

Trucs et astuces de modélisation

Comment modéliser les cas où l'on est en présence de:

- variables ont des domaines discontinus;
- certaines ressources qui ont des coûts fixes;
- disjonctions de contraintes;
- contraintes conditionnelles
- des produits de variables
- de SOS et des fonctions linéaires par morceaux

Variables avec domaines discontinues

- Que faire avec le cas où soit $x=0$ OU $\mid<=x<=u$?

- On peut considérer ceci comme deux contraintes, mais elles ne peuvent être vraies toutes les deux à la fois...
- Pouvez-vous trouver des exemples d'applications ?
- Comment modéliser ceci avec un PLNE ?

Variables avec domaines discontinues

- On utilisera une variable indicatrice :

$$
y= \begin{cases}0 & \text { for } x=0 \\ 1 & \text { for } l \leq x \leq u\end{cases}
$$

- Qu'on liera avec la variable originale par les contraintes suivantes:

$$
\begin{aligned}
& x \leq u y \\
& x \geq l y \\
& y \text { binary }
\end{aligned}
$$

- $Y=0$ implique donc $x=0$ et $y=1$ implique que $I \leq x \leq u$.

Les coûts fixes

Minimize:
 $$
C(x)
$$

- Soit le problème suivant:

Subject to:

$$
\begin{aligned}
a_{i} x+\sum_{j \in J} a_{i j} w_{j} & \gtrless b_{i} \quad \forall i \in I \\
x & \geq 0 \\
w_{j} & \geq 0 \quad \forall j \in J
\end{aligned}
$$

Where:

$$
C(x)= \begin{cases}0 & \text { for } x=0 \\ k+c x & \text { for } x>0\end{cases}
$$

- La fonction de coût n'est ni linéaire ni continue...
- À quelle application pensez-vous ?
- Comment résoudre ce problème ?

Les coûts fixes

- Si on connaît une borne u suffisamment grande pour x et qu'on introduit une variable indicatrice y

$$
y= \begin{cases}0 & \text { for } x=0 \\ 1 & \text { for } x>0\end{cases}
$$

- On relie x et y par $x \leq y u$
- L'objectif devient donc:
- Et le problème devient:

Minimize:

$$
k y+c x
$$

Subject to:

$$
C^{*}(x, y)=k y+c x
$$

$$
\begin{aligned}
a_{i} x+\sum_{j \in J} a_{i j} w_{j} & \gtrless b_{i} & \forall i \in I \\
x & \leq u y & \\
x & \geq 0 & \\
w_{j} & \geq 0 & \forall j \in J \\
y & \text { binary } &
\end{aligned}
$$

Une disjonction de contrainte

- Soit le problème suivant:

Minimize:

$$
\sum_{j \in J} c_{j} x_{j}
$$

Subject to:

$$
\begin{aligned}
\sum_{j \in J} a_{1 j} x_{j} & \leq b_{1} \\
\sum_{j \in J} a_{2 j} x_{j} & \leq b_{2} \\
x_{j} & \geq 0 \quad \forall j \in J
\end{aligned}
$$

- Où soit (1) ou (2) doit être respectée
- Des applications ?
- Comment faire ?

Une disjonction de contraintes

Encore une fois on introduira une variable supplémentaire y ainsi que deux grands nombres (M_{1} et M_{2}). En modifiant (1) et (2) de la manière suivante:
(1) $\sum_{j \in J} a_{1 j} x_{j} \leq b_{1}+M_{1} y$
(2) $\sum_{j \in J} a_{2 j} x_{j} \leq b_{2}+M_{2}(1-y)$

On s'assure qu'une des deux contraintes devra être satisfaite.
Minimize:

$$
\sum_{j \in J} c_{j} x_{j}
$$

Subject to:

$$
\begin{aligned}
\sum_{j \in J} a_{1 j} x_{j} & \leq b_{1}+M_{1} y \\
\sum_{j \in J} a_{2 j} x_{j} & \leq b_{2}+M_{2}(1-y) \\
& \\
\quad x_{j} & \geq 0 \\
y \text { binary } & \forall j \in J
\end{aligned}
$$

