjRtdFfHNBEzxAOmoCf5xnTuoMpCxO+voFtdBxagFLXWWvwhoPEPzodwpJL6OzNMCRtX2zBDGnTA+ae0JpNvpq3MIKt3katFVEUFMF4sfXKNHiajo7mJrwj2iundqA3WTxOasZdL65E9pzBAC6edrC1/5FW7z0SoB5XVWTMLHpHGe5VsSXewGBeVMWRccaLOv0iu1eXDmUKQH1cfDrsElO2wNDJrnO+t8S9YwNgTopZlRKZVkq3pKczntHd1EVxjRzQx7NywgrmNHCMJmBnktMaO2e9emBLa8CgwLzja9/XOHaEp0vkMAcaLdMbofFdfDhu2OInzp9K0e1MmuBxrrcUWTDNl9YZOVIN/98/Nw8N2nmIjkEqxyg9H0xAE3PLUiV6hcg5LDEouw+2YzUFrf88QBdytCwbg7LiW9qNEMAEaTKSGn+oNPLPcGDaJxfHb5xjPKF59Fv3rY2prF5f3iGDw2g/I+s9mcnF/32iNCpdZeMDkf/eLTCuqxU6HGZtaeOOAKqjpsr5yUV/s5OhdLQhDk4Btb2dSHJaPSy3zCMwW3EgiCOgdnnjjgTs9R0VRlc793WAaqtr7me4dnuONSZHIUv88sbzn4xtlqPqNdPXMOcw1MtleR254isIk40vqrfxfTsspwycNeMW13awV02F/qlTth5T5fyiCUtUEn/5qTr8fRoBImh0fgBjhW+AADxOHWZ04JkyyUO7Nmat54pjWeoLJJ3fHkO8/E8VNr3AeAS/Bwj2klXMMIQiGukK7kZq2sIjXer3Khu70jJLa4epqCKbIBKTszLtEluvlIinZqrbXQs3j5jjkyEwKSW0iYjh6WrLY4hJad3poRGNwcbnnpkrcisfYLlDNjAiIDi5YVEGIQb332jAhtPUHf3nCV5BWWO0q5vyAZLhP8Emo3HrA7HqvJf+WRMcpE98fqjQbnuFa23ARpZeXpqU8TF+5227BgZ/w3h+Bai3RQyT8PCcwav4v7BYP6td7GJw4hFYtsK4rSMKJdcLljNDOMGOX8/PjYgLq1zta2oJiShnnqg6Fnjpf7HIOaaHc44Wyj7/2nCpLetNxV+9S5gHAn/QKltBDPMHz1hhpCDCpBdlRc7iY6YSAtM/NzeHCNRViLQJezHc89Mjq2MNm+3ajfXapPhzxi225UXw8/guwPVb4Ia+fdTRfd7VV0aKSPRTpoPB118oivWLETpcPmg9GW5751pxYZwg1l6ZN3xqRFgCU7nnTxTG7dsppbQDJykG/a6KElio1Z2JCY/BZfucNClwHiRNu7sC4OiCCQrD06xDe9tbOnLzo2t2iI/K3fKiC9iguJiR6wmkPLmQc+vpGlW2r7pRt9RRMv3yc4pgmFiYBW0pSf+VtgDyaPEV7Me3lG4rto6ITWU+M/RTasMb9a+i0kom2PPDAc6ByBxQu1H6PqGDK0AuwnuiQHBmTc7Q4Q7Q01JiwqvGG5paHRL7K0e4NpjXwCKfozE8Mq1+7bcSKImjrq5J/XOTpTXFgWnte7ybUt67CWseHpFOydNyq/010q9rqcIuq434wdgsCCnbEXHhmrFj8sIX07wDupZGajsrQqIKVpjvKQ76r+JMQva9QO2mJvRJ2seRnSZIuoZ5DxcuNinBtQGQAkI4d8SuzewZRTwMFA1VP31JZNdFbwKVvevmnj13ez544+aCnJpl9gIYGFGSCaNqqTXvgVztClCAJdrAy9cM1ctigWYdAw2Vj+PGzIMgNBUkvGx5ia4eGx5JSCtOaV6zvLR8bepJt/chVWBmsFUnckRSZ2EdEj3nTCmowMh6Te7p7esIicoiGSSIcNFrDXluua0I5uMWBga7jlpXPSqIWzwYCpryLPKbxuXfhlWL90HwYP5nvfBDSfWz4XGDTNtpW/SpzBNiEG+X6of2xCt4X/oBME3JvpeuuaY8+s0sLiAouWUe4FydLDU5qOrQdMm077nCLqaOKv5BFf2r27MimEhYnxHyosJjV3NxHE0F9ZEpxQFJZYFBqV+psjLnf84j7fs8iS24qyXyXPo9aLoGqiKMU1fUiMmofC4q2Bdz5ZxBvsrcy7XRVvA+stOzvkkjjm6Ft9gAoRYAWpz9EzpfuAhyDwNWnulUv8GOOOT911xni58uFjWHj9qsoEmSXsjNjEsCFLqAFQkIWLiq0b6W5rC02saFphfDHdgzSThUkfwqtoX8ulLFXCMuq2s0do2gTrgcl01yj2F4aAjcGGdwlj1j0hpMwKx3tXb+nRWXcc6BQcXDEn0oAmhTAjNiF61kIGMTHYN3nGisJhxe6Ag1/WDgcdBckFyetTVLGF4QLiw/CA2MIVyx4GUrRHh3glNrb3DkTH5ub1Eh/gTmJGckScf+XOHWiHuIsdz9zjZ07RreNSW6lTcMXsjR3pIFVHUmT68IEFjoMXk00vPqXPXaI6PRph7OOn9L5L68Q4Xe52iu65WwT0dUmR7yJa6ei4mTfrsz6l93O0sEnLjQvLHrnD1lr+mndwxYEEqwE8bM8IqlhQoptu40prxVP3vPrhqZTE7KjySbo1zxeywoBpoqHIqXQHEyKBJnVtekJINw2dv5Ijf+ew6PLhlsZGXGxZ1+Z9/dKXWv7o6ifhIPno/LVHxN6R1fptdnn7lXvEKZWxRTp+4oA7OrPq3VRqbUh8oXNAIgAADNb1rx+D+0bnYRheXN995R4RnlQMgujU6htd+MUxeH6V+Hu97R9ffO4SjmmQmewbt6Bkd1xKU/dYXfvwDvkUk/yhDA6Cimq6fnEM7hyYRhCEybr+zSlkZgmVo4Ag1D00+8w5bJmwhyCIWCp39ItLLagHQZB+xXX0jXPyTzADgFKleeYc5ovPrGsbrmkdXN0i284RjsmoyC5rsfXQaDJVNvc/ccBVNPbZ8tiegjpZS2GubweGBs2zFakhdeuWp7Cas4f3i8oYeiB05FJbyavEMavBo+V9AAhSCXf9PVM6r6yzENDLqjPTPqTOo0wSUnQmR/mXzqKeJbCR0Fb2PrT5/E4HCWtOIzyiqhYubqnE2W2GFoTV4lO8X3Tm5Cn9Rqq3O/VRQN0O8IsvJVjsxCFpSUxi0SId661yf8AlpGyXa1GFg8rh3GRMlYP6vVbmP48dt27/YIi1O/fBPbZ2RwwhEGO87ENw5SFqKg7Lj+ffuiWMnt3HB6bzqffeGVMnX4xEIRBAxW2gLCciFt91aNGMqkbTIyLqVxUmWCe5jg+LDBsXYTgDMmuHa4p/9akgS9DVgrXV6xbfgzJ3GFSr0VUa1N52Zid9jGm6smy/xIcLzxxiRi/QRV3KJQf7xOQu0Bg82Tehs76M4UhlDq55z8r7QFVHbkZMz6HZpGkryn4WP2NFnjBI3xh/6RzbuofekDGWfIOKyQoToFeRNhYiAqMr5y/RzZxJ1luS/zFh4OpbjoU1CBs3qpLD61bU92WowGB+nE8VwSZLpG+POvnmTHDN6IjX5zhG1lMlX+TMkF7aVpjrXkFGGRi68OhIs0OB8XVNg7MtPbNrFD4qSkF/IHehxSm8+lCIMjAN+zA4ICqx50SNvi3YWZiJ60CFJaD40P8jLqZukcIR/V5ItpuTdRevpD4MDYKascbyl75VpPujDWvoW+8dQ5u2RBBsou0sJsemBnZhtonQbnehY2QLVQWgyyFx6L13+toV1n2MNNj/4Gx93rfDgY49qOxNjQkqmZfZFl7YdDA/GBgYlzRtNZXiHC9/8owrX7lkCZV2sXNho+AkzC+mYhUzx/qquZP2zHeRtWtHVwL5Hc1Q2adGjYpGwBvSuI9vYh0Zs4PUzxfFBZXOfDN2CAxq51sq3yZMWiRryPly2zufwsmTK55Uc+c0YN8oem3c73yLq6Tc2rEBEIVKk8XxXiVLtmnAPZjy9E0fZpsRBOIutHwIKt6xOBjCemFdeppb6tCVZSxJU61OMf3fvh6CgMzRUg9MWIsKfhipAeH4mhWpAYIB/VhD2ZvkOWyjB+gUZakpAdhggaLKsFD/vMEjOl/+VbBKaKm10CV52N7YyXxLDvCKbdu6AWFEc0ONCY3CNexQuWKtHeeBddelkTHRTUQVCKs4p7XFxW+jBzHIa9YL0/AJydPMB8EHZDb0lWa6VmFh6iHxOQEfFJ00g0VWgrnzNR/DashCKw1R25XG4hfRQza1Lmt3