
Outils de Recherche
Opérationnelle en Génie - MTH 8414

Programmation en nombres entiers
Astuce de modélisation

Louis-Martin Rousseau

Office: A520.21 Tel.: #4569
Louis-Martin.Rousseau@polymtl.ca

Comment modéliser les cas où l’on est en présence de:
• variables ont des domaines discontinus;
• certaines ressources qui ont des coûts fixes;
• disjonctions de contraintes;
• contraintes conditionnelles
• des produits de variables
• de SOS et des fonctions linéaires par morceaux

Trucs et astuces de modélisation

2

• Que faire avec le cas où soit x = 0 OU l <= x <= u ?

• On peut considérer ceci comme deux contraintes, mais elles ne peuvent être vraies toutes les
deux à la fois…

• Pouvez-vous trouver des exemples d’applications ?

• Comment modéliser ceci avec un PLNE ?

Variables avec domaines discontinues

3

Chapter 7

Integer Linear Programming Tricks

This chapterAs in the previous chapter “Linear Programming Tricks”, the emphasis is on
abstract mathematical modeling techniques but this time the focus is on inte-
ger programming tricks. These are not discussed in any particular reference,
but are scattered throughout the literature. Several tricks can be found in
[Wi90]. Other tricks are referenced directly.

Limitation to
linear integer
programs

Only linear integer programming models are considered because of the avail-
ability of computer codes for this class of problems. It is interesting to note
that several practical problems can be transformed into linear integer pro-
grams. For example, integer variables can be introduced so that a nonlinear
function can be approximated by a “piecewise linear” function. This and other
examples are explained in this chapter.

7.1 A variable taking discontinuous values

A jump in the
bound

This section considers an example of a simple situation that cannot be formu-
lated as a linear programming model. The value of a variable must be either
zero or between particular positive bounds (see Figure 7.1). In algebraic nota-
tion:

x = 0 or l ≤ x ≤ u
This can be interpreted as two constraints that cannot both hold simultane-
ously. In linear programming only simultaneous constraints can be modeled.

0 l u
x

Figure 7.1: A discontinuous variable

ApplicationsThis situation occurs when a supplier of some item requires that if an item
is ordered, then its batch size must be between a particular minimum and
maximum value. Another possibility is that there is a set-up cost associated
with the manufacture of an item.

• On utilisera une variable indicatrice :

• Qu’on liera avec la variable originale par les contraintes suivantes :

• Y = 0 implique donc x = 0 et y = 1 implique que l ≤ x ≤ u.

Variables avec domaines discontinues

4

78 Chapter 7. Integer Linear Programming Tricks

Modeling dis-
continuous
variables

To model discontinuous variables, it is helpful to introduce the concept of an
indicator variable. An indicator variable is a binary variable (0 or 1) that indi-
cates a certain state in a model. In the above example, the indicator variable y
is linked to x in the following way:

y =

0 for x = 0

1 for l ≤ x ≤ u

The following set of constraints is used to create the desired properties:

x ≤ uy
x ≥ ly
y binary

It is clear that y = 0 implies x = 0, and that y = 1 implies l ≤ x ≤ u.

7.2 Fixed costs

The model A fixed cost problem is another application where indicator variables are added
so that two mutually exclusive situations can be modeled. An example is
provided using a single-variable. Consider the following linear programming
model (the sign “≷” denotes either “≤”, “=”, or “≥” constraints).

Minimize: C(x)

Subject to:
aix +

∑

j∈J
aijwj ≷ bi ∀i ∈ I

x ≥ 0

wj ≥ 0 ∀j ∈ J

Where: C(x) =

0 for x = 0

k+ cx for x > 0

As soon as x has a positive value, a fixed cost is incurred. This cost function
is not linear and is not continuous. There is a jump at x = 0, as illustrated in
Figure 7.2.

Application In the above formulation, the discontinuous function is the objective, but such
a function might equally well occur in a constraint. An example of such a
fixed-cost problem occurs in the manufacturing industry when set-up costs
are charged for new machinery.

78 Chapter 7. Integer Linear Programming Tricks

Modeling dis-
continuous
variables

To model discontinuous variables, it is helpful to introduce the concept of an
indicator variable. An indicator variable is a binary variable (0 or 1) that indi-
cates a certain state in a model. In the above example, the indicator variable y
is linked to x in the following way:

y =

0 for x = 0

1 for l ≤ x ≤ u

The following set of constraints is used to create the desired properties:

x ≤ uy
x ≥ ly
y binary

It is clear that y = 0 implies x = 0, and that y = 1 implies l ≤ x ≤ u.

7.2 Fixed costs

The model A fixed cost problem is another application where indicator variables are added
so that two mutually exclusive situations can be modeled. An example is
provided using a single-variable. Consider the following linear programming
model (the sign “≷” denotes either “≤”, “=”, or “≥” constraints).

Minimize: C(x)

Subject to:
aix +

∑

j∈J
aijwj ≷ bi ∀i ∈ I

x ≥ 0

wj ≥ 0 ∀j ∈ J

Where: C(x) =

0 for x = 0

k+ cx for x > 0

As soon as x has a positive value, a fixed cost is incurred. This cost function
is not linear and is not continuous. There is a jump at x = 0, as illustrated in
Figure 7.2.

Application In the above formulation, the discontinuous function is the objective, but such
a function might equally well occur in a constraint. An example of such a
fixed-cost problem occurs in the manufacturing industry when set-up costs
are charged for new machinery.

• Soit le problème suivant:

• La fonction de coût n’est ni linéaire ni continue...
• À quelle application pensez-vous ?
• Comment résoudre ce problème ?

Les coûts fixes

5

78 Chapter 7. Integer Linear Programming Tricks

Modeling dis-
continuous
variables

To model discontinuous variables, it is helpful to introduce the concept of an
indicator variable. An indicator variable is a binary variable (0 or 1) that indi-
cates a certain state in a model. In the above example, the indicator variable y
is linked to x in the following way:

y =

0 for x = 0

1 for l ≤ x ≤ u

The following set of constraints is used to create the desired properties:

x ≤ uy
x ≥ ly
y binary

It is clear that y = 0 implies x = 0, and that y = 1 implies l ≤ x ≤ u.

7.2 Fixed costs

The model A fixed cost problem is another application where indicator variables are added
so that two mutually exclusive situations can be modeled. An example is
provided using a single-variable. Consider the following linear programming
model (the sign “≷” denotes either “≤”, “=”, or “≥” constraints).

