Chapter 3

The Construction of a Finite Element Space

To approximate the solution of the variational problem,
a(u,v) = F(v) YveV,

developed in Chapter 0, we need to construct finite-dimensional subspaces
S C V in a systematic, practical way.

Let us examine the space S defined in Sect. 0.4. To understand fully
the functions in the space S, we need to answer the following questions:

1.  What does a function look like in a given subinterval?

2. How do we determine the function in a given subinterval?

3. How do the restrictions of a function on two neighboring intervals
match at the common boundary?

In this chapter, we will define piecewise function spaces that are similar to
S, but which are defined on more general regions. We will develop concepts
that will help us answer these questions.

3.1 The Finite Element

We follow Ciarlet’s definition of a finite element (Ciarlet 1978).

(3.1.1) Definition. Let

(i) K CIR™ be a bounded closed set with nonempty interior and piece-
wise smooth boundary (the element domain),
(it) P be a finite-dimensional space of functions on K (the space of
shape functions) and
(i11) N ={N1,Na,..., Ny} be a basis for P’ (the set of nodal variables).

Then (K,P,N) is called a finite element.

It is implicitly assumed that the nodal variables, IV;, lie in the dual
space of some larger function space, e.g., a Sobolev space.
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(3.1.2) Definition. Let (K,P,N) be a finite element. The basis {¢1, P, . . -,
o1} of P dual to N (i.e., Ni(¢;) = 0;) is called the nodal basis of P.

(3.1.3) Example. (the 1-dimensional Lagrange element) Let K = [0,1], P =
the set of linear polynomials and N' = {Ny, N2}, where Ny (v) = v(0) and
No(v) =v(l) Vv € P. Then (K,P,N) is a finite element and the noda
basis consists of ¢1(z) =1 — z and ¢o(x) = x.

In general, we can let K = [a,b] and Pj, = the set of all polynomials
of degree less than or equal to k. Let Ny = {No, N1, Na, ..., Ny}, where
N;(v) =v(a+ (b—a)i/k) Vv e Pyandi=0,1,...,k Then (K, Py, N)
is a finite element. The verification of this uses Lemma 3.1.4.

Usually, condition (iii) of Definition 3.1.1 is the only one that requires
much work, and the following simplifies its verification.

(3.1.4) Lemma. Let P be a d-dimensional vector space and let {Ny, Na, ...,
Ny} be a subset of the dual space P’. Then the following two statements are
equivalent.

(a) {N1,Na,...,Ng} is a basis for P'.
(b) Given v € P with Njv =0 fori=1,2,...,d, then v =0.

Proof. Let {¢1,...,¢q} be some basis for P. {Ny,..., Ny} is a basis for P’
iff given any L in P,

(315) L=a;Ni+...+aqNg
(because d = dim P = dim P’). The equation (3.1.5) is equivalent to
Y; ‘= L((bz) :a1N1(¢i)+---+ade(¢i)7 ’Lzl,,d

Let B = (N;(¢:)), i,j = 1,...,d. Thus, (a) is equivalent to Ba = y is
always solvable, which is the same as B being invertible.

Given any v € P, we can write v = S1¢1 + ... + Badq- N;v = 0 means
that 81 N;(¢1) + ...+ BaN;i(¢q) = 0. Therefore, (b) is equivalent to

B1N; (1) +---+ﬂdNi(¢d) =0 fori=1,...,d

(3.1.6)
:>ﬁ1=...=ﬂd=0.

Let C= (Nz-(d)j)), i,7 = 1,...,d. Then (b) is equivalent to Cz = 0 only

has trivial solutions, which is the same as C being invertible. But C = B”..

Therefore, (a) is equivalent to (b). O

(3.1.7) Remark. Condition (iii) of Definition 3.1.1 is the same as (a) in
Lemma 3.1.4, which can be verified by checking (b) in Lemma 3.1.4. For
instance, in Example 3.1.3, v € P; means v = a + bx; Ni(v) = Na(v) =0
means ¢ = 0 and @ +b = 0. Hence, a = b = 0, i.e., v = 0. More generally, if
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v € P and 0 = N;(v) = v(a+ (b —a)i/k) Vi =0,1,...,k then v vanishes
identically by the fundamental theorem of algebra. Thus, (K, Pk, N) is a
finite element.

We will use the following terminology in subsequent sections.

(3.1.8) Definition. We say that N determines P if 1 € P with N(¢) =
0 VN € N implies that ¢p = 0.

(3.1.9) Remark. We will often refer to the hyperplane {x : L(z) = 0}, where
L is a non-degenerate linear function, simply as L.

(3.1.10) Lemma. Let P be a polynomial of degree d > 1 that vanishes on
a hyperplane L. Then we can write P = LQ, where Q s a polynomial of
degree (d —1).