ztULY1aI6WraK6zqCMsM69fK0KGU3AH9+8Nzl9aI2UlhMbnELxMVBtTEiVHCpcLyhcGK0+V3LqFVK6hDzzc/WMW/qM7JT6kZ7R6YaJvYYcsMqOwK1IyV5TnGjWKzRcU7iw2J8a7ctXxM0FJLoVfpuhGGlYKr0a4aD3zlAU+HumqNtj11qTq0GKRYGoLM6HJg2h9qfOmTO3eptBi6bAV8zhm3WH4C3CU398TyCRIT5X72uzbYeEuJCogMKluRf3UfrRWGwf3ZnleumTM3dugc0pySzqxaK7uXBE3qpuy0mGFrIEaAO+/pnz/HkCMwxCWM/OoQ2kzgATAiZe36fy5YsqDBy/Ha98HlFAsMNSpuypMSXeJ6UTMN9AM30DamYhPLqvtmWjvHZveu9JZ4h6CU4v8RF1Yxe8y+/T3uJLnY++yPL1hDVWRoTTpRS07G+4hWugpEIGVpbHx036H9BDPzdwK8YvvJAqsnm1lJGO6My23uHZ9rH5jfvZLf0cs8UpoR1mpVmoFi4mfvhIolVJwEqVnZYTHJPah2Tb7f6xbTem3ZJYJaYWdmgmfuqFSPNggbuAVB4SXTqMwT0kuq0tNf4ju3Lm9k1m2SHTUtl2a9MDsirmDTakN8Ot/l+im971yCIPAtcfypE75k/PhKoDA9NNvu1/X76Z+EgzllLcHxBWIpaoeh1ek9g1Pjs6p0ekPvyPwrd7xaY/W7Jx2e/eYUOrWIArLe0fnXHpH7xzSZQolPLnn3KXp4agXrWFRaWURKKQYNv+2qyWROzqtz8Ik1GNGl6+CE9so9oq59RKPVYUJBAABNZjP5+ByCIL5Q7IPP/OAdo9ZohyaXX7pHHFFQbHpEuXz3Kdo1MAkTQJKPqS/d8FMLmxqtDp9c4oFLKavvRRCESmc/ccAV1XQqVGrzXXR1EARRmOgSNjG/ga6dGh2GKRVKtQcu9VNoulhy3/BWfctICE/vZJuF1zc6o6IhLiKuEwW7RhlvpLvJ0Su5n8Risu+XWmgufBbcZvMz4tIoe2y5Skj+7J0zI7Mu+YL9MbfPBVNXqOkEICQFesZ0bF1DMAzpbkuTUnxqSByxFMQUkearTL/I9LrR9mW6ysKC1bdHYd74hDkBNmcgs35/nyLRmw9n2j5GdwksQAS4WfP5nLdIZV+g+lnDem2Wd8YQRyQ4YRsA0Vnk58jkIRqTLdCDpqHqwtfZq7bNSmt+hkfhMmo3DUrbYiMi61ZRAQxk3O5vfPm5mcyT3RrtNmEIYjodf+We1Em0yoMhLW95+UhugkHe0idcyRYXlaWCkhOcS3DVwjmdI9NLbxLCY9IJVjrIufvBn5Py1m/NKB8FZitSw5u3ARmTI7jtswqxYJNo/XNgAYmnRiDD5mDzL75tpyI5W66TsneDvCJSVqyuhaBRs7t3pjTbswUEAfgZ4anNZCzIJSTc7PaPqT0W6mCTtqM491XelmX/jpi1ktrMNM9SgiXcHEQfK3dP61eZIMYxaWd+2Nk7ZeaYTxea9EJGcmRS9jJqMfbgD9Ix0nzDK+epTArT2i1rPmCkMDG07S7QqPGmLDY+qo1ohGFIe50TGh3Zuq+3si60gEbISIpILCFphIJboxk2KgStTSMkvlypNVqw9l3joHwgL8M/b/aKy2foEdrGuJN30QYWMs98kxiS3n4qFLJ5GsG+90dcbMuWyipiNVysL5xYEORdRcjFzuQHt8wpAbohoUwMZucXuRauydQisfzLAoXAIHVx4IlT/rbUzD/cGljej8Nnd19pxLcSo1lcFRmT1k82QTACaRfriz+Ed55wxbffDEcePvnb4UDtBERnQV5huZOXdCZmpAkrKPMj65SOonzX7GWJXrp1LL06XPB0jyzZsUorzFrp2g5ND0Os7WkHz9xltpwuuBczBdxvSX8ZVk+7ewujjL1LuVYdTA2domsUZNZ2F2WF9qHGgpCGHu8Vlj9GkTCZvC/IHKUQoOSXpqZGjd7whAK1HqDMtbzxyLXiLATRyXiEY0xXayMnYiS2vvQuWLlzQwbVrLVtmh4EZsuScPWooTP6M/Fr4uODKxdREAEqB/IyPFLH6Te3DD2i5pyEBceVbkgtMw3oKUoL7zpWi25kVhMBawUIIGqOjYpuIFyzuGwDLD1e+uAa2XuEQgezVlaQlBQ/K5SLhFoTrJXSIwLTOhkWaAXwy4JDPxVM3kE6SHhBPrqSw6C0GN1DXtrNboi10vPGL2+Dfktha1Xcs6iQCP+6A8zKHzbrjrYOLvSw/ork4x1RtyUziC86R8m1hTmhvXSVTKg2QFrWwqfQqqPfkdKBJk1tWpxf6zmIwHrBWVX7SBAue+5GzmcLDKC6LzUS3UPebQ9g0DTdXPomY/5ucIyt+RnuuXMWJw/guC3NN2+UL+BQb0yQhp7sicsfo4hZLK7d/L2j2pe/qltmbEjGuBVmoNawTCKh/VB6tx7D19uTr5xD2vcsKuAv5SxXMEjfmkvpPhTKNXq7E0tgo7gmKdUlC1WwIKBqvqPFySu6ZFshkSlBUF0Vl1C0yjLrFRubpNmKFP+csUv2rdBsJAw1P3XKwrTkCAyJmWczpxJIL2rOzfYsISgsX+7BTKtTfL/YIBHL9OareWeX+Kr1O5UCqD3eId1qUBcW6troe7eEzlOrNY59ryHAMFiR8zxqxE5WCwm2BqtmHlB3GJWnkUGZQxeSWxZXBYDUriyvrEE+qkHXzDVX/uLTQNWgPIu+2OySPKjW3fCE8uXabEd8Ix0V4kEHi0O+3pGhrUfXIvSrhHSSnqrWwVOxQqM32zFQUHTi/REXXrNi3QdCxm+5k4xODgyIqr8LIsXam/fySa4hSgAYBkUE/6CCla+cZiDGXOsbv7zdK8ExC8UwgPSisqCVwJSh42THZhETIxmX3LTDFjOYMjPEnat3iqw9EqLiD9n5hvunmM49MVesZo2WfEzpFWkAyKQmLExF+YWm9u0JuAIFBOuoiw6uURPHN0dUMaATl6emvcC1ULHNBQzwKORFxlfzz6g+j/KNqzmSIzB4c7hd19HoHllPFfCY16qbrdHfnPA1Sywrk9ZLF8e3b7H1yX4If+D6Z+CgVqd/6xWVW96KWQ229U26BCZRqKjWb2Pn4LVHhFgqh2FYeCvxwKUU13YBAADDcEp+nYNv3MEJLS6rsndk/plL2DbpeJmwp1SpX7iEYS4dD3aYJxT7RWQl59V1Ds7IlarziysH3zi3oGShSKpSa+hX1+UNvSKJLL+yXaczwDBcWtf9wTtGrlCNz649dQ5dWCOyuPzc8tbnLmEWZxE0z+QC4RfH4L2j89rWoc3do9cekVMLhO7h2SsO7zenEFxcPoN1rVJr2Vx+aV0Pjc5esogzByeWkvNqGazr6LRygxHlLXMr2x641FvxF6Ml7BWEl4ve3jlj+1srBzwANo4Uxr8Lq5zeIHYOzm2OtLzyTWsZWp9kWgV+trc+J4y5uYd/LhqdXd8dGx7umj1Rm2GzTl6VlZ85y5TIlTzabmpsVtMKHZ2aMMRZaH/tm0cWoDBLL7gMw0XH9B4SDpjWiQsIysMiwqoXVHex4806eWNe2q+uyUX964srGy0t3bPHQgA2DxSmRXdjgAMSLDS8Dy3qHiHsSUAEFNZGxQUXj4/NbF/oINHxipNHePbg/tw+F4Gh8/Uxt7CGrRu5VCreHmkMz+65VJpQLw0+0cc1oonAQ0V1RllXcd6b5InFnWP1184BkJaeHhz1IbxiYIU8P79Y2Th9oYRQp5b+vE85IwINqjqRH8z85hBS0rdFuFLARvVgTZlH2Q5PphTxGc35+dkDd0fYma/zgyJSO2f6egk3QlZSfO3kpUSmUAkoE7E5vXy1GTYoukrzniZNLxKIbJnBqBRWZqT84ppSNrSxtLLe1NK3fC62/9jRjjOmXP3zpg6v5Qol42AtKqpo6NiiSoeB4/mBj6FNuzy5VCJaG2jA5w1yLK4tCAKsVSe7p7QuzEwOrl4cTbe/9slrnt6jqoDrkzWfoNLdLxIf25hbL4wXy2+d8WVdiyNkqzWKLQd9YzAga/hKopSIbibry0Lyh5hyEwLDSjrJ1Suh++yrWcSnrvt+Su88OFgmMc0QIrzYCvQOcwgvLmidXj5k8iQqo2WrAMroKWGxgaUzY6vHWgSea6twyVu26