Minimize: C(x)

Subject to:
aix +

∑

j∈J
aijwj ≷ bi ∀i ∈ I

x ≥ 0

wj ≥ 0 ∀j ∈ J

Where: C(x) =

0 for x = 0

k+ cx for x > 0

As soon as x has a positive value, a fixed cost is incurred. This cost function
is not linear and is not continuous. There is a jump at x = 0, as illustrated in
Figure 7.2.

Application In the above formulation, the discontinuous function is the objective, but such
a function might equally well occur in a constraint. An example of such a
fixed-cost problem occurs in the manufacturing industry when set-up costs
are charged for new machinery.

7.3. Either-or constraints 79

C(x)

k

0 x

c

Figure 7.2: Discontinuous cost function

Modeling fixed
costs

A sufficiently large upper bound, u, must be specified for x. An indicator
variable, y , is also introduced in a similar fashion:

y =

0 for x = 0

1 for x > 0

Now the cost function can be specified in both x and y :

C∗(x,y) = ky + cx

The minimum of this function reflects the same cost figures as the original
cost function, except for the case when x > 0 and y = 0. Therefore, one
constraint must be added to ensure that x = 0 whenever y = 0:

x ≤ uy

The equivalent
mixed integer
program

Now the model can be stated as a mixed integer programming model. The
formulation given earlier in this section can be transformed as follows.

Minimize: ky + cx
Subject to:

aix +
∑

j∈J
aijwj ≷ bi ∀i ∈ I

x ≤ uy
x ≥ 0

wj ≥ 0 ∀j ∈ J
y binary

7.3 Either-or constraints

The modelConsider the following linear programming model:

Minimize:
∑

j∈J
cjxj

• Si on connaît une borne u suffisamment grande pour x et qu’on introduit une variable indicatrice y

• On relie x et y par 𝑥 ≤ 𝑦𝑢

• L’objectif devient donc:

• Et le problème devient:

Les coûts fixes

6

7.3. Either-or constraints 79

C(x)

k

0 x

c

Figure 7.2: Discontinuous cost function

Modeling fixed
costs

A sufficiently large upper bound, u, must be specified for x. An indicator
variable, y , is also introduced in a similar fashion:

y =

0 for x = 0

1 for x > 0

Now the cost function can be specified in both x and y :

C∗(x,y) = ky + cx

The minimum of this function reflects the same cost figures as the original
cost function, except for the case when x > 0 and y = 0. Therefore, one
constraint must be added to ensure that x = 0 whenever y = 0:

x ≤ uy

The equivalent
mixed integer
program

Now the model can be stated as a mixed integer programming model. The
formulation given earlier in this section can be transformed as follows.

Minimize: ky + cx
Subject to:

aix +
∑

j∈J
aijwj ≷ bi ∀i ∈ I

x ≤ uy
x ≥ 0

wj ≥ 0 ∀j ∈ J
y binary

7.3 Either-or constraints

The modelConsider the following linear programming model:

Minimize:
∑

j∈J
cjxj

7.3. Either-or constraints 79

C(x)

k

0 x

c

Figure 7.2: Discontinuous cost function

Modeling fixed
costs

A sufficiently large upper bound, u, must be specified for x. An indicator
variable, y , is also introduced in a similar fashion:

y =

0 for x = 0

1 for x > 0

Now the cost function can be specified in both x and y :

C∗(x,y) = ky + cx

The minimum of this function reflects the same cost figures as the original
cost function, except for the case when x > 0 and y = 0. Therefore, one
constraint must be added to ensure that x = 0 whenever y = 0:

x ≤ uy

The equivalent
mixed integer
program

Now the model can be stated as a mixed integer programming model. The
formulation given earlier in this section can be transformed as follows.

Minimize: ky + cx
Subject to:

aix +
∑

j∈J
aijwj ≷ bi ∀i ∈ I

x ≤ uy
x ≥ 0

wj ≥ 0 ∀j ∈ J
y binary

7.3 Either-or constraints

The modelConsider the following linear programming model:

Minimize:
∑

j∈J
cjxj

7.3. Either-or constraints 79

C(x)

k

0 x

c

Figure 7.2: Discontinuous cost function

Modeling fixed
costs

A sufficiently large upper bound, u, must be specified for x. An indicator
variable, y , is also introduced in a similar fashion:

y =

0 for x = 0

1 for x > 0

Now the cost function can be specified in both x and y :

C∗(x,y) = ky + cx

The minimum of this function reflects the same cost figures as the original
cost function, except for the case when x > 0 and y = 0. Therefore, one
constraint must be added to ensure that x = 0 whenever y = 0:

x ≤ uy

The equivalent
mixed integer
program

Now the model can be stated as a mixed integer programming model. The
formulation given earlier in this section can be transformed as follows.

Minimize: ky + cx
Subject to:

aix +
∑

j∈J
aijwj ≷ bi ∀i ∈ I

x ≤ uy
x ≥ 0

wj ≥ 0 ∀j ∈ J
y binary

7.3 Either-or constraints

The modelConsider the following linear programming model:

Minimize:
∑

j∈J
cjxj

• Soit le problème suivant:

• Où soit (1) ou (2) doit être respectée
• Des applications ?
• Comment faire ?

Une disjonction de contrainte

7

7.3. Either-or constraints 79

C(x)

k

0 x

c

Figure 7.2: Discontinuous cost function

Modeling fixed
costs

A sufficiently large upper bound, u, must be specified for x. An indicator
variable, y , is also introduced in a similar fashion:

y =

0 for x = 0

1 for x > 0

Now the cost function can be specified in both x and y :

C∗(x,y) = ky + cx

The minimum of this function reflects the same cost figures as the original
cost function, except for the case when x > 0 and y = 0. Therefore, one
constraint must be added to ensure that x = 0 whenever y = 0:

x ≤ uy

The equivalent
mixed integer
program

Now the model can be stated as a mixed integer programming model. The
formulation given earlier in this section can be transformed as follows.

Minimize: ky + cx
Subject to:

aix +
∑

j∈J
aijwj ≷ bi ∀i ∈ I

x ≤ uy
x ≥ 0

wj ≥ 0 ∀j ∈ J
y binary

7.3 Either-or constraints

The modelConsider the following linear programming model:

Minimize:
∑

j∈J
cjxj

80 Chapter 7. Integer Linear Programming Tricks

Subject to: ∑

j∈J
a1jxj ≤ b1 (1)

∑

j∈J
a2jxj ≤ b2 (2)

xj ≥ 0 ∀j ∈ J

Where: at least one of the conditions (1) or (2) must hold

The condition that at least one of the constraints must hold cannot be for-
mulated in a linear programming model, because in a linear program all con-
straints must hold. Again, a binary variable can be used to express the prob-
lem. An example of such a situation is a manufacturing process, where two
modes of operation are possible.