Proof. Make an affine change of coordinates such that L(#,x,) = x, and
the hyperplane L(Z,x,) = 0 is the #-axis. Therefore, P(Z,0) = 0. Since
degree(P) = d, we have

d
P(i,xn)zz Z c;jzﬁix%
J=0 |i|<d—j

J

where & = (z1,...,2,-1) and i= (i1y...,in—1). Letting x,, = 0, we obtain
0= P(#,0) = Y ;<4 Cio&", which implies that ¢;, = 0 for |i| < d. Therefore,

where degree Q@ =d — 1. a

3.2 Triangular Finite Elements

Let K be any triangle. Let Pj, denote the set of all polynomials in two
variables of degree < k. The following table gives the dimension of Pj.
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Table 3.1. Dimension of Py in two dimensions

k dim Py,
1 3

2 6

3 10

Eo| L)k 2)

The Lagrange Element

(3.2.1) Example. (k = 1) Let P = Py. Let N7 = {Ny, Na, N3} (dim P; = 3)
where N;(v) = v(z;) and z1, 20, 23 are the vertices of K. This element is
depicted in Fig. 3.1.

Z3
L, L,
21 L 3 22 ¢
Fig. 3.1. linear Lagrange triangle Fig. 3.2. Crouzeix-Raviart noncon-

forming linear triangle

Note that “e” indicates the nodal variable evaluation at the point where
the dot is located.

We verify 3.1.1(iii) using 3.1.4(b), i.e., we prove that N} determines
Py. Let Ly, Ly and L3 be non-trivial linear functions that define the lines
on which lie the edges of the triangle. Suppose that a polynomial P € P
vanishes at 21,22 and z3. Since P|r, is a linear function of one variable
that vanishes at two points, P = 0 on L;. By Lemma 3.1.10 we can write
P = ¢ Ly, where ¢ is a constant. But

0=P(z1)=cLi(z1) = ¢=0
(because L1(z1) # 0). Thus, P = 0 and hence N; determines P;. O

(3.2.2) Remark. The above choice for A is not unique. For example, we
could have defined

N;(v) = v(midpoint of the i*" edge),
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as shown in Fig. 3.2. By connecting the midpoints, we construct a triangle
on which P € P, vanishes at the vertices. An argument similar to the one
in Example 3.2.1 shows that P = 0 and hence, N determines P;.

(3.2.3) Example. (k = 2) Let P = Py. Let Ny = {Ny, Na,..., N} (dim Py =
6) where

v(ith vertex), i=1,2,3;
N;i(v) = ¢ v(midpoint of the (i — 3) edge),
(or any other point on the i — 3 edge) 1=4.5,6.

This element is depicted in Fig. 3.3.

27

21 26 22 21 22 23 24

Fig. 3.3. quadratic Lagrange triangle Fig. 3.4. cubic Lagrange triangle

We need to check that N5 determines P,. As before, let Ly, Ly and
L3 be non-trivial linear functions that define the edges of the triangle.
Suppose that the polynomial P € P5 vanishes at 21, 22, .. ., 25. Since Py, is
a quadratic function of one variable that vanishes at three points, P = 0 on
L. By Lemma 3.1.10 we can write P = L1 Q1 where deg Q1 = (deg P)—1 =
2 —1 = 1. But P also vanishes on Lg. Therefore, L1 Q1|1, = 0. Hence, on
Lo, either Ly =0 or @, = 0. But L; can equal zero only at one point of Lo
since we have a non-degenerate triangle. Therefore, @)1 = 0 on Lo, except
possibly at one point. By continuity, we have @1 = 0 on Ls.

By Lemma 3.1.10, we can write Q1 = Lo Q2, where deg Q2 = (deg Lo)—
1 =1-1 = 0. Hence, Q2 is a constant (say ¢), and we can write > = ¢ Ly Lo.
But P(z) = 0 and zg does not lie on either Ly or Lo. Therefore,

0= P(z6) =cLi(z6) La(z6) = ¢=0,
since L1 (z) # 0 and La(z6) # 0. Thus, P = 0. O
(3.2.4) Example. (k=3) Let P = P3. Let N3 = {N; : i = 1,2,...,10(=
dim P3)} where
Ni(v) =wv(z), ©=1,2,...,9 (2 distinct points on edges as in Fig. 3.4)
and
N1o(v) = v(any interior point).

We must show that A3 determines Ps.
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Let L1, Ly and L3 be non-trivial linear functions that define the edges
of the triangle. Suppose that P € P3 vanishes at z; for i = 1,2,...,10.
Applying Lemma 3.1.10 three times along with the fact that P(z;) = 0 for
1=1,2,...,9, we can write P = ¢ Ly Ly L3. But

0= P(Zlo) = CLl(Zlo) L2(210) Lg(zlo) — c=0
since L;(z109) # 0 for ¢ = 1,2,3. Thus, P = 0. a

In general for & > 1, we let P = Py. For N}, = {N¢ i =1,2,...,
3(k+1)(k +2)}, we choose evaluation points at

3 vertex nodes,
(3.2.5) 3(k — 1) distinct edge nodes and

1
E(k —2)(k — 1) interior points.

(The interior points are chosen, by induction, to determine Pk_s5.) Note
that these choices suffice since

3+3(k—1)+%(k—2)(k:—1):3k+%(k2—3k+2)
:%(k2+3k+2)
= Sk 1)k +2)

= dim Pk.