Contraintes conditionnelles

Une variante de ce problème survient lorsque certaines contraintes sont conditionnelles:

$$
\begin{gathered}
\text { If (1) } \quad\left(\sum_{j \in J} a_{1 j} x_{j} \leq b_{1}\right) \quad \text { is satisfied, } \\
\text { then } \quad \text { (2) } \quad\left(\sum_{j \in J} a_{2 j} x_{j} \leq b_{2}\right) \quad \text { must also be satisfied. }
\end{gathered}
$$

- Donnez des exemples d'application ?
- Comment traiter ce cas ?

Contraintes conditionnelles

Pour adresser ce cas, nous devons nous tourner vers la logique

L'équation logique qui nous intéresse est (A implique B)
Cette équation est équivalente à (non-A OU B)
On a donc une disjonction de contraintes, qu'on peut traiter comme précédemment...

Devient:

$$
\text { If } \quad\left(\sum_{j \in J} a_{1 j} x_{j} \leq b_{1}\right) \quad \text { holds, then } \quad\left(\sum_{j \in J} a_{2 j} x_{j} \leq b_{2}\right) \quad \text { must hold, }
$$

Sauf qu'ici on a un signe > qu'on ne peut traiter en PL...

$$
\left(\sum_{j \in J} a_{1 j} x_{j}>b_{1}\right) \quad \text { or } \quad\left(\sum_{j \in J} a_{2 j} x_{j} \leq b_{2}\right) \quad \text { must hold. }
$$

Contraintes conditionnelles

On introduira une petite valeur epsilon

$$
\sum_{j \in J} a_{1 j} x_{j} \geq b_{1}+\epsilon
$$

Pour obtenir: $\quad \sum_{j \in J} a_{1 j} x_{j} \geq b_{1}+\epsilon, \quad$ or $\quad \sum_{j \in J} a_{2 j} x_{j} \leq b_{2} \quad$ must hold.
Qui peut être réécrit comme:

$$
\begin{aligned}
& \sum_{j \in J} a_{1 j} x_{j} \geq b_{1}+\epsilon-L y \\
& \sum_{j \in J} a_{2 j} x_{j} \leq b_{2}+M(1-y)
\end{aligned}
$$

Éliminer les produits de variables

Que faire des problèmes où des termes contiennent le produit de deux variables booléennes $x_{1} x_{2}$

Éliminer les produits de variables

Que faire des problèmes où des termes contiennent le produit de deux variables booléennes $x_{1} x_{2}$

On peut faire disparaître ce produit en introduisant une nouvelle variable booléenne y qui doit être égale au produit $x_{1} x_{2}$.

Pour ce faire il faut ajouter les contraintes suivantes:

$$
\begin{aligned}
& y \leq x_{1} \\
& y \leq x_{2} \\
& y \geq x_{1}+x_{2}-1 \\
& y \text { binary }
\end{aligned}
$$

Éliminer les produits de variables

Que faire maintenant si on doit traiter un produit $x_{1} x_{2}$ où x_{1} est une variable binaire et x_{2} est une variable continue tel que $0<=x_{2}<=u$?

On introduit une variable continue y définie comme $y=x_{1} x_{2}$ en ajoutant les contraintes ci-dessous imposant le comportement:

$$
\begin{aligned}
& y \leq u x_{1} \\
& y \leq x_{2} \\
& y \geq x_{2}-u\left(1-x_{1}\right) \\
& y \geq 0
\end{aligned}
$$

x_{1}	x_{2}	$x_{1} x_{2}$	constraints	imply
0	$w: 0 \leq w \leq u$	0	$y \leq 0$	$y=0$
			$y \leq w$	
			$y \geq w-u$	
			$y \geq 0$	
1	$w: 0 \leq w \leq u$	w	$y \leq u$	$y=w$
			$y \leq w$	
			$y \geq w$	
			$y \geq 0$	

Les SOS (Special Ordered Sets)

Considérer le cas particulier suivant:

- Votre modèle comporte une série de décision oui/non ordonnée.
- Seulement une décision « oui » est possible
- Entre deux décisions « oui» on préfèrera toujours celle qui est la première dans la série.