Modeling
either-or
constraints

Consider a binary variable y , and sufficiently large upper bounds M1 and M2,
which are upper bounds on the activity of the constraints. The bounds are
chosen such that they are as tight as possible, while still guaranteeing that the
left-hand side of constraint i is always smaller than bi +Mi. The constraints
can be rewritten as follows:

(1)
∑

j∈J
a1jxj ≤ b1 +M1y

(2)
∑

j∈J
a2jxj ≤ b2 +M2(1−y)

When y = 0, constraint (1) is imposed, and constraint (2) is weakened to∑
j∈J a2jxj ≤ b2+M2, which will always be non-binding. Constraint (2) may of

course still be satisfied. When y = 1, the situation is reversed. So in all cases
one of the constraints is imposed, and the other constraint may also hold. The
problem then becomes:

The equivalent
mixed integer
program

Minimize:
∑

j∈J
cjxj

Subject to: ∑

j∈J
a1jxj ≤ b1 +M1y

∑

j∈J
a2jxj ≤ b2 +M2(1−y)

xj ≥ 0 ∀j ∈ J
y binary

Encore une fois on introduira une variable supplémentaire y ainsi que deux grands nombres (M1 et M2).
En modifiant (1) et (2) de la manière suivante:

On s’assure qu’une des deux contraintes devra être satisfaite.

Une disjonction de contraintes

8

80 Chapter 7. Integer Linear Programming Tricks

Subject to: ∑

j∈J
a1jxj ≤ b1 (1)

∑

j∈J
a2jxj ≤ b2 (2)

xj ≥ 0 ∀j ∈ J

Where: at least one of the conditions (1) or (2) must hold

The condition that at least one of the constraints must hold cannot be for-
mulated in a linear programming model, because in a linear program all con-
straints must hold. Again, a binary variable can be used to express the prob-
lem. An example of such a situation is a manufacturing process, where two
modes of operation are possible.

Modeling
either-or
constraints

Consider a binary variable y , and sufficiently large upper bounds M1 and M2,
which are upper bounds on the activity of the constraints. The bounds are
chosen such that they are as tight as possible, while still guaranteeing that the
left-hand side of constraint i is always smaller than bi +Mi. The constraints
can be rewritten as follows:

(1)
∑

j∈J
a1jxj ≤ b1 +M1y

(2)
∑

j∈J
a2jxj ≤ b2 +M2(1−y)

When y = 0, constraint (1) is imposed, and constraint (2) is weakened to∑
j∈J a2jxj ≤ b2+M2, which will always be non-binding. Constraint (2) may of

course still be satisfied. When y = 1, the situation is reversed. So in all cases
one of the constraints is imposed, and the other constraint may also hold. The
problem then becomes:

The equivalent
mixed integer
program

Minimize:
∑

j∈J
cjxj

Subject to: ∑

j∈J
a1jxj ≤ b1 +M1y

∑

j∈J
a2jxj ≤ b2 +M2(1−y)

xj ≥ 0 ∀j ∈ J
y binary

80 Chapter 7. Integer Linear Programming Tricks

Subject to: ∑

j∈J
a1jxj ≤ b1 (1)

∑

j∈J
a2jxj ≤ b2 (2)

xj ≥ 0 ∀j ∈ J

Where: at least one of the conditions (1) or (2) must hold

The condition that at least one of the constraints must hold cannot be for-
mulated in a linear programming model, because in a linear program all con-
straints must hold. Again, a binary variable can be used to express the prob-
lem. An example of such a situation is a manufacturing process, where two
modes of operation are possible.

Modeling
either-or
constraints

Consider a binary variable y , and sufficiently large upper bounds M1 and M2,
which are upper bounds on the activity of the constraints. The bounds are
chosen such that they are as tight as possible, while still guaranteeing that the
left-hand side of constraint i is always smaller than bi +Mi. The constraints
can be rewritten as follows:

(1)
∑

j∈J
a1jxj ≤ b1 +M1y

(2)
∑

j∈J
a2jxj ≤ b2 +M2(1−y)

When y = 0, constraint (1) is imposed, and constraint (2) is weakened to∑
j∈J a2jxj ≤ b2+M2, which will always be non-binding. Constraint (2) may of

course still be satisfied. When y = 1, the situation is reversed. So in all cases
one of the constraints is imposed, and the other constraint may also hold. The
problem then becomes:

The equivalent
mixed integer
program

Minimize:
∑

j∈J
cjxj

Subject to: ∑

j∈J
a1jxj ≤ b1 +M1y

∑

j∈J
a2jxj ≤ b2 +M2(1−y)

xj ≥ 0 ∀j ∈ J
y binary

Une variante de ce problème survient lorsque certaines contraintes sont conditionnelles:

• Donnez des exemples d’application ?
• Comment traiter ce cas ?

Contraintes conditionnelles

9

7.4. Conditional constraints 81

7.4 Conditional constraints

The modelA problem that can be treated in a similar way to either-or constraints is one
that contains conditional constraints. The mathematical presentation is lim-
ited to a case, involving two constraints, on which the following condition is
imposed.

If (1) (
∑

j∈J
a1jxj ≤ b1) is satisfied,

then (2) (
∑

j∈J
a2jxj ≤ b2) must also be satisfied.

Logical
equivalence

Let A denote the statement that the logical expression “Constraint (1) holds”
is true, and similarly, let B denote the statement that the logical expression
“Constraint (2) holds” is true. The notation ¬A and ¬B represent the case
of the corresponding logical expressions being false. The above conditional
constraint can be restated as: A implies B. This is logically equivalent to writing
(A and ¬B) is false. Using the negation of this expression, it follows that ¬(A
and ¬B) is true. This is equivalent to (¬A or B) is true, using Boolean algebra.
It is this last equivalence that allows one to translate the above conditional
constraint into an either-or constraint.

Modeling
conditional
constraints

One can observe that

If (
∑

j∈J
a1jxj ≤ b1) holds, then (

∑

j∈J
a2jxj ≤ b2) must hold,

is equivalent to

(
∑

j∈J
a1jxj > b1) or (

∑

j∈J
a2jxj ≤ b2) must hold.

Notice that the sign in (1) is reversed. A difficulty to overcome is that the strict
inequality “not (1)” needs to be modeled as an inequality. This can be achieved
by specifying a small tolerance value beyond which the constraint is regarded
as broken, and rewriting the constraint to:

∑

j∈J
a1jxj ≥ b1 + ε

This results in:
∑

j∈J
a1jxj ≥ b1 + ε, or

∑

j∈J
a2jxj ≤ b2 must hold.