The evaluation points for k = 4 and k£ = 5 are depicted in Fig. 3.5.

k=4 k=5
Fig. 3.5. quartic and quintic Lagrange triangles

To show that A determines Py, we suppose that P € P} vanishes at
all the nodes. Let Ly, Ly and L3 be non-trivial linear functions that define
the edges of the triangle. As before, we conclude from the vanishing of P at
the edge and vertex nodes that P = Q Ly Ly Ls where degree(Q) < k — 3;
() must vanish at all the interior points, since none of the L; can be zero
there. These points were chosen precisely to determine that Q = 0.
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The Hermite Element

(3.2.6) Example. (k = 3 Cubic Hermite) Let P = Ps. Let “o” denote
evaluation at the point and “()” denote evaluation of the gradient at the
center of the circle. Note that the latter corresponds to two distinct nodal
variables, but the particular representation of the gradient is not unique.
We claim that N' = {Ny, Na,..., Nio}, as depicted in Fig. 3.6, determines
Ps (dim P3 = 10).

Fig. 3.6. cubic Hermite triangle

Let L1, Ly and L3 again be non-trivial linear functions that define the
edges of the triangle. Suppose that for a polynomial P € P3, N;(P) =0
for : = 1,2,...,10. Restricting P to Ly, we see that zo and 23 are double
roots of P since P(z2) = 0, P'(22) = 0 and P(z3) = 0, P’(z3) = 0, where ’
denotes differentiation along the straight line L;. But the only third order
polynomial in one variable with four roots is the zero polynomial, hence
P =0 along L;. Similarly, P = 0 along Ls and L3. We can, therefore, write
P = CL] L2 Lg. But

0= P(z4) = cL1(z1) La(24) L3(z4) = ¢=0,
because L;(z4) # 0 for i = 1,2, 3. 0

(8.2.7) Remark. Using directional derivatives, there are various distinct
ways to define a finite element using Ps, two of which are shown in Fig. 3.7.
Note that arrows represent directional derivatives along the indicated di-
rections at the points. The “global” element to the left has the advantage
of ease of computation of directional derivatives in the x or y directions
throughout the larger region divided up into triangles. The “local” element
to the right holds the advantage in that the nodal parameters of each tri-
angle are invariant with respect to the triangle.

In the general Hermite case, we have
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A

Fig. 3.7. Two different sets of nodal values for cubic Hermite elements.

3 vertex nodes

6 directional derivatives (2 for each gradient,
(3.2.9) evaluated at each of the 3 vertices)

3(k — 3) edge nodes

1
—(k — 2)(k — 1) interior nodes (as in the Lagrange case).
2

Note that these sum to 3(k + 1)(k + 2) = dim P}, as in the Lagrange case.

(3.2.8) Example. (k = 4) We have (dim Py = 15). Then N' = {Ny, No, ...,
Ny5}, as depicted in Fig. 3.8, determines Pj.

21 z9 Lj 22 Z1 n3 L Zn
Fig. 3.8. quartic Hermite triangle Fig. 3.9. quintic Argyris triangle
The Argyris Element

(3.2.10) Example. (k =5) Let P = Ps. Consider the 21(= dim Ps) degrees
of freedom shown in Fig. 3.9. As before, let @ denote evaluation at the point
and the inner circle denote evaluation of the gradient at the center. The
outer circle denotes evaluation of the three second derivatives at the center.
The arrows represent the evaluation of the normal derivatives at the three
midpoints. We claim that A’ = {Ny, N, ..., Na; } determines Ps.

Suppose that for some P € P5, N;(P) =0fori=1,2,...,21. Let L, be
as before in the Lagrange and Hermite cases. The restriction of P to Lq is a
fifth order polynomial in one variable with triple roots at z; and z3. Hence,
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P vanishes identically on L;. Similarly, P vanishes on Lo and Ls. Therefore,
P =Q Ly Ly Ls, where deg @ = 2. Observe that (91,0, P)(z3) = 0, where
Or, and 0r, are the directional derivatives along L; and Ls respectively.
Therefore,

0 = (01,01, P)(23) = Q(23) L3(23) Or,L1 01, La,

since 1, L; = 0 & L;(z3) = 0, ¢ = 1,2. This implies Q(2z3) = 0 because
L3(23) #0, 91, L1 # 0 and O, Ly # 0. Similarly, Q(21) = 0 and Q(z22) = 0.
Also, since Li(my) =0, aian(ml) = ( %} Lo Lg) (mq). Therefore,

0
because g—ﬁi # 0, La(my) # 0 and Ls(mq) # 0. Similarly, Q(ms) = 0 and
Q(m3) =0. So @ =0 by Example 3.2.3. a

We leave to the reader the verification of the following generalization
of the Argyris element (exercise 3.x.12).

(3.2.11) Example. Note that dim PP; = 36. The nodal variables depicted in
Fig. 3.10 determine P5.

Fig. 3.10. seventh-degree Argyris triangle

3.3 The Interpolant

Now that we have examined a number of finite elements, we wish to piece
them together to create subspaces of Sobolev spaces. We begin by defining
the (local) interpolant.