Pour ce cela, on dispose généralement d'une série de variables booléennes y_{i} telles que $\sum_{i} y_{i} \leq 1$
On peut généraliser ce cas à :

- Aux variables générales x_{i} tel que $0<=x_{i}<=u$ et sujet à $\sum_{i} a_{i} x_{i} \leq b$

On peut aussi considérer le cas où deux décisions « oui » sont permises, mais elles doivent être consécutives.

Les solveurs ont des objets de modélisation SOS1 et SOS2 qui implémentent ces conditions de manières plus efficaces lors du branch and bound.

Fonctions linéaires par morceaux

Soit le problème suivant:

Minimize:

$$
\sum_{j \in J} f_{j}\left(x_{j}\right)
$$

Subject to:

$$
\begin{aligned}
\sum_{j \in J} a_{i j} x_{j} \gtrless b_{i} & \forall i \in I \\
x_{j} \geq 0 & \forall j \in J
\end{aligned}
$$

Ici on remarque que l'objective, bien que non linéaire, est séparable.
C'est-à-dire que l'objectif est une somme de fonctions définies sur une variable à la fois.

Séparable

$$
\begin{aligned}
x_{1}^{2}+1 / x_{2}-2 x_{3} & =f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)+f_{3}\left(x_{3}\right) \\
x_{1}^{2}+5 x_{1}-x_{2} & =g_{1}\left(x_{1}\right)+g_{2}\left(x_{2}\right)
\end{aligned}
$$

Non séparable

$$
\begin{aligned}
& x_{1} x_{2}+3 x_{2}+x_{2}^{2}=f_{1}\left(x_{1}, x_{2}\right)+f_{2}\left(x_{2}\right) \\
& 1 /\left(x_{1}+x_{2}\right)+x_{3}=g_{1}\left(x_{1}, x_{2}\right)+g_{2}\left(x_{3}\right)
\end{aligned}
$$

Fonctions linéaires par morceaux

Soit la fonction $\quad f(x)=\frac{1}{2} x^{2}$

Soit $x_{1}, x_{2}, x_{3}, x_{4}$ des points de «cassure» (breakpoints) auquel on évalue la fonction $f(x)$ (soit 0,1,2,4) On approxime donc linéairement tout point situé entre deux cassures, par exemple $f(3)=1 / 2 * f(2)+1 / 2 * f(4)=$ $1 / 2^{*} 1+1 / 2^{*} 8=5$.

Fonctions linéaires par morceaux

Une des manières de traiter ces fonctions est d'utiliser la λ-formulation.
Soit $\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, 4$ poids non négatifs dont la somme $=1$, alors la fonction linéaire par morceaux précédente peut-être exprimée par:

$$
\begin{aligned}
\lambda_{1} f\left(x_{1}\right)+\lambda_{2} f\left(x_{2}\right)+\lambda_{3} f\left(x_{3}\right)+\lambda_{4} f\left(x_{4}\right) & =\tilde{f}(x) \\
\lambda_{1} x_{1}+\lambda_{2} x_{2}+\lambda_{3} x_{3}+\lambda_{4} x_{4} & =x \\
\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{4} & =1
\end{aligned}
$$

Comme au plus deux λ peuvent être non négatifs, et que ceux-ci doivent en plus être consécutifs, on peut ajouter une contrainte SOS2(λ).
La majorité des solveurs ont un objet « Piecewise Linear » que vous pouvez utiliser directement.