This last expression strongly resembles the either-or constraints in the pre-
vious section. This can be modeled in a similar way by introducing a binary

Pour adresser ce cas, nous devons nous tourner vers la logique

L’équation logique qui nous intéresse est (A implique B)
Cette équation est équivalente à (non-A OU B)
On a donc une disjonction de contraintes, qu’on peut traiter comme précédemment…

Devient:

Sauf qu’ici on a un signe > qu’on ne peut traiter en PL…

Contraintes conditionnelles

10

7.4. Conditional constraints 81

7.4 Conditional constraints

The modelA problem that can be treated in a similar way to either-or constraints is one
that contains conditional constraints. The mathematical presentation is lim-
ited to a case, involving two constraints, on which the following condition is
imposed.

If (1) (
∑

j∈J
a1jxj ≤ b1) is satisfied,

then (2) (
∑

j∈J
a2jxj ≤ b2) must also be satisfied.

Logical
equivalence

Let A denote the statement that the logical expression “Constraint (1) holds”
is true, and similarly, let B denote the statement that the logical expression
“Constraint (2) holds” is true. The notation ¬A and ¬B represent the case
of the corresponding logical expressions being false. The above conditional
constraint can be restated as: A implies B. This is logically equivalent to writing
(A and ¬B) is false. Using the negation of this expression, it follows that ¬(A
and ¬B) is true. This is equivalent to (¬A or B) is true, using Boolean algebra.
It is this last equivalence that allows one to translate the above conditional
constraint into an either-or constraint.

Modeling
conditional
constraints

One can observe that

If (
∑

j∈J
a1jxj ≤ b1) holds, then (

∑

j∈J
a2jxj ≤ b2) must hold,

is equivalent to

(
∑

j∈J
a1jxj > b1) or (

∑

j∈J
a2jxj ≤ b2) must hold.

Notice that the sign in (1) is reversed. A difficulty to overcome is that the strict
inequality “not (1)” needs to be modeled as an inequality. This can be achieved
by specifying a small tolerance value beyond which the constraint is regarded
as broken, and rewriting the constraint to:

∑

j∈J
a1jxj ≥ b1 + ε

This results in:
∑

j∈J
a1jxj ≥ b1 + ε, or

∑

j∈J
a2jxj ≤ b2 must hold.

This last expression strongly resembles the either-or constraints in the pre-
vious section. This can be modeled in a similar way by introducing a binary

7.4. Conditional constraints 81

7.4 Conditional constraints

The modelA problem that can be treated in a similar way to either-or constraints is one
that contains conditional constraints. The mathematical presentation is lim-
ited to a case, involving two constraints, on which the following condition is
imposed.

If (1) (
∑

j∈J
a1jxj ≤ b1) is satisfied,

then (2) (
∑

j∈J
a2jxj ≤ b2) must also be satisfied.

Logical
equivalence

Let A denote the statement that the logical expression “Constraint (1) holds”
is true, and similarly, let B denote the statement that the logical expression
“Constraint (2) holds” is true. The notation ¬A and ¬B represent the case
of the corresponding logical expressions being false. The above conditional
constraint can be restated as: A implies B. This is logically equivalent to writing
(A and ¬B) is false. Using the negation of this expression, it follows that ¬(A
and ¬B) is true. This is equivalent to (¬A or B) is true, using Boolean algebra.
It is this last equivalence that allows one to translate the above conditional
constraint into an either-or constraint.

Modeling
conditional
constraints

One can observe that

If (
∑

j∈J
a1jxj ≤ b1) holds, then (

∑

j∈J
a2jxj ≤ b2) must hold,

is equivalent to

(
∑

j∈J
a1jxj > b1) or (

∑

j∈J
a2jxj ≤ b2) must hold.

Notice that the sign in (1) is reversed. A difficulty to overcome is that the strict
inequality “not (1)” needs to be modeled as an inequality. This can be achieved
by specifying a small tolerance value beyond which the constraint is regarded
as broken, and rewriting the constraint to:

∑

j∈J
a1jxj ≥ b1 + ε

This results in:
∑

j∈J
a1jxj ≥ b1 + ε, or

∑

j∈J
a2jxj ≤ b2 must hold.

This last expression strongly resembles the either-or constraints in the pre-
vious section. This can be modeled in a similar way by introducing a binary

On introduira une petite valeur epsilon

Pour obtenir:

Qui peut être réécrit comme:

Contraintes conditionnelles

11

7.4. Conditional constraints 81

7.4 Conditional constraints

The modelA problem that can be treated in a similar way to either-or constraints is one
that contains conditional constraints. The mathematical presentation is lim-
ited to a case, involving two constraints, on which the following condition is
imposed.

If (1) (
∑

j∈J
a1jxj ≤ b1) is satisfied,

then (2) (
∑

j∈J
a2jxj ≤ b2) must also be satisfied.

Logical
equivalence

Let A denote the statement that the logical expression “Constraint (1) holds”
is true, and similarly, let B denote the statement that the logical expression
“Constraint (2) holds” is true. The notation ¬A and ¬B represent the case
of the corresponding logical expressions being false. The above conditional
constraint can be restated as: A implies B. This is logically equivalent to writing
(A and ¬B) is false. Using the negation of this expression, it follows that ¬(A
and ¬B) is true. This is equivalent to (¬A or B) is true, using Boolean algebra.
It is this last equivalence that allows one to translate the above conditional
constraint into an either-or constraint.

Modeling
conditional
constraints

One can observe that

If (
∑

j∈J
a1jxj ≤ b1) holds, then (

∑

j∈J
a2jxj ≤ b2) must hold,

is equivalent to

(
∑

j∈J
a1jxj > b1) or (

∑

j∈J
a2jxj ≤ b2) must hold.

Notice that the sign in (1) is reversed. A difficulty to overcome is that the strict
inequality “not (1)” needs to be modeled as an inequality. This can be achieved
by specifying a small tolerance value beyond which the constraint is regarded
as broken, and rewriting the constraint to:

∑

j∈J
a1jxj ≥ b1 + ε

This results in:
∑

j∈J
a1jxj ≥ b1 + ε, or

∑

j∈J
a2jxj ≤ b2 must hold.

This last expression strongly resembles the either-or constraints in the pre-
vious section. This can be modeled in a similar way by introducing a binary

7.4. Conditional constraints 81

7.4 Conditional constraints

The modelA problem that can be treated in a similar way to either-or constraints is one
that contains conditional constraints. The mathematical presentation is lim-
ited to a case, involving two constraints, on which the following condition is
imposed.

If (1) (
∑

j∈J
a1jxj ≤ b1) is satisfied,

then (2) (
∑

j∈J
a2jxj ≤ b2) must also be satisfied.