(3.3.1) Definition. Given a finite element (K, P,N) , let the set {¢; : 1 <

i <k} C P be the basis dual to N. If v is a function for which all N; € N,
1=1,...,k, are defined, then we define the local interpolant by

k,
(3.3.2) Ixv:=Y _ Ni(v)¢;.
i=1
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(3.3.3) Example. Let K be the triangle depicted in Fig. 3.11, P = Py,
N = {N;, N5, N3} as in Example 3.2.1, and f = e*¥. We want to find Zx f.

0.1)

0,0) (1,0)
Fig. 3.11. coordinates for linear interpolant

By definition, Zx f = Ni(f) ¢1 + Na(f) ¢2 + N3(f) ¢3. We must therefore
determine ¢1, ¢2 and ¢3. The line L is given by y = 1 — x. We can write
¢1 =cL; = c¢(l —z —vy). But Ny¢1 = 1 implies that ¢ = ¢1(21) = 1,
hence ¢1 = 1 — x — y. Similarly, ¢o = Lo(x,y)/L2(z2) = x and ¢3 =
L3(x,y)/Ls(z3) = y. Therefore,

Ixf=N(f)(L =z —y)+ No(f)z+ N3(f)y

=l—-z—y+zx+y (since f = ™)
=1.
Properties of the interpolant follow. O

(3.3.4) Proposition. Zx is linear.

Proof. See exercise 3.x.2. O

(3.3.5) Proposition. N;(Zx(f)) = Ny(f) V1<i<d.
Proof. We have

k
Ni(Zw(f)) = N; <Z N;(f) @-) (definition of Zr(f))

&
— ZN7(f) Ni(95) (linearity of Ni)
j=1
— Ni(f) ({¢5} dual to {N;}).

O

(3.3.6) Remark. Proposition 3.3.5 has the interpretation that Ty (f) is the
unique shape function that has the same nodal values as f.
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(3.3.7) Proposition. Zx (f) = f for f € P. In particular, Tk is idempotent,
i.e,, I%( = IK.
Proof. From (3.3.5),

Ni(f =Ik(f)) =0 Vi

which implies the first assertion. The second is a consequence of the first:
Tif = Ik (Ix f) = Ik f,
since Zg f € P. O
‘We now piece together the elements.

(3.3.8) Definition. A subdivision of a domain Q2 is a finite collection of
element domains {K;} such that

(1) int K; N int K; =0 if i # j and
(2) UK; = 2.

(3.3.9) Definition. Suppose 2 is a domain with a subdivision T. Assume
each element domain, K, tn the subdivision is equipped with some type of
shape functions, P, and nodal variables, N, such that (K,P,N) forms a
finite element. Let m be the order of the highest partial derivatives involved
in the nodal variables. For f ¢ C™(12), the global interpolant is defined by

(3.3.10) Irf

K, =TIk, f
forall K; € T.

Without further assumptions on a subdivision, no continuity proper-
ties can be asserted for the global interpolant. We now describe conditions
that yield such continuity. Only the two-dimensional case using triangular
elements is considered in detail here; analogous definitions and results can
be formulated for higher dimensions and other subdivisions.

(3.3.11) Definition. A triangulation of a polygonal domain §2 is a subdivision
consisting of triangles having the property that

(3) no vertex of any triangle lies in the interior of an edge of another
triangle.

(3.3.12) Example. The figure on the left of Fig. 3.12 shows a triangulation
of the given domain. The figure on the right is not a triangulation.
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Fig. 3.12. Two subdivisions: the one on the left is a triangulation and the one
on the right is not.

(3.3.13) Example. Let 2 be the square depicted in Fig. 3.13. The triangu-
lation 7 consists of the two triangles T7 and 715, as indicated. The finite
element on each triangle is the Lagrange element in Example 3.2.1. The
dual basis on T3 is {1 — = — y,x,y} (calculated in Example 3.3.3) and
the dual basis on T3 is (cf. exercise 3.x.3) {1 —x,1 —y,z +y — 1}. Let
f =sin(n(z +y)/2). Then

ITf:{x—i—y on 7T}

2—x—y onTs.

(83.3.14) Remark. For approximating the Dirichlet problem with zero bound-
ary conditions, we use a finite-dimensional space of piecewise polynomial
functions satisfying the boundary conditions given by

Vr ={Zrf: f € C™(2), flon = 0}
on each triangulation 7. This will be discussed further in Chapter 5.

(3.3.15) Definition. We say that an interpolant has continuity order r (in

short, that it is “C"”) if Irf € C" for all f € C™(82). The space, Vi =
{Zrf : feC™}, is said to be a “C"7 finite element space.

(3.3.16) Remark. A finite element (or collection of elements) that can be
used to form a C" space as above is often called a “C" element.” Not all
choices of nodes will always lead to C” continuity, however. Some sort of
regularity must be imposed. For the elements studied so far, the essential
point is that they be placed in a coordinate-free way that is symmetric with
respect to the midpoint of the edge.

0,1) (1,1)

N

(0,0) (1,0)

Fig. 3.13. simple triangulation consisting of two triangles
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(3.3.17) Proposition. The Lagrange and Hermite elements are both C° ele-
ments, and the Argyris element is C*. More precisely, given a triangulation,
T, of £2, it is possible to choose edge nodes for the corresponding elements
(K,P,N) , K € T, such that the global interpolant satisfies Irf € C”
(r = 0 for Lagrange and Hermite, and v = 1 for Argyris) for f € C™
(m = 0 for Lagrange, m = 1 for Hermite and m = 2 for Argyris). In
particular, it is sufficient for each edge xx’ to have nodes & (x' — x) + X,
where {& : i=1,...,k —1—2m} is fized and symmetric around & = 1/2.
Moreover, under these hypotheses, Irf € WIL.