jD4Cx5++aMz84tnChiUDWYlvPRKzu1aWtrYbmvpa9kV2QkH0D7yz7a8PoXhyqaHhkZrNgRdhamBdUvTk4Qbe/8+2Lg50PTEvax7YaV9icZnrvp+LpzcWt44kxquCd7eKaNHqPMppONVJqY4ZUzMEqlfS23R4XD3yXxgOBBYdLzyxjmsYGhv9pA5W1OU2zhY2LwtAYDTiebXvnkNo4RdsUkroGfExr/wyakb21xaXq1vG9llKxHIuDHY/NqnemiTdMa7M+W4o7uKOuvliXdJ7RxbJU2OjxfUzXI1ptO+suimbZ5MJRXxGkuq+qmoVQBwtfneOaJ8mNC9cPlF72apR3FDjQqOzZo5XSXStAAsYu6Gf8a/wFX1LhBnZ+dqWidplmArd22ifyH1SaR/xMe45uFV8sz0TFHtHMsiUb7eHQvM6GNKlFKJYLalOjCz5+QWHTFIyUkJi/1UMDO5dqhFkMvtKdfAqkPrWIoyQmNzRxZn1uh3Sl1rU+DtcZBnWELdzODyuQ427wy3PPdvubTAJY3kMjwguW5zZ4WERi8Wn417Rbdy9diwA/t9pa/doqPrZ+fXiX1dPVXj52oQNt8s+gYVrDPtIDWknW8oe/O5untp90RigLSi9qL8Z26xme2Lyxtb7R1D46jfJSw8XHbyiCwY2mwdIHA0qtyYxMxJ4vzyqQYAz3vyA0pmvnUlxl4AAgxD1XlP/cu65tbrupYvzifcPhdMjk/MnynM0pMgN3zDup2CHIboxFlvfB3GrPYnm8Oze04xoAmI6kKDQ4oHeke3WAZ0KN85BpcPE/oWaToI1rHJ4SFpPZsPONJqJddpSeUklPXCJr3mikKMzWimYYJkGNQqpYvdDc8cg6uX2Ur9V9tgtIBZ11dV9NQ5OjSnrWN6l8K6lWtNqFcuoBwoynvxKbN1aq29oa9vdtHdK6Nl92jjkAOamUkBsXlDyyMDY3tXVxWhEUH5QwNrVAMMXe8vu3iEeKW2T6ySpiamWyZJKhOIWkeEJ1fsWZUEk5UZXoWjCxOrXA2EAIKSmJgXfrm1E9vzy6u11Z3TVBR/QmZde0nB51rinV71blbCkEGn5bMPIv1DXqZMMPiiG4Ho+oa3NT/q6VuwdOeqfJcb/as86ncMKJxcmJveE5pNgorgkPT+Ax1k2R2lpX5qu7RQBFioTPmU2zvcu3ytMx8NVr70iK8YWB3t7R4YXfT2i0zqPVjYRzGrknUYEIB/E5iTUTc6S7rk3CqM2IoGKlDu5JmY2Ta/tLHd0db/LXeC1ILG3NyY9kOBTCni0UqyioqnLZ78MMgZL/dK6+Xcmeii/Ya0E+V5bz5X98wTz5So9u16pfOFc5hbVGlp98LGCYsv02Jw1Hw54eyd0Tk2N0C4MQHyvsyEkIpVKareAE+XBt+65bQTDs74SjGh/a1XasUYYWh4emFrHucclt8+07XEMCAQZbLlqVty0zhxh6ezCk2cQoMLBuYIpOHB0ca503uTxqwXFcZGOaX2j88tNk2ST3pyXeLrenoXjmUgID6L9se/xeU3TW4tLq1UN45s/uxpmz8DB/cOz565hAVE5bT2TZbUduVXtrO41pNCVBptUm5tbEZlU9dYbEZFY+eoQmn1BU4vavjNKTQxt+aSyZ1f3XnigKtpHZTJUdDmHJB4wby/S7ZNLzrr2jUw6VNoOmH3CARBnU5f3TL4xAHnFZKWWlDfMTB9K5Ydn9EdfOPyKtp6RuZDEwrnVrZhGJbJlR/9Et57x0SllQ9Prbz1imruRh3XYRieWtz89WNweFLxBvHwhn/7xAGXkl/HE4ghCOoYmH7phncLTE7Oq23tnbzho9rMjoHpp86hWaXNYol8e+/EyT8+o7ipa2g2MCav785PxdZhVEgjZvR0jc8f8zGcIOeedXUOtkzuMkRaFeugtnV8lWIV0dmXAvSqw631mobump6FjdMbq3kTDMl5zInx+ZE5wvTK3uGVxHoIGwwK6WeruwzsWC6zWjzcPz68RZdbHRwQBNZsz67QMTUE1gwMyW4YAz0DpQ2DffN7l7eWyQ0bKXsH50JsOYRVjJ3G7vl9jmVTC+lPFqcaBzeoaKA7WCtktrcNjW7TVZbACpBRc7a71Te2PLm4uUik8pVGi60ubJRwlzb2r1FHStTba39loWF8ly23aEPs3xaBb5mUvu7Bksbh0TWKAAtDAwPXx6S9CyEqK0JgHZ9WWz+0QhFYXhnWy/jLM3OD0+vTSzs753YnSkGqtZGh7vkjkQE2SoUre6dE0v7C8ubY7CbFcpgeDBgO1xer+zdotxZTchiUcC56O/vKGocGFvdT8iXSAAAgAElEQVQZYqszzJfewSZyc5ZnQmP/7Mbkwubc+sG5BZ9iGSCj6mR7o38cffFl0oVQZcKMlNHljUKob59YOuZpQVhCJVW2ThOZUgiG5ULW+h4Ts5L+0ordFSC9am/un9xl6u6wu+0hYNQcbG70TKxOLW6v7jOs533BsFrMWyVQhF+bdavFVz3d4zP7XHQjIWdNjs5Pr2wP9g9mZBW7+UQ6hhb37qK2g7BeujAy2j6zz0MDOsLM0yPSldXkFFLSu3umN2gibK9pVlxPj46V1ve3T26f8ax5bH1DWahRvbs0W9U6vnR0bUagw7W5zpmDGyzumS0fDInoh+V1fePbdKUB1EgYPd2TSxTUzN8oYq/unFqHxaQiTE21TJH5X0hqqcIyHK5RtQ8NBzotm5oHJ3avtCb9ydJE69jOjWUvYZJe9XSMrp4J0SOkILOAQenq6CtrHhlePebILB8JDLJPiDUdM6QrmZ0C09ppCDSe7mzUNnRXdc2sHLJRp37YcLxJ3D44XV3fnpxbWz1gY5gVUvP7W/sGVs++CY6DGJS3Y4NjAxsXMovyEQIMjKPdxqbuyvapWeKF6Jt5h70ti0Jua+sraxmb2bm8C1OFgCbd8c5m9/jq5OLWKvnyVoONDwIbFAsjoy0TJI5FkCm+pq/tc6yTAlIvjIyNbl6qrXlt44FAWuFYV3/v0olYZ4YhgHNxtnxkcTNAEJNWNNw/MbN/beE/IKktL7Frx3bwo1kn2ZibLa3taR5eIzMxeTJsEl6u79FkFi2YtQ3YxCCtVXUuHHBQq0BUhHrLnhwaKWsY6Jgint8oMFcJo+x6oHOgfXqPIzdAgGFhbLx39RxV1MIA53hvnyH6SiTzpfsIDENS7kV7W3/bFOlKqjNKaV0905uXUtRNScFf3iBj8UdtJSCTlkbeQZnVwubC9vkds0IRAHlisHV8h2UJ8Amp+QOtPQOrZxIU/sIGEaOlsY9Ave91jiouNJKGis59dNFGw8QekskL6/vHHMtwwejRf6Rd8sIqcfOAfiP/asOGIAD3aHNwmrC0vFpb2xwelfLaPSa0dIqPOpxByhtqT3tf2/g2TaRXCBhtneNzR9ca1P1eR5gcbRwhnAm0IKTZHBpsndq7UaH4HTbrqKTN5pbeyvapxQOW3OKEpVOIt7dPeNZ5AJ9tLrRN7HJQewz0J2af9/cMFjcMDi0fsmQYW4KllNn4gn7aXaBTG+nQYHgS0fnJ4eIqcX5tb2ufsntA2d7dX1ojLhCvLGK+L3mxK4PwpL1zYukEdYaAjTLiOvFCiAJTs151QDrANMIIAtG3ZtvGidfo14oASt700HB9//LelVwr53d3jQxu0BR6EDHL12YXJleJ46PjefnlXn4RHz5nV6+yMQWXWXE9Nz5RVt/XPrl9em3T5Nr3B9aKufPT80MzG9NLOweMW+s+EwZ5Z/vEM95XLmuw6WJrqapz4fhGCaFKeebIxPLMOrG3pz85Nd/FJ8o1onzoDHXlAWW0ro7RGTLq+w+b1cdE8iHbYiQAQ7eXh/Uds6QrqRmCQb1kbmSsqnuBxBQb1LzB1r6hDaoCNRKFxDRSZdMogWad4YBWsr04V9XQWz+wskPl677hRzAEsk93a5sHhzeoYq1JfLrc3L9CwUJbIKCYcdLbPVDaNDyydsqV3Ztv9tT4g+ufgYMd/VO/OOJodDaFxsSEZPaNQBB0zb+l0dn3LOqMJhOVzsI0sDq94dvIgvaV2F9DEMTm8u/VJpUprjg8q1bUYguoVGkUStUZ7cret0Op0mDeKiube0+dQyk0q+MCAABUOguLgIh12GaAiOJIhYpKZ9srr81mgH7FxZqTyBRqjU6r01MvWVrtz5Pe/h0fr/9ZFDByCwIjUvuO7mnY/lmd/H5vTJKmpKSSNZu5FIKY1cNlWcF1Fpfk75f9pz21DEdM696/eDj+aST9wf4A/IropDnqA9uAH6zgfzYbbNgYmpj82rDjR15Wd7Hoh6uh3ll4o3G1rki4gNwJ6Z0q+0dq+W/ngTTMvMicdY7NX+q/3cBP1mfcrUvJ6D+22/MCS901b9Jm/vp1V9deXLqAelZZf0blTVFCsmft4T253d3z/4W/fxoOGozGpNxa/8isu5CT/wIqgCBY2zbk8jnRFhD7X9Dpxy7+v1EAVpyvObtGdh/8i1dBUMaIDUooXxXYQrXBZs3qUEfrCmrv/K/6WYejifTg7v9f9Sr/js7Chlt6fcMUVWGgLg5ndO5bBP3/jq7/jb2EVUxy4ay988yPNA6xFtodQxrRmA5WQ0tYyaMV1YywfseH4Ecq/Q/z6JXCmfGFlav7WuL/sNr/QnFQ1IgPT+8/snPmMhNnR4tnLr429P4vNHW/CjMrMzpn+tTquYja62pFHWV1TeQ7Z+L7Bf4X0n8aDookckffuNbeiX/R26vVWu/wDPsANP+izj929W+mgFrM6aku/c0xoplwozbds5T7m/vy883BkIm5M5uUWppRM9g3udw7MFZe3zdEuJRZIjv+fL1/e0mt9AYbjppV7r93OP52sv0nDcKaK6K3f15B23DT1KHkK3Xaf1Lt/1pZGNQsdc6w/pxQDwY0grHm+qjMhrq+ucHx+abWvvL2uSOuArqDh38zmSDtzfwMgSHCrAz/5sb/qDkYlNN38rPLkiv6u8aW+4cmK2q7uhaOJH8DdIYBysZMXEpZduN478RST99IRdPQ7AH3YfuOP3qPf8vzPwcHt0hHkSmlPuGZESklywSSTVf7j31bCIJmV7ZjMyt9wjOD4/KXN9AoM3/FT6XWqtS/7ynwVzT5WOdfQgFIcsOi0Jjov0uuRPdTDlp/Scd+plIYAuQi4QWdcy1W/54Z1s/U+/eVgWS24bjg/NuH4+8j23/aEqyT8G8kVsP5/7Sy/93ykFZtbzD5wy8Km/VqDotzyRYo/t+3Z2a9/s4d+of7//dmhEGVRERnsFkCxV8uFLz3ZpBZyuddMq9vpPd8se7l+x9J/jk4aDKZdXoD9u+eMd8/kx4wDBuNpr+hz52DM+FJxVjA6n8mKR579UiBRwo8UuCRAo8UeKTAIwUepMCfg4MPVvF4E0EQkUTuFZreN7bwSI1HCjxS4JECjxR4pMAjBR4p8O+iwCMc/O+MFwzDRPJpSHzho7fKf4egj7U8UuCRAo8UeKTAIwUeKfB3UeDvhoNqjW51c6+xa7SxaxRBkBu+aHxuvaSue3vv5E+9Ml8o5gtFfKFIKJKYzH/s+q3R6rH8fKEIC4X4p5qzzywUSQcmFu3voG5HJjP9insjEGEHpdx7akuqNNr17f2GztH2/inbzb/uQqc37OyfgtDDJ9eAgI5BORofneiZOUaDblp/kMHwD7cluevpX/x3hbBX2dR/eHrxnXbUGt3CGrGmdbC9f8o+MtF3ivzcIwiCjs/oPSNzpfU91zwhBEEUGtOW/Lk6/7DUFumosqmfQDz8iTACZjOwuXvU0T+VXtQI3B3w84ct/kQGGw/ZP0YP8LUl/yxLEUvla1v7glvrAfPf7wkMw2KpfGljl8m++QnifL/yx6ePFHikwCMF/n4K/B1wUK5UdQ7OCEVoCB+ZQrW6RX7uElbZ1A/DMIvLz69sf+EavndoPf74R0hAoV09ccBh/9xxKVik6O8UBACgoKrTVmRo0no43neKPPgIhuFbsTSnrPXsLn6hLdvm7lFpXY8t+XsXcoVqdnn7iQOuumXw9/J85/7JGb21b/LH4azRZO4ZmdP8TnBE0Kxl76/4eePTBs7vAjtBgrV2h6DifRZ63AICmWVCAU+stjvm9Tu9+596BMNwUGxeREqp0fS9zYZUrqxtG/r1Y0h9x8hf8f6kg7O+sQWNVgdC0P4JzS0w6VNY+q1YCkLQIeXClvwrmjYaTcl5dY5+8ZwbwU/UbzSa1rf3PUNSg2Lzf6L494vYWIo9DzmjMe2TP85SzGagd3TeMyTtnVf0M+fQgxPa91uHIGiFsOcTnvHeO+a1R+Ta1v738z8+faTAIwUeKfDPp8B/Cgc3d49sJxT/3tuenjPQ04rvmCxPIHrhGr6xc4jlL2vo9cFn3vBvf6/4vfsms7mgqqN3dH5qgTC1QNjYOfxDpxa+UJyUVzsxv4EVkSnuH0h1r4kHkxAEE4iHn6NzD05p90SANDr7o198XfvwgwXv3Tw+oz93DV/eIN27/yPJhs7Rd59ibCe4qNTa1U3ydwrCMDy/srOwtvs7eWAlbcvjU+LQhS2+L6y+Wg+JKNq7ssBBk6SvMD+xcUNiOc74dyr537zNE4giUkp+JFj6/OrOrx9Dvi9E/FM0YrCusb0TgiD5Ve0ewak3AvRoHKVK4xaUnJRbixkkqDU6++SfauJHMosksvjsaib7gRO6fqQ4upuAIOeAhO6huR/Mj2X7CZaC8RDbWZF/lqVwbgTzqzuWrdrWSzd8bnnr9wV+fKG4vX/qViw7oTKeOoXmlLX+qRd8zPxIgUcKPFLgH0iB/wgOnp4zXD4nGYx/HIzDbDbbOGz30Kw7LgVbZswA8N47JiG7+kcUvhj5rji8uKyqP4SA9rQub+wbGF+0dcD+0Y9fC0VSj+BUFpd/r4hao/0Ulv7EAdc7On/v0YPJhs5R54DEK471WL8H83znpvGO2hAEldR1t/ZNficzgiDHZ3S3oOR7+NVaBD1+t/99YAvdTv5lutmsaNmwHgr+/ar/p59S6Wz29R9LxQAArGoZeOGG/2/ZjJrM5tjMCnsQZpvqh6cXbzyjRqatsu2ziyv75H99NOQKFf0KPdHup39UOuu5a/i3ovTvVPgTLMXGQ7ATj2zJH2cptv4w2TfvvWPKGnptd/7wwtE3rrT+j9UCf1jPY4ZHCjxS4JEC/78U+Ek4qFRpphYIroHJUWnlfKEYQ1oqtXb/mEo+OpfKlQcnNI1WZzKbuTzhyTmdesnCwmwCAOgbkRWdXq7R6hAEoTHYz13D7YEUBEFXHN4O+WT/mCpXPiDGG59b/8Ux+JlLWE3bkFZnPatGJldSaMztvRMMLfGF4t0DCoZTRWLZM5ewXxyDg+MKyMfU3wOFMAwfUS75t+IHx0Ol1ibmVD/I93tH5nPLW5844KYXf/f4LwAErzi8TeLRKZURklAYllhkNJmlciX96pp8dC5XqHR6w8EJDbNbwjLv7J3sHZ3b9MJqje6Kwzs4oXF5QhiG6Vfcxs7Rl274maUtpUqD9VlvMJ5dXG2Rjg9OaDqdAbtJv+K+cA1/0CIKMmmGaop96m2n7sBGuWCFcCxEQyxBepWcw2IfHV+h0BAyKyViBoO5T7s1QYD4mrWzdyZQoTJDtYRPPqBda76YJ4JGDYN6TjpCz2e+umBKFNgYwUa1lHZG3SWfbB9cXkvUGq1eZ7AcTYwe/G0S33AODik7++fMBw5rgs1qycnRKemEyZMp+bdy2xGsgFZOO6cS906OGEI9dhcGpTesvSO6FDsuGgZlAj5HYBF2IrCExyYdUI4uedfXt5Lfj2FlNJkvGJxtyxDYC791esMplbFFOqZQmRhKU2u0YUlFxbXdZjNwfskiHZzZ5iSCIAaD8fiMvkM+5QlE2Hw2GE03AtHJOZ1zLQAtU3177wQbQRAEt0jH+ORi/8jsI8qlUq1hsG72j6l8ITonYRjuH1986hyKydFhGJ5cINiSmCiOeyPcPaAQ9yk24aJljnHJR+carU6l1u4dnTNY1wiCGI0mnlB8SmWwLNsS9rVgh3witxwvjk0bCII41wLi/inp8Ewqx6iHPtFq9SfndALx8Ozi6kG8hR75yLslkk8pVEZJbXdAVI5Q9MUaTySWkY+pm7tH2DTG2sL+/3GWwrn5iqXc4yH3kmifdfrTc8bmLvr1fWfvKpEpyup7guMLODcC7GDMgxMalc5CEMQMAMdnKBOzmYfCMCyVKxs7RwOics4urEdf2r/O4/UjBR4p8EiBfxcFfhIOXl5xUwvqnzjgqloGT87oMAzzBKLI1NL6jpHOwZmAqBzv8Ixr/