Logical
equivalence

Let A denote the statement that the logical expression “Constraint (1) holds”
is true, and similarly, let B denote the statement that the logical expression
“Constraint (2) holds” is true. The notation ¬A and ¬B represent the case
of the corresponding logical expressions being false. The above conditional
constraint can be restated as: A implies B. This is logically equivalent to writing
(A and ¬B) is false. Using the negation of this expression, it follows that ¬(A
and ¬B) is true. This is equivalent to (¬A or B) is true, using Boolean algebra.
It is this last equivalence that allows one to translate the above conditional
constraint into an either-or constraint.

Modeling
conditional
constraints

One can observe that

If (
∑

j∈J
a1jxj ≤ b1) holds, then (

∑

j∈J
a2jxj ≤ b2) must hold,

is equivalent to

(
∑

j∈J
a1jxj > b1) or (

∑

j∈J
a2jxj ≤ b2) must hold.

Notice that the sign in (1) is reversed. A difficulty to overcome is that the strict
inequality “not (1)” needs to be modeled as an inequality. This can be achieved
by specifying a small tolerance value beyond which the constraint is regarded
as broken, and rewriting the constraint to:

∑

j∈J
a1jxj ≥ b1 + ε

This results in:
∑

j∈J
a1jxj ≥ b1 + ε, or

∑

j∈J
a2jxj ≤ b2 must hold.

This last expression strongly resembles the either-or constraints in the pre-
vious section. This can be modeled in a similar way by introducing a binary

82 Chapter 7. Integer Linear Programming Tricks

variable y , a sufficiently large upper bound M on (2), and a sufficiently lower
bound L on (1). The constraints can be rewritten to get:

∑

j∈J
a1jxj ≥ b1 + ε− Ly

∑

j∈J
a2jxj ≤ b2 +M(1−y)

You can verify that these constraints satisfy the original conditional expression
correctly, by applying reasoning similar to that in Section 7.3.

7.5 Special Ordered Sets

This section There are particular types of restrictions in integer programming formulations
that are quite common, and that can be treated in an efficient manner by
solvers. Two of them are treated in this section, and are referred to as Spe-
cial Ordered Sets (SOS) of type 1 and 2. These concepts are due to Beale and
Tomlin ([Be69]).

SOS1
constraints

A common restriction is that out of a set of yes-no decisions, at most one
decision variable can be yes. You can model this as follows. Let yi denote
zero-one variables, then ∑

i
yi ≤ 1

forms an example of a SOS1 constraint. More generally, when considering
variables 0 ≤ xi ≤ ui, then the constraint

∑

i
aixi ≤ b

can also become a SOS1 constraint by adding the requirement that at most
one of the xi can be nonzero. In Aimms there is a constraint attribute named
Property in which you can indicate whether this constraint is a SOS1 constraint.
Note that in the general case, the variables are no longer restricted to be zero-
one variables.

SOS1 and
performance

A general SOS1 constraint can be classified as a logical constraint and as such it
can always be translated into a formulation with binary variables. Under these
conditions the underlying branch and bound process will follow the standard
binary tree search, in which the number of nodes is an exponential function
of the number of binary variables. Alternatively, if the solver recognizes it as
a SOS1 constraint, then the number of nodes to be searched can be reduced.
However, you are advised to only use SOS sets if there exists an natural order
relationship among the variables in the set. If your model contains multiple
SOS sets, you could consider specifying priorities for some of these SOS sets.

Que faire des problèmes où des termes contiennent le produit de deux variables booléennes x1x2

Éliminer les produits de variables

12

Que faire des problèmes où des termes contiennent le produit de deux variables booléennes x1x2

On peut faire disparaître ce produit en introduisant une nouvelle variable booléenne y qui doit être égale au
produit x1x2.

Pour ce faire il faut ajouter les contraintes suivantes:

Éliminer les produits de variables

13

86 Chapter 7. Integer Linear Programming Tricks

Replacing
product term

In general, a product of two variables can be replaced by one new variable, on
which a number of constraints is imposed. The extension to products of more
than two variables is straightforward. Three cases are distinguished. In the
third case, a separable function results (instead of a linear one) that can then
be approximated by using the methods described in the previous section.

Two binary
variables

Firstly, consider the binary variables x1 and x2. Their product, x1x2, can be
replaced by an additional binary variable y . The following constraints force y
to take the value of x1x2:

y ≤ x1

y ≤ x2

y ≥ x1 + x2 − 1

y binary

One binary and
one continuous
variable

Secondly, let x1 be a binary variable, and x2 be a continuous variable for which
0 ≤ x2 ≤ u holds. Now a continuous variable, y , is introduced to replace the
product y = x1x2. The following constraints must be added to force y to take
the value of x1x2:

y ≤ ux1

y ≤ x2

y ≥ x2 −u(1− x1)
y ≥ 0

The validity of these constraints can be checked by examining Table 7.1 in
which all possible situations are listed.

x1 x2 x1x2 constraints imply
0 w : 0 ≤ w ≤ u 0 y ≤ 0 y = 0

y ≤ w
y ≥ w −u
y ≥ 0

1 w : 0 ≤ w ≤ u w y ≤ u y = w
y ≤ w
y ≥ w
y ≥ 0

Table 7.1: All possible products y = x1x2

Que faire maintenant si on doit traiter un produit x1x2 où x1 est une variable binaire et x2 est une variable
continue tel que 0 <= x2 <= u ?

On introduit une variable continue y définie comme y = x1x2 en ajoutant les contraintes ci-dessous imposant le
comportement:

Éliminer les produits de variables

14

86 Chapter 7. Integer Linear Programming Tricks

Replacing
product term

In general, a product of two variables can be replaced by one new variable, on
which a number of constraints is imposed. The extension to products of more
than two variables is straightforward. Three cases are distinguished. In the
third case, a separable function results (instead of a linear one) that can then
be approximated by using the methods described in the previous section.

Two binary
variables

Firstly, consider the binary variables x1 and x2. Their product, x1x2, can be
replaced by an additional binary variable y . The following constraints force y
to take the value of x1x2:

y ≤ x1

y ≤ x2

y ≥ x1 + x2 − 1

y binary

One binary and
one continuous
variable

Secondly, let x1 be a binary variable, and x2 be a continuous variable for which
0 ≤ x2 ≤ u holds. Now a continuous variable, y , is introduced to replace the
product y = x1x2. The following constraints must be added to force y to take
the value of x1x2:

y ≤ ux1

y ≤ x2

y ≥ x2 −u(1− x1)
y ≥ 0

The validity of these constraints can be checked by examining Table 7.1 in
which all possible situations are listed.

x1 x2 x1x2 constraints imply
0 w : 0 ≤ w ≤ u 0 y ≤ 0 y = 0

y ≤ w
y ≥ w −u
y ≥ 0

1 w : 0 ≤ w ≤ u w y ≤ u y = w
y ≤ w
y ≥ w
y ≥ 0

Table 7.1: All possible products y = x1x2

86 Chapter 7. Integer Linear Programming Tricks

Replacing
product term

In general, a product of two variables can be replaced by one new variable, on
which a number of constraints is imposed. The extension to products of more
than two variables is straightforward. Three cases are distinguished. In the
third case, a separable function results (instead of a linear one) that can then
be approximated by using the methods described in the previous section.