Proof. Tt is sufficient to show that the stated continuity holds across each
edge. Let T;, ¢ = 1,2, denote two triangles sharing an edge, e. Since we as-
sumed that the edge nodes were chosen symmetrically and in a coordinate-
free way, we know that the edge nodes on e for the elements on both T}
and T, are at the same location in space. Let w := Zp, f — Zr, f, where we
view both polynomials, Zr, f to be defined everywhere by extension outside
T; as polynomials. Then w is a polynomial of degree k and its restriction to
the edge e has one-dimensional Lagrange, Hermite or Argyris nodes equal
to zero. Thus, w|. must vanish. Hence, the interpolant is continuous across
each edge.

Lipschitz continuity of Z7 f follows by showing that it has weak deriva-
tives of order r + 1 given by

(D Irf)lr = D°Irf VT ET, |a| <r+1.

The latter is certainly in L®. The verification that this is the weak deriva-
tive follows from

| @0 @) de =3 [ (070 rf) o

T7eT /T

=S [ 00T do

TeT

V[ 03 xr (D°Trs) d.

TeT

where xr denotes the characteristic function of 7. The second equality
holds because all boundary terms cancel due to the continuity properties
of the interpolant. O

3.4 Equivalence of Elements

In the application of the global interpolant, it is essential that we find a
uniform bound (independent of T' € T') for the norm of the local interpo-
lation operator Z7. Therefore, we want to compare the local interpolation
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operators on different elements. The following notions of equivalence are
useful for this purpose (cf. Ciarlet & Raviart 1972a).

(3.4.1) Definition. Let (K, P,N) be a finite element and let F(z) = Az+b
(A nonsingular) be an affine map. The finite element (K,P,N) is affine
equivalent to (K,P,N) if

(i) F(K)=K
(it) F*P =P and
(iii) F.N = N.

We write (K,P,N) % (K,P,N) if they are affine equivalent.

(3.4.2) Remark. Recall that the pull-back F* is defined by F*(f) = foF
and the push-forward F, is defined by (F.N)(f) := N(F*(f))

Proof. See exercise 3.x.4. a

(3.4.4) Examples.

(i) Let K be any triangle, P = Py, N' = {evaluation at vertices of K}.
All such elements (K, P,N) are affine equivalent.
(i) Let K be any triangle, P = Pa, N = {evaluation at vertices and
edge midpoints}. All such elements are affine equivalent.
(iii) Let P = P,. In Fig. 3.14, (T}, P,N1) and (T, P,N>) are not affine
equivalent, but the finite elements (77,P,N7) and (T3, P, N3) are
affine equivalent.

Fig. 3.14. inequivalent quadratic elements: noda placement incompatibility

(iv) Let P = Ps. The clements (71, P,N7) and (1%, P, N>) depicted in
Fig. 3.15 are not affine equivalent since the directional derivatives
differ.

(v) Let P = P3. Then the elements (T, P, N7) and (T, P, N3) depicted
in Fig. 3.16 are not affine equivalent since the strength of the direc-
tional derivatives (indicated by the length of the arrows) differ.

(3.4.5) Proposition. There exist nodal placements such that all Lagrange
elements of a given degree are affine equivalent.
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Fig. 3.15. inequivalent cubic Hermite elements: direction incompatibility

Fig. 3.16. inequivalent cubic Hermite elements: derivative strength incompati-
bility

Proof. We pick nodes using barycentric coordinates, (by,bs,bs), for each
triangle. The i-th barycentric coordinate of a point (z,y) can be defined
simply as the value of the i-th linear Lagrange basis function at that point
(bi(z,y) := ¢i(x,y)). Thus, each barycentric coordinate is naturally as-
sociated with a given vertex; it is equal to the proportional distance of
the point from the opposite edge. Note that the barycentric coordinates
sum to one (since this yields the interpolant of the constant, 1). Thus,
the mapping (z,y) — b(z,y) maps the triangle (invertibly) to a subset of
{be [0,1]3 Dby F b+ b3 = 1}.

For degree k Lagrange elements, pick nodes at the points whose
barycentric coordinates are

i
(%7%’E> where 0<4¢,5,l<k and i1+j+1=k.
(]

(3.4.6) Definition. The finite elements (K,P,N) and (K,P,N) are inter-
polation equivalent if

Inf = Iﬁf Y f sufficiently smooth,

where Iy (resp. I37) is defined by the right-hand side of (3.3.2) with N; € N
(resp. N € N). We write (K,P,N) 5(K,P,N).
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(3.4.7) Proposition. Suppose (K,P,N) and (K,P,N) are finite elements.
Every nodal variable in N is a linear combination of nodal variables inNN
(when viewed as a subset of C™(K)') if and only if (K, P,N)7 (K,P,N).
Proof. (only if) We must show that Zy f = Iﬁf Vf e C™(K). For N; €
N, we can write N; = Z§=1 ¢jN; since every nodal variable in A is a linear
combination of nodal variables in . Therefore,

k
NiZgf) = (Z ¢; N )( Tf)

j=1

k
= ch NJ(I
j=1
k ~
= ¢ N;(f
j=1

= N;(f).