u2tSFrVMvDeO6aiqQ/DYexrwQs3fFP3OJacsGA7BhtdohAEUam1uRVtOWUtpMOzkITC6pYBm2jERtZbsWxxfdc1KPk3p5CO/mns/sk5I7u05aV7xODE0imV4RqY9NINf2XRc+ktS3JhTedvH0N88Zmc3xH5SOXKN55RlU39toZsFzAMF9d2vfeOOaNd2W5iF7v7lOzS5sX13d+cQr5jQtQzMpdW1EjcpyTm1DxzDu0ZRtVn82s7yXm1r9wjWFx+SV33a4/I/rEFCIIqGvtS8us2d4/yK9uD4wr0BhTY7R2e5Ve0v/aIJOwcQhA0tUjwDEl1DkgYnlrB4MINXxSdXt7UPba6te/gG9c7YhVVnpwznruE7R2e3+s5ClZU/OzojMZTme0RbPmhScjEZzJaKoo/RPVfAzBi1jBp1NzEFP/Gw5vLvcK8wg9uUdULl6rrvfzMEhefmIQpq7DTrJF01zWXTZ/SLymdPd2B+KLNCwUCw3L2SWp8VnYv8fL6ZrWn2js4zTs8I6l2VWRGIFC/Otxf2LNO5VyPNdV8TLh/4A2ku+0sKisYP2Nd0VrysmtmaSgOhUEBZSs+vmJgm85mUioy89s32WjEH9Z5a1nhu4DsuXM5iqKM4obM3MSuU/TUeRE5J691/fz6jLQWn93J/eI9YyMAeiGTqzJLmioa+zZ3jwKickrrurHHPIEoKq2spXeCSmcFxeQtrBJRxwWB6LlrOPWS1Te24PI58a1XtG0ayBSqmPTy8obepQ2ST3jmK48IsVRxweCU1fe+9YqaWtxcXN91x6W8cMX3WAbLYDAV13Y9dQ6NyahY3iBtkY5T8uteuUdgYwcAQGZJU1BsPvbhAABQWN1hS4IQNDK1gk8umVneqmzq/xSaTqOj1OgfW/gcnevoF0+ls6PTyx18YnFxqCXfFYdX0dT/1it6cGKJuE9xx6W8dMO33B01pNboSuq6k3Jrd/cp+OSS4touvcEIw/De4ZlPeObgxNL00paTf8KD+nEC8TAqrWx+dae4puuFKz67tBlDjRAED08ux6RXrG8fNPdMBMXm6Q1fnefwLUthc/kPspTyxj57lnKPh9gnYRg+ozE/R+X2js7PrxEdfONWtx4wrjilMsoaej2CU4tquiQyBeoZZjZPzm8ExxW8947hCUTt/VNvvKKi0sqwvQGFyqxuGfTFZ6YVNkikiodF71/NqcfEIwUeKfBIgX86BX4SDiIIUt8x4uATg22XNVp9REpp99AsgiD8W8lL9wh8cgkm/9vcPXrqFLpMQE3lYBhGkRNqaIUaa5vM5qKaLrfAJIyfanX6nNKWqPQyo9FkMBg/haWX1HZ/CwcxioolcndcildImk3ap1JrPUPSvELT0gsbbvi3UpnC3qPWZDJnlza/cMNvkY5/b0y6hmYfXOE41wLXwCRcXL69aAGGYTaX72JR+47Nrr9wxe/uU76t2QwAY7NrvvgsDIb2jS384hhsg6SVTf2++KyB8cWa1iG/iKzd/dP6jpFPoelXbBRdHZzQ3n2KtsUyHBhffO4Sjon9IAjyDs+wWSsqlOqgmLzekXlMcPjCNbxzYAbrzMbOwVOn0Ae9LGXMBT98DUVmlSPe6zwMGLtKc/yaTzAhGmBU5MenFS+Rx0bXhYLDEOfwssGV1q6VyxtuUmR89KQQHV9Au9BZkzlwgAItSNWfmegU03QuAyGzprMo40PqzK0FgRlku0GeKZ3nqNAIBnQ7fZWJdctSPQgB2oW26tcx99XfOtbB58/pHWdaCEYMx8MzhzIYgWXsw6iI7CqSAhNLMuYaXNJHEQRiUKlHI7VvPucR2Oh7aTgnAQFx1SQ1gsDimXKfjH62CoD0iqlFkp2G/MurqzXa0ITC8sY+AABv+LfeYRkFlR0IgiiU6vjs6oZO1B3+/JL1zit6YBz1Lh+dXnUKSJic36huGZhe2nrhht/YObBgSmVMekV+RRs2gf0js/0jsq0jQjx86xXV3j+VkF29sXPw1isKqwqG4dnl7WfOYXtHKHaHIKi6ZfCFazgGm3R6g0dwKpYTQRCd3vApLB1LAgCwuEZ0C0xmcVBLBqFIiu7TmgcgCJIpVOHJJfjkktq2ISL5tKSuO9gCBxEE2SafvPKIaOoaC44v2CIdf/SL7xhAN1cgCBbXdOJTSgwGk8Fo8o3Iyi5t0RuMNDrbMziVQDyCYXh77/iVewTmyWujHQzDl0xuQFT2pUXFPL9GfOKAG5leRRAEAMGB8cW3XlGXTC4EQZ2DM95hGffg4LcsJSyx6EGWsrxBsrGUezzkXpLF5fuEZy5tkGAYPjilPXcJX3rIZveIcplb3vraI/K1Z+TuwZeveId88so9IrOkqa59WKvVK5RqjNscn9GLarocfOMsL7hiY0E2UjxePFLgkQKPFPjXUeDn4SAuNr+wCl0pQRAsqOoIis2TyVHdLvWS9cI1vLIZdRyGIKi9f+o3p1CpDNU3AQBY0zr4/lMMthIoVZqAqByb9dv43Lo7LoVzIxBJZBWNfe64lJNzVO74IE1BECys7nzphrfPUNk88MI1/EEBAKqYprN+/Rj8Ez4cU4ubT51Dh6e+8kfWaHUp+XUdA9MXTE5Rbddbr6iTc/q3Xd0iHb/1itohW8PoFNV0+oRn2sQJuNh8v4js9v5po8ksk6vmVrZfuuHnVnZsq46DT2z5nSVTcl5tfFY11gSby3/mEkayuGObzOak3Jqg2Dy5QnXF4SXl1kSmlGJm9RAMdw3NPnHAPWQEBh32FgUUTcoMX/S89v0362/TI9MbjlEZG4o/hMRAXFZFz8qlwizZm3jjElvYt3UhM0pYBwEBmf1cEEFAzkbv55j6UxGKw2CzqCYmLriSoAARk5oZ/zkyY1loGUtYTO519Mwao8sQGLzem3H1LVjl6mCzlrw0kZDTOsew6r5tnQHk7LyYBI/0/kupATbIVToIAaTduam4qiWbC8zlbMMrfBtaBFD25qS5Jg6yLc9OlgfeB9QcaNCW9fRZb7/kkhmaGQJUatRWQSyVX/NvsX8isQw1BGwecA1M4t4IhSJpVmlzSELhNe9Wo9XFZFSEJhRiunu1Rru6RcauQxMLHX3jimo6tTp9ZRMqtcLM/npG5vwislVq9F0gCPrgHVPXbnU9zi5tfuMRmVXSrFRpZpa2njmHHp9dot+RRTD8xjNKp0cJaDSZI1JKMoqaMDpcMjmv3SPYd6arl0zOq7vkxs7hC9fwpq4x7NBImUL1xAGXV9FmBgAG69rRLw4Xm7ewRgQA0Cc8w2bwUFzb9dINn1HUiDr7b5JfuIZj8G51a981MOmCwVaqNDWtQ+8+Re8fUw0GIy42HytLPjr3j8zOq2izV6MjCHLB4Hz0j2/pmQBBEIbhjoHpJw44jBpXHJ5zQOLS+q5ObxifXfMITh2bXbPfrWHveI+l4JNLHmQptW1DNpZyj4fYJ40mU2hCYVphgxkAjiiXYYlFGUWND9qfYGO0srn30i0iIdv6iWF7AOeARJsrj21CYvnXdw5euUcExxeoNY+nU9rT5vH6kQKPFPhXUuAn4aBCqX7igNu0SNooNOZz1/CeEVQBCsPw0OTyrx9DiPuoek6nMyRkV0dnVGC0sRhaFZfVWy21WRzeL47BAou5ntFkfuUW4RWallZQ7+gbV9nUb/hal3SPujAMt/dP4ZNL7O8TiIcv3fAPSvgw2PrWC13b7Iv8yHVd+/ATB5xYagVGWJGx2TWvsPTQxKLQxKIXbngH37iHIBcSk1GRlFeDFVGpNS9cw5u7x7GkTK584oALSyq29SE8ucQjONWWXN/ef+YchmkSIQh65Y6fmN/AntZ3jKARdiwOp+Sj8+cuYV4hadHp5e8/RU8tEmxw02A0ZZU2P3HAqb5dsUBRRXhk7ujJXYgZW7PWCy1nwSu0hmqVHULXUxWv/EpWeToENq62VfzqmTlyyAdh5GK92zGqWwwhkJabGRyT0E+1SN1gPffIxzuifEMGIQhgVFQkxoX201HMqOJkB4fiyuekegg2SFsLc1/F9fT09UdE5+b2bQs0D2pwYfX5rKtTaFjzJgZd9acT79zi+8k2dxxguSb1XRqKtwAxIxIXHd1PxySU1cmxzmVbd4JAaKG97IVTXMuxGttkeIWm2cIPJefVMdk37kEpjr5xyXm1L93wfWPzmCnq6ib5qXPo0Nf7AQRBbsWyJw44l89Jer1Bq9PjYvP9I7IgCAJB8N2n6KHJZYyU+yfUp06hRDL6RSiUaif/hPfeMadUhtkMlDX0vnaPwETsRqMpOK4gv7IdK6XWaF+4hm+SjrBkVctASHyh7VzsqpaBz1G5KrXWaDLHZla+cMPbnJNOzulPHHAVjX0QBC+soiK6xFx0BnJ5wt8+hiyto27mKrXWOyzjjWcUFo2lvmPklaUbJrP5jUeke1ByWkG9g09sSW233oJNZxY3nzjg4rOqgmLzPoWmfbvzAQCwrKHnF8dgDG9J5crg+AJ3XArW+crGvl8cg2vbhjyCU2MyykXiL/YJWAaMMvdYCiZZ/JalRKaW2ViKPQ9BEMQ+ub69j35fiUVYT7b3flctgPXBaDSFxBd+9Iu3dQlBEHxyiW9ElsSym7W/j+F1l89o3J8fcT+/V/Yx+UiBRwo8UuCfRoGfhIODE0sugUmYm23PyNwvjsEYGJLKlX4RWa/cI9QWTxGRROboG4dZWSEIcs27feMReUplYFRo65v0Cc/EYB+ddf3EAZdZ3HRKZWBSB4tw8WHRIKZ+KqjqGJqwrrhYGI70osZX7hHjc+tfbODs6H1yTvfDZ/EEDzuL2GW8f5lb3uodnmG7C8Mw6eAsPqtKpkBFnjAMR6aWunxO/DZWjtFoeuYcOj63jmottbrI1NJnLmE2PNrRP/3WK+r47ItM0cE3tqimy9ZQVknzW6+oW0u8RkzKiBmEGU0mD1xKdHo5JkYanlr59WNIbdvQFYeHAQtMSoQa0rNladMAAA6RSURBVIllLp+TsktbbHXeXcAGFsHTM2n4UPo7JAbOevN9CyZk2AntoLwrMSK0ZklpgkCduDw17U1kD0sLI4hpuiIjtGUXQmDJ+baTZ3wvDXUzh0Hj2kDjS88igtSC32BISCMlxuVntUw0dwy1TJF5atTvQy9ipUZF+1SunzAFatPDnh2wUas3wwgCnM53ffTO6GcZEQSijlS98s8mcqyORGbpaZx/ROYIKoLlUwhu3qmDTBNs1hytLsVHpZYQ+DAE6g1ox/QSVnlqinNcx4USbW5ta39pg4T9Y1/zifuU1x6RJXXdl0yO2WzBk5YI3h0D0784BpOPvmwksLjKE3PrvzmF9I7OQxDMZN84+Sd0DqI6ekwFjGEmmVzpEZzqGZLGvkY1uaTDs9cekWUNvSazWaXWBsXmF9V0YoMiksheuuOxfZTFtJTo4BOHbUJMJvNHv/iKxj6sV1gSlf+ZAblCFRSb99EvHgDRNzIDQGVz/zOXMMwoIr2o0SkgERNkdg/POQck0hioTeHxGf2Dd2xuRRsWVTEssTi3Ao2WwuLyUPiYU3NyTre5KEEQlFfZ/sYzcnRmlXcXaN225cA6L1OoQhMKQ+ILMMlZ78j8Ewdc36j1zEa/yGz/yGzy0blMrsS+TXuhPlbDtywFA7jfspQP3jE2lmLPQxAEsU82do6+cA3vGZ675t9iX8S9Pt99C9a/RqMpKDbf9rHAMHxIuQhNKHTwib1gcr5lKXq9wS0oOTK11N556F6dj8lHCjxS4JEC/xYK/CQcDIkviMmo2D04W93ar2oeeOKAY1/zDQZjZknTEwdcelHjKZUhV6o3iIev3CNu+Lfjc+sgCE3MbTgHJHKuBZMLBARBPoWm51a0jc6sMtk3FwwOCgdLmjB0aDKZe0fmbQIPjJoiidwW5+WKw0vNr8N0SZYVCB6eWtncPYrJqMgua9Ho9POrRBCEaHQ2hpm0On1kSunk/Ma3KirMD+ZWjEbJfvCXkl+XW2FRRFoeM9k3IfEFLK5VNGUymf0isz2CUzEjdPsaxBL5Ewfc7Mq22Qx0D80Gx+V/CstY29rfPaCAIOgSkBifVWWvcXP5nGgzBzw4pTn4xk3deSunFTbg4vJXCHsbxCMG6/qFG76ufXhocklvMA5OLP36MbimdRBbYsUSeWl9D2ayNrlAeOYSZtMwfukbDJxNtr39XENm31JFX1n0W/MAgqpwfObg/u0V+9aEAIK9AHd8ywYXhBEV/wKPi8talYIoGmRl4BIatxncCy5je+ade/osH0QQSHS8nJqY/iZ94Rb1ZzXBEHi8Ote8dsGXqHSmL/I/rZCZHBHpUUnWYqARMFL3KZdWjGftiG5vZJOFuo6YlPycuMTIaSmEQBej1W8DC45uLQgS1C43lXzAle/xUJ3dwUL3O3wP12SiH+yv07bDQ/O3r2+5dPba7jnaCAyKd4Y+BOSssx6wmNwhn1psxZohCAXJCqW6uWfcYDS190/94oiziWYvGJyGzlEQhJLzah184zAZ7ebu0W8fQ47PLon7p52D0x+8Yyg0ptFoqu8Y+fVjcHR6+eL6rkar6x6ete2duDfC5y5hO+STmaUtAADnV3ecAxJ5AtHE3DoAgtHp5XFZVevb+3tH52c05q8fQwYnlhq7xhAEwZKdgzONXWNKlSY4vuBTWDo2+nQm1zUwqaVnwmBELf9ee0RiMwoAwPCkoqDYvIm5da1OPzqz+uvHEGx3odcbn7uGrxD2xmbXsM8wMbcGM/w1mcxdQ7OXTG5OWctzl/CtXauA7YrNa+2dwAAoNk4iicwXnxWdVo4gyMzyVkRKyS+OOMGtZIWwB4KQT3iGk3+CzS2XSD4lkk/vIcJvWco1//ZBlvLaI9LGUux5yD2WUt8+/NQpdGJuA2vomndb1z6MBaOxfQhypcoWTkgiU3gEp14wUbiMWTY3dI4eUS5//Riyvn1weHpBoTF1OgOTfYMFFbpkcj74xGzsHGD1q9Tan4vXbevM48UjBR4p8EiB/0cK/Awc1BuMb72i/COz0wobNFrdlCXgBS4uPzK1rHdk3sk/IT6rqrFr1GQ2V7cMvveOic+qwmSHqKzCPwGfXMK5FmDq5oConPzKdhCEAAAIjst/6hyakF3dMzyXWtBAthjU20gDQlBVC4o70wsbuodng+MKLhgcBEHUGm1Sbk1OeWtT95jRaBqYWHrjEZmcV3d5xeXyhE+dQ71C0kamV/Iq2myyClud2IXRZIpMLfO009Ley1BW34MdqQcAwCWDE55UjE8pwaJv6A3G7b2TDz6xDr5xu/uUbx1ffPGZzgGJiTk1nQPT+OQSTBGp0xsYFmko5mJsa66ufdg/MovF4ZEOz9yCUnpH5rCFBwCA9z4xHsGp2WUtRqOJsHv4zDk0PquqfwyVvtCvuM6fE1+6R5TWdXf0T+dVtIkkqDJOpda6BiYV13Y9EBIPVAyWFnzAtw2s7nM1D4SNBG52PJ3DCjpmu5foBhhkLnQ998whClEkxz6YcsPVnVowpPlqztUrqbZjYoyi5J9suHiEhlXOjI+NVY+d1uam+DcS15c3r1UAaNI0ZSc+80qJLenpXzpk8CQqPQDDCKSX91cVP3WJSm2eW9rY7uwcHCZaF2MrTWBgvzG9aPToVq4WcS6zM2umULiJADxSND5reJcjVypPNueD4ypHzqw+JWs9lW9juxeWVsa2Lo3kDqfQ0snR+fkjZmFx25FALlcoaPPdgVnDLLvIODb6C24lIQmFz5zDMkuauofncstbsTgj+ydUB59YN1zy+Oz66MxqWUOvVqsXS+Q+4Rkp+XVY8c7BmWfOoWmFDSwun0JjPHMOC08uTsmvq2sbfuEa/ik0ra1/Sq83pBbUB8cXYkWWN0i/fgyJTis/oqC2g2UNPR7BqYk5NQf/196ZPzVxxQH8n3Ps9IdOnVZpf2jVTrVjRW2rwxSPUttGURBRTsMRckDIwZJrc+8CuTAhhCQk4QYVlGiiQMQcZI90sg9WiLTj+Et0+PJDZt+yu+/7Pm/fy8v3euHpPEV99s250xcFgsbura08hg8drqg8f6V+lNvLcXeRYZjuPt2RE5e8gcjswuOLNXfbxWr0fMdogDcHv0i++r6y5tipaqkSz+epG42in6tq0WWB8PThinO//dHgD8Yoivr12h0U3dyvsV6v73B5i9Zq30T0y+OXjp2q7u7TPpBgdS2S3T9jUGiLgHNLqBa01N7v0ZqHP//2wmVByzQ3SLkoqAsnL1wXKwz1rVKRXMenz0Qy7DulnL9ct++UcvTH39GUgrwk+TmkpBiOzR05cemrH6qEEqxDNni7Wcyb2lGlW/n8PaH80NGz12rbTIT76s1Wt7cYKBOdWSxa7ZvFhHOMZdnTFwVnqm7eaOzeyufvtMoOV1ReFrTYHb66Fikfl0bTjFCCHTp69imXFQg9Hz6BABAAAp8QgQ9ZDtI0o9YTfQNmNPetracGDIRYYYhOL2Qy2T7MbCTcSLswHpqWKHHeqa64h6kSR3G1eYoSyXVa8wgfYPgsnpAPWtp61Ea7e/lp6SYlLMvOLy3LVMauPi3h8CWS25582VxOYxxW6ewoWuV54pVUZZyMFe3RFEXjNtcDCTZoHIpML/DKiZLuoWi6qVNx/kp9yXm+KMfMnb1FrUw6k9VbHBhOYjgZnSkmnUm+WsftLnTGRHpKvm8KhcJ4eKqrV+v0BtOZrG3Eq9BYkfH3WTyB4eTy3r1Y1tZTOotDJNcpNFZ/MMbndaMZRqmzK7U2ZDqMv3gplGBGwv2GSy7IsmwoNieS60RyHekaSyTXWJYtfj9JB89U1aI0NHxbtg+YTJAw3RGZJp5sFJV87/wxG0vidonMNrmWowsstRILasmpFKeMSy5FTN5FpOKjk7FOYT8eWKEKBTq9RmgG6tuVBt9SOr/lxAdbB9zzyRxLpyNOUmUg1QPaW3VNP1VWf3Hy2l8yF2eGZl7HF1W9/beapG1K0r+QzHFqubfiMOmHRjvhHrOSLo2RJEPLnAhFR9CVmF+OWbQWh97unYpzoSLcbY8nPXfbFJh7bj3LUI8ftnRgIzPJ1+urjmEP6fCarMMqgysSzyAfxLcVcUfF2NjFJ2KFoVOmsQyN8gk1aZr2BaJdvdoiYecYsnhupDZNhBv9JkHmV7HCgN5tmqb1FodEifuDsY3UZlefVm91rqde57byQy4/7x7waHm1p18/uROBFIoWOxH9l6ZpmdqE4UPojZpfWm7rUfsCEbSyR0XPWBgV36QzJsLT06/vGzB5fCHedhmdWTSTHmQpTmeyaCOfjdQmRdMjnvHAzl7MieSaSK4LRra3Zn65tqHQ2Np61Hqrk9ecMQwz6g8LJZhEhXt8IX7M8gBRSHu7eMBEeDbfpItDVW3kBz4nobupS6nW24ORWaR85e/l/Hr3mVKkKuO+U4pMtf3kfH7PHFJSZFnWG4h0yjRiJe7yBt8dm0hmhcba0q3qH7RMTi0ga/Lq82RPv37YM45Uif7QlFJrQ/EiC49WZCpjc5dSpjaFY3P8lMJFLs+IFQZki9jdNDgGAkAACHwSBD5kOfhJNOz9hcxkcv80dM1wPlX73hWMzDbsJJ/b94KP8OR4aOp4Zc3uBMJlEpJeGFJ9XWNFPoScDPSKV/XdL83R5xCPWaY+gWqBABAAAkAACOwlAMvBgm3kYTg29z9u5tls7s/bD1DSkL30PsYSwzC+iejfDZ0lnpflkZVJD0nbK26RieyOFpKlE/OjdW3a1c2deN/ySAa1AgEgAASAABAAAtsEYDn4Xq+Cc3TCTHre69JyXxSZmr/fIY+/eFniql8euVgmtRK7V9t49W5vr35YayTEvZhQSU4+TdH/kVGyPHJCrUAACAABIAAEDjABWA4e4M6HpgMBIAAEgAAQAAJAoFCA5SC8BUAACAABIAAEgAAQONAEYDl4oLsfGg8EgAAQAAJAAAgAAVgOwjsABIAAEAACQAAIAIEDTeBfyYAZA9elfkIAAAAASUVORK5CYII=" } }, "cell_type": "markdown", "metadata": {}, "source": [ "L’objet de ce travail est de mettre en pratique certains des traitements élémentaires dans le domaine spatial qui ont été présentés en cours, tout en permettant une familiarisation avec Python et ses outils de traitement d’images. Trois points seront abordés :\n", "1. Les transformations géométriques\n", "2. Le débruitage par filtrage dans le domaine spatial\n", "3. L’amélioration d’images par manipulation d’histogramme et masque flou\n", "\n", "Les fonctions et les données à utiliser pour effectuer ce travail pratique se trouvent\n", "dans l’archive ZIP de ce TP disponible sur le site web du cours. \n", "\n", "**Pondération**\n", "- Transformations géométriques : 6 pts\n", "- Débruitage par filtrage spatial : 6 pts\n", "- Amélioration d’images : 6 pts\n", "- Qualités de la langue et du rapport : 2 pts\n", "- Total : 20 points\n", "\n", "**Date de remise**\n", "- Groupe 1: 14 février 23h59\n", "- Groupe 2: 21 février 23h59\n", "\n", "## 1. Transformations géométriques (6 pts)\n", "\n", "L’interpolation est un élément central de toute transformation géométrique d’image.\n", "L’objet de cette question est de mettre en œuvre une forme élémentaire d’interpolation et\n", "de l’utiliser dans une transformation géométrique particulièrement simple : le changement\n", "d’échelle d’une image à l’aide d’une interpolation par plus proche voisin.\n", "![image.png](attachment:image.png)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "\n", "\n", "La cellule ci dessous effectue des import cela s'assimile a unaddpath en matlab. Le but est d'amener des fonctions extérieures (packages) dans le notebook afin que Python les reconnaisse. \n", " import package as pkg permet de raccourcir le nom de ce dernier. Les fonctions contenues dans 'package' seront alors appelées ainsi pkg.function()
\n", " \n", "Vous pouvez chercher sur google chacun des package appelés ci-dessous afin d'obtenir leur documentation.
\n", "\n", "N'oubliez pas de relancer cette cellule si jamais vous redemarrez le Kernel !!\n", "
" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "import matplotlib.image as mpimg\n", "from matplotlib.pyplot import imread\n", "%matplotlib inline\n", "import cv2\n", "import numpy as np\n", "plt.rcParams[\"figure.figsize\"] = (12, 10)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 1.1. Fonction de changement d’échelle (3 pts)\n", "
\n", "Développez une fonction définie comme suit.
