Outils de Recherche Opérationnelle en Génie - MTH 8414 Programmation en nombres entiers Astuce de modélisation

Louis-Martin Rousseau

Office: A520.21 Tel.: #4569 Louis-Martin.Rousseau@polymtl.ca



## Trucs et astuces de modélisation

Comment modéliser les cas où l'on est en présence de:

- variables ont des domaines discontinus;
- certaines ressources qui ont des coûts fixes;
- disjonctions de contraintes;
- contraintes conditionnelles
- des produits de variables
- de SOS et des fonctions linéaires par morceaux





## Variables avec domaines discontinues

• Que faire avec le cas où soit x = 0 OU / <= x <= u ?



- On peut considérer ceci comme deux contraintes, mais elles ne peuvent être vraies toutes les deux à la fois...
  - Pouvez-vous trouver des exemples d'applications ?
  - Comment modéliser ceci avec un PLNE ?





## Variables avec domaines discontinues

• On utilisera une variable indicatrice :

$$\mathcal{Y} = \begin{cases} 0 & \text{for } x = 0\\ 1 & \text{for } l \le x \le u \end{cases}$$

• Qu'on liera avec la variable originale par les contraintes suivantes :

 $x \le uy$  $x \ge ly$  $y \quad \text{binary}$ 

• Y = 0 implique donc x = 0 et y = 1 implique que  $l \le x \le u$ .



# Les coûts fixes

POLYTECHNIQUE

• Soit le problème suivant:

Minimize:C(x)Subject to: $a_i x + \sum_{j \in J} a_{ij} w_j \ge b_i$  $\forall i \in I$  $x \ge 0$  $w_j \ge 0$  $\forall j \in J$ Where: $C(x) = \begin{cases} 0 & \text{for } x = 0 \\ k + cx & \text{for } x > 0 \end{cases}$ 

- La fonction de coût n'est ni linéaire ni continue...
- À quelle application pensez-vous ?
- Comment résoudre ce problème ?







• Si on connaît une borne u suffisamment grande pour x et qu'on introduit une variable indicatrice y

$$\mathcal{Y} = \begin{cases} 0 & \text{for } x = 0 \\ 1 & \text{for } x > 0 \end{cases}$$

- On relie x et y par  $x \leq yu$
- L'objectif devient donc:
- Et le problème devient:

Minimize: Subject to:  $C^*(x,y) = ky + cx$ 

ky + cx  $a_{i}x + \sum_{j \in J} a_{ij}w_{j} \ge b_{i} \qquad \forall i \in I$   $x \le uy$   $x \ge 0$   $w_{j} \ge 0 \qquad \forall j \in J$  y binary



## Une disjonction de contrainte

• Soit le problème suivant:

Minimize:

Subject to:

$$\sum_{j \in J} a_{1j} x_j \le b_1$$

$$\sum_{j \in J} a_{2j} x_j \le b_2$$

$$x_j \ge 0 \quad \forall j \in J$$

$$(1)$$

 $\sum_{j\in J} c_j x_j$ 

- Où soit (1) ou (2) doit être respectée
- Des applications ?
- Comment faire ?



### Une disjonction de contraintes

Encore une fois on introduira une variable supplémentaire y ainsi que deux grands nombres ( $M_1$  et  $M_2$ ). En modifiant (1) et (2) de la manière suivante:

(1) 
$$\sum_{j \in J} a_{1j} x_j \le b_1 + M_1 y$$
  
(2)  $\sum_{j \in J} a_{2j} x_j \le b_2 + M_2 (1 - y)$ 

On s'assure qu'une des deux contraintes devra être satisfaite.

Minimize: $\sum_{j \in J} c_j x_j$ Subject to: $\sum_{j \in J} a_{1j} x_j \leq b_1 + M_1 y$  $\sum_{j \in J} a_{2j} x_j \leq b_2 + M_2 (1 - y)$  $x_j \geq 0$ y binary



## Contraintes conditionnelles

Une variante de ce problème survient lorsque certaines contraintes sont conditionnelles:

If (1) 
$$(\sum_{j \in J} a_{1j} x_j \le b_1)$$
 is satisfied,  
then (2)  $(\sum_{j \in J} a_{2j} x_j \le b_2)$  must also be satisfied.

- Donnez des exemples d'application ?
- Comment traiter ce cas ?





### Contraintes conditionnelles

10

Pour adresser ce cas, nous devons nous tourner vers la logique

L'équation logique qui nous intéresse est (A implique B)

Cette équation est équivalente à (non-A OU B)

On a donc une disjonction de contraintes, qu'on peut traiter comme précédemment...

**Devient:** If  $(\sum_{j \in J} a_{1j}x_j \le b_1)$  holds, then  $(\sum_{j \in J} a_{2j}x_j \le b_2)$  must hold,

Sauf qu'ici on a un signe > qu'on ne peut traiter en PL...

$$(\sum_{j\in J}a_{1j}x_j > b_1)$$
 or  $(\sum_{j\in J}a_{2j}x_j \le b_2)$  must hold.





# Contraintes conditionnelles

On introduira une petite valeur *epsilon* 
$$\sum_{j \in J} a_{1j} x_j \ge b_1 + \epsilon$$

Pour obtenir:

$$\sum_{j \in J} a_{1j} x_j \ge b_1 + \epsilon, \quad or \quad \sum_{j \in J} a_{2j} x_j \le b_2 \quad must \ hold.$$

Qui peut être réécrit comme:

$$\sum_{j \in J} a_{1j} x_j \ge b_1 + \epsilon - Ly$$
$$\sum_{j \in J} a_{2j} x_j \le b_2 + M(1 - y)$$





# Éliminer les produits de variables

Que faire des problèmes où des termes contiennent le produit de deux variables booléennes  $x_1x_2$ 





## Éliminer les produits de variables

Que faire des problèmes où des termes contiennent le produit de deux variables booléennes  $x_1x_2$ 

On peut faire disparaître ce produit en introduisant une nouvelle variable booléenne y qui doit être égale au produit  $x_1x_2$ .