The converse is left to the reader in exercise 3.x.26. 0O

(3.4.8) Example. The Hermite elements in Fig. 3.7 (and 3.15-16) are inter-
polation equivalent (exercise 3.x.29).

(3.4. 9) Definition. If (K P,N) is a finite element that is aﬁine equivalent
to (K,P,N) and (K,P,N) is interpolation equivalent to (K P, N) then
we say that (K,P,N) is affine-interpolation equivalent to (K, P, N).

(3.4.10) Example.

(i) All affine equivalent elements (e.g., Lagrange elements with appro-
priate choices for the edge and interior nodes as described in Propo-
sition 3.4.5) are affine-interpolation equivalent.

(ii) The Hermite elements with appropriate choices for the edge and
interior nodes are affine-interpolation equivalent.

(iii) The Argyris elements are not affine-interpolation equivalent (Ciarlet
1978).

The following is an immediate consequence of the definitions.

(3 ) Proposition. If (K ,73,./\/ ) is affine-interpolation equivalent to
(K P N) then Z o F* = F* o T where F is the affine mapping K — K.
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3.5 Rectangular Elements

In this section we consider finite elements defined on rectangles. Let Qp =
{>2;¢ip;j(z)q;(y) : pj.q; polynomials of degree < k}. One can show that

(3.5.1) dim Q, = (dimP})?,
where P} denotes the space of polynomials of degree less than or equal to

k in one variable (cf. exercise 3.x.6).

Tensor Product Elements

(3.5.2) Example. (k = 1) Let K be any rectangle, P = Q;, and N as
depicted in Fig. 3.17.

Suppose that the polynomial P € Qi vanishes at z1, 29,23 and z4. The
restriction of P to any side of the rectangle is a first-order polynomial of
one variable. Therefore, we can write P = ¢ L Ly for some constant c. But

0= P(z4) = cLi(24) La(z4) = ¢=0,
since L1 (z4) # 0 and La(z4) # 0. Thus, P = 0. O

(3.5.3) Example. (k = 2) Let K be any rectangle, P = Q, and N as
depicted in Fig. 3.18. Suppose that a polynomial P € Qy vanishes at z;, for
i=1,...,9. Then we can write P = ¢ L1 LyL3L,4 for some constant c. But

0= P(Zg) = CLl(Zg) LQ(ZQ) L3(Zg) L4(Zg) = c¢=0,

since L;(z9) # 0 for i =1,2,3,4. O
24 23 i L3 i L4
37 ?Z 38 29
Lyl e S
2 L, "24 ’:Zs ‘.Z(,
L, |
Ll ””” ®
21 22 21 22 <3
Fig. 3.17. bilinear Lagrange rectan- Fig. 3.18. biquadratic Lagrange rect-
gle angle

(3.5.4) Example. (arbitrary k) Let K be any rectangle, P = Qy, and
N denote point evaluations at {(t;,t;) : 4,7 =0,1,...k} where {0 =ty <
t1 < ... < t = 1}. (The case k = 3 is depicted in Fig. 3.19.) Then
(K,P,N) is a finite clement (cf. exercise 3.x.7).
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R _ 3q -Zﬁ 25
° ° ° ]
® [ ] ®
<g 29 24
® [ ) [ ] [ ]
4| <2 <3

Fig. 3.19. bicubic Lagrange rectangle = Fig. 3.20. notation for Lemma 3.5.6

The Serendipity Element

(3.5.5) Example. (Quadratic Case) To define the shape functions for this
case, we need the following lemma (see Fig. 3.20 for the notation).

(3.5.6) Lemma. There exist constants ci,...,cs such that
8
?(29) = ZCi ¢(zi) for ¢ € Pa.
i=1

Proof. Note that evaluation at z1,..., 2 forms a nodal basis for P,. Let
{¢1,...,¢6} be the dual basis of Po, ie., Nyp; = §;; for i, =1,...,6. If
¢ € Po, then

¢ = Ni(¢) ¢1 + Na(¢) g2 + ... + Ne(9) d6.

Therefore,

P(z9) = B(21) P1(29) + B(22) P2(29) + ... + d(26) P6(29)
= ¢(21) + co ¢(22) +...4+cs ¢(28)

(let Cr —C]8 — 0) O
Let K be any rectangle, P = {¢ € Qs : Z?Zl ci 9(z;) — d(z9) = 0},
and N as depicted in Fig. 3.21. Then (K, P,N) is a finite element because

if € P vanishes at z1,...,25 we can write ¢ = cLyLsL3L4 for some
constant c. But

8
0= Zci¢(zi) =¢(z9) = ¢=0
i=1

(since L;(z9) # 0,4 =1,...,4). Therefore, ¢ = 0. a
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210 29 28 27
Z 1 [ ] W4. . W3 [ ] Z6
[ ] . . [ ]
212 W) Wy s
21 22 23 24
Fig. 3.21. quadratic serendipity ele- Fig. 3.22. cubic serendipity element

ment

(3.5.7) Example. (Cubic Case) Let K be any rectangle There exist con-
S‘qants c; such that for ¢ € Ps, o(w;) = Z; 1 jqﬁ(zj) 1= 1,2,3,4
(for w; and z; as depicted in Fig. 3.22), then let P = {¢ € Q3
o(w;) — Z] 1Cio(z) = 0 for i = 1,2,3,4} and N as depicted. Then
(K,P,N) is a finite element (cf. exercise 3.x.8).