Two binary
variables

Firstly, consider the binary variables x1 and x2. Their product, x1x2, can be
replaced by an additional binary variable y . The following constraints force y
to take the value of x1x2:

y ≤ x1

y ≤ x2

y ≥ x1 + x2 − 1

y binary

One binary and
one continuous
variable

Secondly, let x1 be a binary variable, and x2 be a continuous variable for which
0 ≤ x2 ≤ u holds. Now a continuous variable, y , is introduced to replace the
product y = x1x2. The following constraints must be added to force y to take
the value of x1x2:

y ≤ ux1

y ≤ x2

y ≥ x2 −u(1− x1)
y ≥ 0

The validity of these constraints can be checked by examining Table 7.1 in
which all possible situations are listed.

x1 x2 x1x2 constraints imply
0 w : 0 ≤ w ≤ u 0 y ≤ 0 y = 0

y ≤ w
y ≥ w −u
y ≥ 0

1 w : 0 ≤ w ≤ u w y ≤ u y = w
y ≤ w
y ≥ w
y ≥ 0

Table 7.1: All possible products y = x1x2

Considérer le cas particulier suivant:
• Votre modèle comporte une série de décision oui/non ordonnée.
• Seulement une décision « oui » est possible
• Entre deux décisions « oui » on préfèrera toujours celle qui est la première dans la série.

Pour ce cela, on dispose généralement d’une série de variables booléennes yi telles que

On peut généraliser ce cas à :
• Aux variables générales xi tel que 0 <= xi <= u et sujet à

On peut aussi considérer le cas où deux décisions « oui » sont permises, mais elles doivent être consécutives.

Les solveurs ont des objets de modélisation SOS1 et SOS2 qui implémentent ces conditions de manières plus
efficaces lors du branch and bound.

Les SOS (Special Ordered Sets)

15

82 Chapter 7. Integer Linear Programming Tricks

variable y , a sufficiently large upper bound M on (2), and a sufficiently lower
bound L on (1). The constraints can be rewritten to get:

∑

j∈J
a1jxj ≥ b1 + ε− Ly

∑

j∈J
a2jxj ≤ b2 +M(1−y)

You can verify that these constraints satisfy the original conditional expression
correctly, by applying reasoning similar to that in Section 7.3.

7.5 Special Ordered Sets

This section There are particular types of restrictions in integer programming formulations
that are quite common, and that can be treated in an efficient manner by
solvers. Two of them are treated in this section, and are referred to as Spe-
cial Ordered Sets (SOS) of type 1 and 2. These concepts are due to Beale and
Tomlin ([Be69]).

SOS1
constraints

A common restriction is that out of a set of yes-no decisions, at most one
decision variable can be yes. You can model this as follows. Let yi denote
zero-one variables, then ∑

i
yi ≤ 1

forms an example of a SOS1 constraint. More generally, when considering
variables 0 ≤ xi ≤ ui, then the constraint

∑

i
aixi ≤ b

can also become a SOS1 constraint by adding the requirement that at most
one of the xi can be nonzero. In Aimms there is a constraint attribute named
Property in which you can indicate whether this constraint is a SOS1 constraint.
Note that in the general case, the variables are no longer restricted to be zero-
one variables.

SOS1 and
performance

A general SOS1 constraint can be classified as a logical constraint and as such it
can always be translated into a formulation with binary variables. Under these
conditions the underlying branch and bound process will follow the standard
binary tree search, in which the number of nodes is an exponential function
of the number of binary variables. Alternatively, if the solver recognizes it as
a SOS1 constraint, then the number of nodes to be searched can be reduced.
However, you are advised to only use SOS sets if there exists an natural order
relationship among the variables in the set. If your model contains multiple
SOS sets, you could consider specifying priorities for some of these SOS sets.

82 Chapter 7. Integer Linear Programming Tricks

variable y , a sufficiently large upper bound M on (2), and a sufficiently lower
bound L on (1). The constraints can be rewritten to get:

∑

j∈J
a1jxj ≥ b1 + ε− Ly

∑

j∈J
a2jxj ≤ b2 +M(1−y)

You can verify that these constraints satisfy the original conditional expression
correctly, by applying reasoning similar to that in Section 7.3.

7.5 Special Ordered Sets

This section There are particular types of restrictions in integer programming formulations
that are quite common, and that can be treated in an efficient manner by
solvers. Two of them are treated in this section, and are referred to as Spe-
cial Ordered Sets (SOS) of type 1 and 2. These concepts are due to Beale and
Tomlin ([Be69]).

SOS1
constraints

A common restriction is that out of a set of yes-no decisions, at most one
decision variable can be yes. You can model this as follows. Let yi denote
zero-one variables, then ∑

i
yi ≤ 1

forms an example of a SOS1 constraint. More generally, when considering
variables 0 ≤ xi ≤ ui, then the constraint

∑

i
aixi ≤ b

can also become a SOS1 constraint by adding the requirement that at most
one of the xi can be nonzero. In Aimms there is a constraint attribute named
Property in which you can indicate whether this constraint is a SOS1 constraint.
Note that in the general case, the variables are no longer restricted to be zero-
one variables.

SOS1 and
performance

A general SOS1 constraint can be classified as a logical constraint and as such it
can always be translated into a formulation with binary variables. Under these
conditions the underlying branch and bound process will follow the standard
binary tree search, in which the number of nodes is an exponential function
of the number of binary variables. Alternatively, if the solver recognizes it as
a SOS1 constraint, then the number of nodes to be searched can be reduced.
However, you are advised to only use SOS sets if there exists an natural order
relationship among the variables in the set. If your model contains multiple
SOS sets, you could consider specifying priorities for some of these SOS sets.

Soit le problème suivant:

Ici on remarque que l’objective, bien que non linéaire, est séparable.
C’est-à-dire que l’objectif est une somme de fonctions définies sur une variable à la fois.