Pour ce faire il faut ajouter les contraintes suivantes:

$$y \le x_1$$
  
 $y \le x_2$   
 $y \ge x_1 + x_2 - 1$   
 $y$  binary





## Éliminer les produits de variables

4

Que faire maintenant si on doit traiter un produit  $x_1x_2$  où  $x_1$  est une variable binaire et  $x_2$  est une variable continue tel que  $0 \le x_2 \le u$ ?

On introduit une variable continue y définie comme  $y = x_1x_2$  en ajoutant les contraintes ci-dessous imposant le comportement:

|                                                     | $x_1$ | $\boldsymbol{\chi}_2$ | $x_1x_2$ | constraints                    | imply |
|-----------------------------------------------------|-------|-----------------------|----------|--------------------------------|-------|
| $\mathcal{Y} \leq \mathcal{U} \mathcal{X}_1$        | 0     | $w: 0 \le w \le u$    | 0        | $\mathcal{Y} \leq 0$           | y = 0 |
|                                                     |       |                       |          | $\mathcal{Y} \leq w$           |       |
| $\mathcal{V} \leq \chi_2$                           |       |                       |          | $y \ge w - u$                  |       |
| 2 –                                                 |       |                       |          | $\mathcal{Y} \ge 0$            |       |
| $v > x_2 - u(1 - x_1)$                              | 1     | $w: 0 \le w \le u$    | w        | $\mathcal{Y} \leq \mathcal{U}$ | y = w |
| $\mathcal{I} = \mathcal{I} \mathcal{I} \mathcal{I}$ |       |                       |          | $\mathcal{Y} \leq W$           |       |
| $\gamma > 0$                                        |       |                       |          | $\mathcal{Y} \geq W$           |       |
| $y \ge 0$                                           |       |                       |          | $\mathcal{Y} \ge 0$            |       |





## Les SOS (Special Ordered Sets)

Considérer le cas particulier suivant:

- Votre modèle comporte une série de décision oui/non ordonnée.
- Seulement une décision « oui » est possible
- Entre deux décisions « oui » on préfèrera toujours celle qui est la première dans la série.

Pour ce cela, on dispose généralement d'une série de variables booléennes y<sub>i</sub> telles que

 $\sum_{i} y_i \le 1$ 

On peut généraliser ce cas à :

• Aux variables générales  $x_i$  tel que  $0 \le x_i \le u$  et sujet à  $\sum_i a_i x_i \le b$ 

On peut aussi considérer le cas où deux décisions « oui » sont permises, mais elles doivent être consécutives.

Les solveurs ont des objets de modélisation SOS1 et SOS2 qui implémentent ces conditions de manières plus efficaces lors du branch and bound.





## Fonctions linéaires par morceaux

6

| Soit le problème suivant: | Minimize:   | $\sum f_j(x_j)$                     |                       |  |
|---------------------------|-------------|-------------------------------------|-----------------------|--|
|                           | Subject to: | $j{\in}J$                           |                       |  |
|                           |             | $\sum_{i=1}^{n} a_{ij} x_j \ge b_i$ | $\forall i \in I$     |  |
|                           |             | $j \in J$ $\gamma \to 0$            | $\forall i \subset I$ |  |

Ici on remarque que l'objective, bien que non linéaire, est séparable.

C'est-à-dire que l'objectif est une somme de fonctions définies sur une variable à la fois.

SéparableNon séparable
$$x_1^2 + 1/x_2 - 2x_3 = f_1(x_1) + f_2(x_2) + f_3(x_3)$$
 $x_1x_2 + 3x_2 + x_2^2 = f_1(x_1, x_2) + f_2(x_2)$  $x_1^2 + 5x_1 - x_2 = g_1(x_1) + g_2(x_2)$  $1/(x_1 + x_2) + x_3 = g_1(x_1, x_2) + g_2(x_3)$ 





Soit x<sub>1</sub>, x<sub>2</sub>, x<sub>3</sub>, x<sub>4</sub> des points de « cassure » (breakpoints) auquel on évalue la fonction f(x) (soit 0,1,2,4) On approxime donc linéairement tout point situé entre deux cassures, par exemple f(3) =  $\frac{1}{2}$ \*f(2) +  $\frac{1}{2}$ \*f(4) =  $\frac{1}{2}$ \*1 +  $\frac{1}{2}$ \*8 = 5.





#### Fonctions linéaires par morceaux

18

Une des manières de traiter ces fonctions est d'utiliser la  $\lambda$ -formulation.

Soit  $\lambda_1$ ,  $\lambda_2$ ,  $\lambda_3$ ,  $\lambda_4$ , 4 poids non négatifs dont la somme = 1, alors la fonction linéaire par morceaux précédente peut-être exprimée par:

$$\lambda_1 f(x_1) + \lambda_2 f(x_2) + \lambda_3 f(x_3) + \lambda_4 f(x_4) = \tilde{f}(x)$$
$$\lambda_1 x_1 + \lambda_2 x_2 + \lambda_3 x_3 + \lambda_4 x_4 = x$$
$$\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 = 1$$

Comme au plus deux  $\lambda$  peuvent être non négatifs, et que ceux-ci doivent en plus être consécutifs, on peut ajouter une contrainte SOS2( $\lambda$ ).

La majorité des solveurs ont un objet « Piecewise Linear » que vous pouvez utiliser directement.