(3.5.8) Remark. The notion of a C" rectangular element can be defined
similarly to Definition 3.3.15. Following the proof of Proposition 3.3.17, we
can sce that all the rectangular elements defined in this section are C°. An
example of a C! rectangular element is in exercise 3.x.16.

(3.5.9) Remark. The space, P, of shape functions for serendipity elements
is not uniquely defined by the choice of nodal variables. Another way to
choose them is described in Sect. 4.6.

3.6 Higher-dimensional Elements

Higher-dimensional elements can be constructed inductively just the way we
constructed two-dimensional elements using properties of one-dimensional
elements as building blocks. As an illustration, we describe tetrahedral ele-
ments in three dimensions. The Lagrange elements can be defined as before,
inductively in the degree, k, as follows.

We pick nodal variables at the vertices (of which there are four), at k—1
points on the interior of each edge (there are six edges) and at (k—2)(k—1)/2
points in the interior of each face (again four of these). The face points,
which exist only for k£ > 3, should be chosen so as to determine polynomials
in two variables (in the plane of the face) of degree k — 3. For k > 4,
we also pick points in the interior of the tetrahedron so as to determine
polynomials in three variables of degree k — 4. The existence of the latter
will be demonstrated by induction on k, as in the two-dimensional case.

Suppose these nodal values vanish for v € P,. The restriction of v
to each face, Fj, of the tetrahedron is a polynomial in two variables (the
coordinates for the plane of F;), and the nodal variables have been chosen
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to determine this restriction. Thus, v|g, is identically zero. Let L; denote a
nontrivial linear function vanishing on F;. By applying (3.1.10) four times,

v = L1L2L3L4R

where the remainder is a polynomial of degree k — 4. For k < 3 this implies
that R = 0, so that v = 0. In the general case, we use the interior nodes to
determine that R = 0. It simply remains to count the number of nodes and
check that it equals dim Py.

‘We have enumerated

(3.6.1) C(k) =4+ 6(k — 1)+ 2(k — 2)(k — 1) + dim Py_4

nodes above. The dimension of P, can be computed as follows. We can de-
compose an arbitrary polynomial, P, of degree k in three variables uniquely
as

(3.6.2) P(z,y,2z) = p(z.y) + zq(z,y.2)
where the degree of p is k and the degree of ¢ is k — 1. Simply let p(z,y) :=
P(z,y,0) and apply (3.1.10) to P — p with L(z,y, z) = z. Therefore,

k
(3.63)  dimP = (k+1)(k+2)/2+dimPe_y = > (j+1)(j +2)/2,
j=0

where the second equality follows from the first by induction. The first few
of these are given in the following table, and it is easily checked that they
agree with (3.6.1).

Table 3.2. dimension of polynomials of degree k, Pk, in three dimensions

k| dim Py
1 4
2 10
3 20
4 35

Since (3.6.3) implies dim Py, is a cubic polynomial in k (with leading
coefficient 1/6), we conclude that C(k) is also a cubic polynomial in k. Since
these cubics agree for k = 1,2, 3,4, they must be identical.

The above arguments also show that the nodes can be arranged so as
to insure that the Lagrange elements are C°. As in the proof of Proposition
3.3.17, it suffices to see that the restrictions of the global interpolant to
neighboring tetrahedra agree on the common face. This is possible because
of our choice of facial nodes to determine polynomials in two variables
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on that face. One must again choose the facial nodes in a symmetric and
coordinate free way. In particular, it is sufficient to let the nodes be located
at points whose barycentric coordinates (see (3.4.5)) B on each face satisfy

(b1,b2,b3) € B = (by(1),bo(2),bo(3)) € B

for any permutation o of the indices.

(3.6.4) Remark. The notion of a C” tetrahedral element can be defined
similarly to Definition 3.3.15. Following the proof of Proposition 3.3.17, we
see that the tetrahedral elements defined in this section are all C°.

3.7 Exotic Elements

All the elements (K, P, N) studied so far have shape functions consisting of
polynomials. However, this is not at all necessary. We consider some of the
possibilities briefly here. We restrict our discussion to the class of macro-
finite-elements, for which the shape functions, P, are themselves piecewise
polynomials. Other types of shape functions have been proposed, e.g., ra-
tional functions (Wachspress 1975).

Let K denote a triangle, and let it be divided into four subtriangles
by connecting edge midpoints as shown in Fig. 3.23. Define P to be the
set of continuous piecewise linear functions on this subtriangulation. If N/
consists of point-evaluations at the vertices and edge midpoints of K, we
clearly have a well defined C? finite element.