Séparable Non séparable

Fonctions linéaires par morceaux

16

7.6. Piecewise linear formulations 83

SOS1 branchingTo illustrate how the SOS order information is used to create new nodes during
the branch and bound process, consider a model in which a decision has to
be made about the size of a warehouse. The size of the warehouse should
be either 10000, 20000, 40000, or 50000 square feet. To model this, four
binary variables x1, x2, x3 and x4 are introduced that together make up a
SOS1 set. The order among these variables is naturally specified through the
sizes. During the branch and bound process, the split point in the SOS1 set
is determined by the weighted average of the solution of the relaxed problem.
For example, if the solution of the relaxed problem is given by x1 = 0.1 and
x4 = 0.9, then the corresponding weighted average is 0.1·10000+0.9·50000 =
46000. This computation results in the SOS set being split up between variable
x3 and x4. The corresponding new nodes in the search tree are specified by
(1) the nonzero element is the set {x1, x2, x3} (i.e. x4 = 0) and (2) x4 = 1 (and
x1 = x2 = x3 = 0).

SOS2
constraints

Another common restriction, is that out of a set of nonnegative variables, at
most two variables can be nonzero. In addition, the two variables must be
adjacent to each other in a fixed order list. This class of constraint is referred
to as a type SOS2 in Aimms. A typical application occurs when a non-linear
function is approximated by a piecewise linear function. Such an example is
given in the next section.

7.6 Piecewise linear formulations

The modelConsider the following model with a separable objective function:

Minimize:
∑

j∈J
fj(xj)

Subject to: ∑

j∈J
aijxj ≷ bi ∀i ∈ I

xj ≥ 0 ∀j ∈ J

Separable
function

In the above general model statement, the objective is a separable function,
which is defined as the sum of functions of scalar variables. Such a func-
tion has the advantage that nonlinear terms can be approximated by piecewise
linear ones. Using this technique, it may be possible to generate an integer pro-
gramming model, or sometimes even a linear programming model (see [Wi90]).
This possibility also exists when a constraint is separable.

Examples of
separable
functions

Some examples of separable functions are:

x2
1 + 1/x2 − 2x3 = f1(x1)+ f2(x2)+ f3(x3)
x2

1 + 5x1 − x2 = g1(x1)+ g2(x2)

7.6. Piecewise linear formulations 83

SOS1 branchingTo illustrate how the SOS order information is used to create new nodes during
the branch and bound process, consider a model in which a decision has to
be made about the size of a warehouse. The size of the warehouse should
be either 10000, 20000, 40000, or 50000 square feet. To model this, four
binary variables x1, x2, x3 and x4 are introduced that together make up a
SOS1 set. The order among these variables is naturally specified through the
sizes. During the branch and bound process, the split point in the SOS1 set
is determined by the weighted average of the solution of the relaxed problem.
For example, if the solution of the relaxed problem is given by x1 = 0.1 and
x4 = 0.9, then the corresponding weighted average is 0.1·10000+0.9·50000 =
46000. This computation results in the SOS set being split up between variable
x3 and x4. The corresponding new nodes in the search tree are specified by
(1) the nonzero element is the set {x1, x2, x3} (i.e. x4 = 0) and (2) x4 = 1 (and
x1 = x2 = x3 = 0).

SOS2
constraints

Another common restriction, is that out of a set of nonnegative variables, at
most two variables can be nonzero. In addition, the two variables must be
adjacent to each other in a fixed order list. This class of constraint is referred
to as a type SOS2 in Aimms. A typical application occurs when a non-linear
function is approximated by a piecewise linear function. Such an example is
given in the next section.

7.6 Piecewise linear formulations

The modelConsider the following model with a separable objective function:

Minimize:
∑

j∈J
fj(xj)

Subject to: ∑

j∈J
aijxj ≷ bi ∀i ∈ I

xj ≥ 0 ∀j ∈ J

Separable
function

In the above general model statement, the objective is a separable function,
which is defined as the sum of functions of scalar variables. Such a func-
tion has the advantage that nonlinear terms can be approximated by piecewise
linear ones. Using this technique, it may be possible to generate an integer pro-
gramming model, or sometimes even a linear programming model (see [Wi90]).
This possibility also exists when a constraint is separable.

Examples of
separable
functions

Some examples of separable functions are:

x2
1 + 1/x2 − 2x3 = f1(x1)+ f2(x2)+ f3(x3)
x2

1 + 5x1 − x2 = g1(x1)+ g2(x2)

84 Chapter 7. Integer Linear Programming Tricks

The following examples are not:

x1x2 + 3x2 + x2
2 = f1(x1, x2)+ f2(x2)

1/(x1 + x2)+ x3 = g1(x1, x2)+ g2(x3)

Approximation
of a nonlinear
function

Consider a simple example with only one nonlinear term to be approximated,
namely f(x) = 1

2x
2. Figure 7.3, shows the curve divided into three pieces that

are approximated by straight lines. This approximation is known as piecewise
linear. The points where the slope of the piecewise linear function changes (or
its domain ends) are referred to as breakpoints. This approximation can be ex-
pressed mathematically in several ways. A method known as the λ-formulation
is described below.

x

f̃ (x)

0
x1

1
x2

2
x3

4
x4

1
2

2

8

Figure 7.3: Piecewise linear approximation of f(x) = 1
2x

2

Weighted sums Let x1, x2, x3 and x4 denote the four breakpoints along the x-axis in Figure 7.3,
and let f(x1), f (x2), f (x3) and f(x4) denote the corresponding function val-
ues. The breakpoints are 0, 1, 2 and 4, and the corresponding function values
are 0, 1

2 , 2 and 8. Any point in between two breakpoints is a weighted sum of
these two breakpoints. For instance, x = 3 = 1

2 · 2 + 1
2 · 4. The corresponding

approximated function value f̃ (3) = 5 = 1
2 · 2+ 1

2 · 8.

λ-Formulation Let λ1,λ2,λ3,λ4 denote four nonnegative weights such that their sum is 1.
Then the piecewise linear approximation of f(x) in Figure 7.3 can be written
as:

λ1f(x1)+ λ2f(x2)+ λ3f(x3)+ λ4f(x4) = f̃ (x)
λ1x1 + λ2x2 + λ3x3 + λ4x4 = x

λ1 + λ2 + λ3 + λ4 = 1

with the added requirement that at most two adjacent λ’s are greater than
zero. This requirement together with the last constraint form the SOS2 con-

Soit la fonction

Soit x1, x2, x3, x4 des points de « cassure » (breakpoints) auquel on évalue la fonction f(x) (soit 0,1,2,4)
On approxime donc linéairement tout point situé entre deux cassures, par exemple f(3) = ½*f(2) + ½*f(4) =
½*1 + ½*8 = 5.