\n", "\n", "- Indiquez la manière dont vous définissez les coordonnées de l’origine de chaque pixel d’une image (ex : au centre du pixel, dans le coin supérieur gauche …)\n", "\n", "- Décrivez chacune des étapes vous permettant de passer de l’image im à l’image ims.\n", "\n", "Remarque : Dans la fonction mae_ppv que vous développerez, vous ne devez pas utiliser\n", "les fonctions d’interpolation existantes. Par contre, vous pouvez vous inspirer de la fonction mae_bil.m qui implémente une interpolation bilinéaire.\n", "
" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "# Inscrivez votre code ici\n", "# Compléter la fonction suivante faisant de l'interpolation par plus proche voisin.\n", "def mae_ppv(im, sc):\n", " \"\"\" Interpolation par plus proche voisin d'une image im.\n", " im (nd.array): Image à interpoler.\n", " sc (float): Facteur d'échelle.\n", " \n", " Return:\n", " nd.array: Image interporlée.\n", " \"\"\"\n", " \n", " return ims" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "def mae_bil(im, sc):\n", " \"\"\" Interpolation bilinéaire d'une image im.\n", " im (nd.array): Image à interpoler.\n", " sc (float): Facteur d'échelle.\n", " \n", " Return:\n", " nd.array: Image interporlée.\n", " \"\"\"\n", " \n", " if sc <= 0 :\n", " display('scale : le parametre d echelle doit etre > 0')\n", " return\n", " \n", "\n", " if np.ndim(im) != 2 :\n", " display('Image doit avoir 2 dimensions')\n", " return\n", "\n", " M, N = im.shape\n", "\n", " # Nouvelles dimensions de l'image\n", " Ms, Ns = [round(M * sc), round(N * sc)]\n", "\n", " xs = np.linspace(1, Ms, Ms)\n", " ys = np.linspace(1, Ns, Ns)\n", "\n", " xsp = xs * M / Ms\n", " ysp = ys * N / Ns\n", " \n", " # Ajouter un pixel autour car il faut interpoler les pixels sur les bords\n", " Ap = np.pad(im, 1, 'symmetric')\n", " \n", " # Extraire les nouvelles coordonnées de l'image\n", " xisp = np.floor(xs * M / Ms).astype(int)\n", " yisp = np.floor(ys * N / Ns).astype(int)\n", " \n", " [Xsp, Ysp] = np.meshgrid(xsp,ysp)\n", " Xsp = np.transpose(Xsp)\n", " Ysp = np.transpose(Ysp)\n", "\n", " Xfsp = Xsp - np.floor(Xsp) # Coefficients pour l'interpolation\n", " Yfsp = Ysp - np.floor(Ysp) \n", "\n", " # Interpolation bilinéaire\n", " ims = (1 - Xfsp) * (1 - Yfsp) * Ap[xisp, :][:, yisp] + \\\n", " Xfsp * (1-Yfsp) * Ap[xisp + 1, :][:, yisp] + \\\n", " (1 - Xfsp) * Yfsp * Ap[xisp, :][:, yisp + 1] + \\\n", " Xfsp * Yfsp * Ap[xisp + 1, :][:, yisp + 1]\n", " \n", " return ims" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 1.2. Effet de l’interpolation (3 pts)\n", "
\n", "\n", "- Pour mettre en évidence l’effet de l’interpolation, utilisez la fonction que vous avez\n", "développée pour changer l’échelle de l’image Barbara.tif d’un facteur α\n", "inférieur à 1. Utilisez ensuite la même fonction et un facteur de 1/ α pour la ramener\n", "l’image transformée à son échelle initiale.\n", "
" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "# Inscrivez votre code ici\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "\n", "\n", "- Effectuez les mêmes opérations avec la fonction mae_bil,\n", "qui utilise une interpolation bilinéaire.\n", "
" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "# Inscrivez votre code ici\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "\n", "- Qu’observez-vous ? Est-ce que les deux schémas d’interpolation permettent de\n", "reproduire fidèlement l’image originale ? À quoi sont dues les différences\n", "observées ? Pour répondre à cette question, vous pouvez calculer l’erreur\n", "quadratique moyenne entre les images.\n", "\n", "\\begin{equation*}\n", "\\Delta Q = \\frac 1 n \\sum_{i,j}\\left( I \\left( i,j \\right) - I' \\left( i,j \\right) \\right)^2\n", "\\end{equation*}\n", "\n", "\n", "Où n est le nombre de pixel dans l’image, 𝐼(𝑖,𝑗) est un pixel de l’image original et\n", "𝐼’(𝑖,𝑗) est le pixel correspondant dans l’image transformée. Vous pouvez aussi\n", "observer l’histogramme des différences d’intensité entre les images.\n", "\n", "
\n" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "# Inscrivez votre code ici\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "DOUBLE-CLIQUEZ POUR INSCRIRE VOTRE RÉPONSE" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "- Quels artefacts (défauts) observez-vous dans les images réduites et reconstruites ?\n", "
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "DOUBLE-CLIQUEZ POUR INSCRIRE VOTRE RÉPONSE" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 2. Débruitage par filtrage spatial (6 pts)\n", "
\n", "\n", "\n", "Le fichier IRM_genou.tif de l’archive TP1.zip contient l’image d’un genou obtenue\n", "en imagerie par résonance magnétique nucléaire (IRM). Cette image est dégradée par un\n", "bruit relativement important. Le but de cette question est de mettre en œuvre et de comparer\n", "plusieurs filtres spatiaux, linéaires ou non. Développez et mettez en œuvre les filtres\n", "suivants :\n", "\n", "- Moyennage simple sur un masque carré de côté 3, 5 ou 7 pixels.\n", "- Moyennage pondéré de type gaussien sur un masque carré de côté 3, 5 ou 7 pixels.\n", "- Filtrage médian sur un masque carré de côté 3, 5 ou 7 pixels.\n", "\n", "La librairie OpenCV vous permet d'appliquer ces filtres (voir [documentation](https://docs.opencv.org/master/d4/d13/tutorial_py_filtering.html)). L’image filtrée doit être de même type et avoir la même taille que l’image de départ.\n", "Comparez empiriquement les résultats, en vous basant notamment sur le bruit résiduel, sur\n", "la netteté des contours des images filtrées et sur l’erreur quadratique moyenne. Vous\n", "pouvez au besoin vous appuyer sur leur histogramme. Le bruit résiduel Ο(𝑥, 𝑦) peut être\n", "calculé en soustrayant l’image filtrée 𝐼′(𝑥, 𝑦) à l’image originale 𝐼(𝑥, 𝑦).\n", "\n", "\\begin{equation*}\n", "Ο(𝑥, 𝑦) = |𝐼(𝑥, 𝑦) − 𝐼′(𝑥, 𝑦)|\n", "\\end{equation*}\n", "\n", "\n", "Discutez de l’effet du type de filtre (moyenne simple, moyenne pondérée, médian) et de la\n", "taille du filtre (3, 5, ou 7 pixels) sur les résultats de débruitage. \n", "
" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "# Inscrivez votre code ici\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "DOUBLE-CLIQUEZ POUR INSCRIRE VOTRE RÉPONSE" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 3. Amélioration d’images (6 pts)\n", "\n", "Le fichier Lune.tif contient une image de la lune de qualité médiocre, tant du point de\n", "vue de la distribution des niveaux de gris que de la netteté. Le but de cette question est\n", "donc d’appliquer une succession de traitements pour améliorer la qualité de cette image.\n", "\n", "### 3.1. Transformations portant sur l’intensité (2 pts)\n", "
\n", "\n", "En vous basant sur l’histogramme, effectuez une ou plusieurs transformations portant sur\n", "l’intensité de l’image pour en améliorer le contraste et l’aspect visuel. Quelques\n", "transformations que vous pouvez essayer pour améliorer le contraste sont :\n", "\n", "| Transformation | Paramètre(s) | Équation |\n", "| --- | --- | --- |\n", "| Inversion | NA | 1 – 𝑟 |\n", "|Gamma | 𝛾 < 1 si sous-exposé
𝛾 > 1 si surexposé | 𝑟𝛾 |\n", "| Logarithme | NA | ln(1 + 𝑟) /ln(2) |\n", "| Exponentielle | NA | 𝑒𝑟𝑙𝑛(2) − 1|\n", "\n", "
** r correspond à la valeur d’un pixel dans l’image
\n", "\n", "Note : Il n’est pas conseillé de procéder à l’égalisation de l’histogramme à cette étape-ci.\n", "Expliquez votre choix de transformation que vous avez utilisé pour améliorer l’aspect\n", "visuel de l’image.\n", "\n", "
" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "# Inscrivez votre code ici\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "DOUBLE-CLIQUEZ POUR INSCRIRE VOTRE RÉPONSE" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 3.2. Affinage de l’image (2 pts)\n", "
\n", "\n", "\n", "Appliquez à l’image obtenue à la question précédente un rehaussement par masquage flou\n", "généralisé (Unsharp Filter / Masking en anglais). Ce filtre de convolution est défini par\n", "\n", "
𝐺 = 𝐹 + 𝑎 [ 𝐹 − ℎ𝑏 ∗ 𝐹 ] = 𝐹 + 𝑎 [ 𝐹 − 𝐹′ ]
\n", "\n", "où F est l’image originale, G est l’image rehaussée, hb est un noyau de convolution agissant\n", "comme un filtre passe-bas, * est un produit de convolution, a est le coefficient de\n", "rehaussement et b contrôle la taille du filtre adoucisseur. Utilisez le filtre par moyennage\n", "pondéré de type Gaussien développé à la question précédente pour calculer l’image floue\n", "𝐹′ = ℎ𝑏 ∗ 𝐹.\n", "\n", "Faites varier la taille du filtre adoucisseur et le coefficient de rehaussement. Qu’observezvous ? Décrivez l’effet de ces paramètres sur l’image rehaussée.\n", "
" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "# Inscrivez votre code ici" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 3.3. Égalisation d’histogramme (2 pts)\n", "
\n", "\n", "\n", "Appliquez une égalisation d’histogramme à une image visuellement satisfaisante obtenue\n", "à la question précédente. Qu’observez-vous ? Expliquez. Comparez au résultat obtenu si\n", "vous appliquez l’égalisation d’histogramme à l’image de la Lune originale sans transformer\n", "son intensité et sans la rehausser par masquage flou. Pourquoi les résultats sont-ils\n", "différents ?\n", " Vous pouvez utiliser la fonction equalize_histogram(img) et plt.hist de matplotlib.\n", " \n", "
" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "def equalize_histogram(img):\n", " # Normaliser l'image de 0 à 255\n", " img = ((img - img.min()) / (img.max() - img.min()) * 255).astype('uint8')\n", " hist, bins = np.histogram(img, 256, [0,256])\n", " T = np.cumsum(hist) # Somme cumulée\n", " T = (T - T.min()) / (T.max() - T.min()) # Normalisation entre 0 et 1\n", " return (255 * T[img]).astype('uint8')\n" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "# Inscrivez votre code ici" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "DOUBLE-CLIQUEZ POUR INSCRIRE VOTRE RÉPONSE" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.4" } }, "nbformat": 4, "nbformat_minor": 2 }