Fonctions linéaires par morceaux

17

84 Chapter 7. Integer Linear Programming Tricks

The following examples are not:

x1x2 + 3x2 + x2
2 = f1(x1, x2)+ f2(x2)

1/(x1 + x2)+ x3 = g1(x1, x2)+ g2(x3)

Approximation
of a nonlinear
function

Consider a simple example with only one nonlinear term to be approximated,
namely f(x) = 1

2x
2. Figure 7.3, shows the curve divided into three pieces that

are approximated by straight lines. This approximation is known as piecewise
linear. The points where the slope of the piecewise linear function changes (or
its domain ends) are referred to as breakpoints. This approximation can be ex-
pressed mathematically in several ways. A method known as the λ-formulation
is described below.

x

f̃ (x)

0
x1

1
x2

2
x3

4
x4

1
2

2

8

Figure 7.3: Piecewise linear approximation of f(x) = 1
2x

2

Weighted sums Let x1, x2, x3 and x4 denote the four breakpoints along the x-axis in Figure 7.3,
and let f(x1), f (x2), f (x3) and f(x4) denote the corresponding function val-
ues. The breakpoints are 0, 1, 2 and 4, and the corresponding function values
are 0, 1

2 , 2 and 8. Any point in between two breakpoints is a weighted sum of
these two breakpoints. For instance, x = 3 = 1

2 · 2 + 1
2 · 4. The corresponding

approximated function value f̃ (3) = 5 = 1
2 · 2+ 1

2 · 8.

λ-Formulation Let λ1,λ2,λ3,λ4 denote four nonnegative weights such that their sum is 1.
Then the piecewise linear approximation of f(x) in Figure 7.3 can be written
as:

λ1f(x1)+ λ2f(x2)+ λ3f(x3)+ λ4f(x4) = f̃ (x)
λ1x1 + λ2x2 + λ3x3 + λ4x4 = x

λ1 + λ2 + λ3 + λ4 = 1

with the added requirement that at most two adjacent λ’s are greater than
zero. This requirement together with the last constraint form the SOS2 con-

84 Chapter 7. Integer Linear Programming Tricks

The following examples are not:

x1x2 + 3x2 + x2
2 = f1(x1, x2)+ f2(x2)

1/(x1 + x2)+ x3 = g1(x1, x2)+ g2(x3)

Approximation
of a nonlinear
function

Consider a simple example with only one nonlinear term to be approximated,
namely f(x) = 1

2x
2. Figure 7.3, shows the curve divided into three pieces that

are approximated by straight lines. This approximation is known as piecewise
linear. The points where the slope of the piecewise linear function changes (or
its domain ends) are referred to as breakpoints. This approximation can be ex-
pressed mathematically in several ways. A method known as the λ-formulation
is described below.

x

f̃ (x)

0
x1

1
x2

2
x3

4
x4

1
2

2

8

Figure 7.3: Piecewise linear approximation of f(x) = 1
2x

2

Weighted sums Let x1, x2, x3 and x4 denote the four breakpoints along the x-axis in Figure 7.3,
and let f(x1), f (x2), f (x3) and f(x4) denote the corresponding function val-
ues. The breakpoints are 0, 1, 2 and 4, and the corresponding function values
are 0, 1

2 , 2 and 8. Any point in between two breakpoints is a weighted sum of
these two breakpoints. For instance, x = 3 = 1

2 · 2 + 1
2 · 4. The corresponding

approximated function value f̃ (3) = 5 = 1
2 · 2+ 1

2 · 8.

λ-Formulation Let λ1,λ2,λ3,λ4 denote four nonnegative weights such that their sum is 1.
Then the piecewise linear approximation of f(x) in Figure 7.3 can be written
as:

λ1f(x1)+ λ2f(x2)+ λ3f(x3)+ λ4f(x4) = f̃ (x)
λ1x1 + λ2x2 + λ3x3 + λ4x4 = x

λ1 + λ2 + λ3 + λ4 = 1

with the added requirement that at most two adjacent λ’s are greater than
zero. This requirement together with the last constraint form the SOS2 con-

Une des manières de traiter ces fonctions est d’utiliser la λ-formulation.
Soit λ1, λ2, λ3, λ4, 4 poids non négatifs dont la somme = 1, alors la fonction linéaire par morceaux précédente
peut-être exprimée par:

Comme au plus deux λ peuvent être non négatifs, et que ceux-ci doivent en plus être consécutifs, on peut
ajouter une contrainte SOS2(λ).
La majorité des solveurs ont un objet « Piecewise Linear » que vous pouvez utiliser directement.

Fonctions linéaires par morceaux

18

84 Chapter 7. Integer Linear Programming Tricks

The following examples are not:

x1x2 + 3x2 + x2
2 = f1(x1, x2)+ f2(x2)

1/(x1 + x2)+ x3 = g1(x1, x2)+ g2(x3)

Approximation
of a nonlinear
function

Consider a simple example with only one nonlinear term to be approximated,
namely f(x) = 1

2x
2. Figure 7.3, shows the curve divided into three pieces that

are approximated by straight lines. This approximation is known as piecewise
linear. The points where the slope of the piecewise linear function changes (or
its domain ends) are referred to as breakpoints. This approximation can be ex-
pressed mathematically in several ways. A method known as the λ-formulation
is described below.

x

f̃ (x)

0
x1

1
x2

2
x3

4
x4

1
2

2

8

Figure 7.3: Piecewise linear approximation of f(x) = 1
2x

2

Weighted sums Let x1, x2, x3 and x4 denote the four breakpoints along the x-axis in Figure 7.3,
and let f(x1), f (x2), f (x3) and f(x4) denote the corresponding function val-
ues. The breakpoints are 0, 1, 2 and 4, and the corresponding function values
are 0, 1

2 , 2 and 8. Any point in between two breakpoints is a weighted sum of
these two breakpoints. For instance, x = 3 = 1

2 · 2 + 1
2 · 4. The corresponding

approximated function value f̃ (3) = 5 = 1
2 · 2+ 1

2 · 8.

λ-Formulation Let λ1,λ2,λ3,λ4 denote four nonnegative weights such that their sum is 1.
Then the piecewise linear approximation of f(x) in Figure 7.3 can be written
as:

λ1f(x1)+ λ2f(x2)+ λ3f(x3)+ λ4f(x4) = f̃ (x)
λ1x1 + λ2x2 + λ3x3 + λ4x4 = x

λ1 + λ2 + λ3 + λ4 = 1

with the added requirement that at most two adjacent λ’s are greater than
zero. This requirement together with the last constraint form the SOS2 con-