A more complex element is that of Clough and Tocher (Ciarlet 1978).
Let K denote a triangle, and let it be divided into three subtriangles as
shown in Fig. 3.24. Let P be the set of C! piecewise cubic functions on
this subtriangulation. Let A consist of point- and gradient-evaluations at
the vertices and normal-derivative-evaluations at the edge midpoints of K.
Then (K,P,N) is a well defined, C? finite element (Ciarlet 1978).

Fig. 3.23. macro-piecewise-linear tri- Fig. 3.24. Clough-Tocher C'' macro-
angle piecewise-cubic triangle
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3.x Exercises

3.x.1

3.x.2
3.x.3
3.x.4

3.x.5
3.x.6

3.x.7
3.x.8
3.x.9

3.x.10

3.x.11

3.x.12

3.x.13

Let m and k£ be nonnegative integers, and let P be a polynomial
in one variable of degree 2m + k -+ 1. Suppose that PU)(a) = 0
for a = 0,1 and j = 0,...,m, and further that P(§;) = 0 for
0<& <... <& < 1. Prove that P = 0.

Prove that the local interpolant is linear (cf. Proposition 3.3.4).
Find the dual basis for triangle 75 in Example 3.3.13.

Show that affine equivalence is an equivalence relation (cf. Proposi-
tion 3.4.3).

Show that interpolation equivalence is an equivalence relation.

Show that dim Q) = (dim P})?, where P} = {polynomials in one
variable of degree less than or equal to k} and {z'y? :i,j =0,...,k}
is a basis of Q.

Prove that (K,P,N) in Example 3.5.4 is a finite element.
Prove that (K,P,N) in Example 3.5.7 is a finite element.

Construct nodal basis functions for K = the rectangle with vertices
(-1,0), (1,0), (1,1) and (-1,1), P = Qq, and N = evaluation at
the vertices.

Construct nodal basis functions for K = the triangle with vertices
(0,0), (1,0) and (0,1), P = Py, and N = evaluation at the vertices
and at the midpoints of the edges.

Prove that the set of nodal variables

2 ={P(a),P'(a),P®(a),..., PP V(a):a=0,1}
determine unique polynomials (in one variable) of degree 2n + 1.
(For n = 1, this is just Hermite interpolation, as in exercise 3.x.1.)

Show that the nodal variables for the Argyris element described
in Example 3.2.11 determine P;. Give a general description of the
Argyris element for arbitrary degree k > 5.

Show that if P = Q1, then the nodal variables depicted in Fig. 3.25
do not determine P.

Fig. 3.25. a non-clement
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3.x.14 Nonconforming piecewise linear element Show that the edge mid-
points in a triangulation can be used to parametrize the space of
piecewise linear functions (in general discontinuous) that are contin-
uous at each edge midpoint. Can you generalize this to quadratics
(i.e., find a nodal basis for piecewise quadratics that are continuous
at two points on each edge)?

3.x.15 Rotated nonconforming bilinear element Let K be the square
[—1,1] x [-1,1], P be the space of shape functions spanned by 1,
x, y and z? — y%, and N consist of the evaluations of the shape
functions at the four midpoints (cf. Fig. 3.25). Show that (K, P,N)
is a finite element. Let a;(v) = (1/]e;]) fej vds be the mean value

of the function v on the edge e; of K, and N, = {a1,...,a4}. Show
that (K,P,N,) is also a finite element. Are these two elements in-
terpolant equivalent?

3.x.16 Bicubic Hermite (Bogner-Fox-Schmit) element Prove that a tensor
product cubic in two variables is uniquely determined by
oP oP 0%p
Y =A{Pla;),—(a;), —(a;), ——(a;) :i=1,....4
{ (al)/ axl (a1)7 ax2 (a1)7 ax18x2 (al) v ’ ? }

where a; are the rectangle vertices. Will this generate a C'! piecewise
cubic on a rectangular subdivision?

3.x.17 Let Z be the interpolation operator associated with continuous,
piecewise linears on triangles, i.e., Zu = u at vertices. Prove that
IZl|co_co = 1, ie., for any continuous function u, [|[Zu| ;. <
|u]| o - (Hint: where does the maximum of |Zu| occur on a triangle?)
Is this true for piecewise quadratics?

3.x.18 Let “/” denote the second derivative that is the concatenation of
the directional derivatives in the two directions indicated by the
line segments. Show that Py is determined by (i) the value, gradient
and “/” second derivative at each vertex (the directions used for
“/” at each vertex are given by the edges meeting there, as shown
in Fig. 3.26) and (ii) the value at each edge midpoint.

Fig. 3.26. a quartic finite element

3.x.19 Suppose that the nodes for the Lagrange element are chosen at
the barycentric lattice points introduced in the proof of Proposition
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3.x.20
3.x.21
3.x.22

3.x.23

3.x.24

3.x.25
3.x.26
3.x.27
3.x.28

3.x.29
3.x.30

3.x.31
3.x.32

3.x.33

3.x.34

3.x.35
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3.4.5. Show that the corresponding nodal basis functions for Py, can
be written as a product of k linear functions. (Hint: for each node
determine £ lines that contain all other nodes.)

Generalize Proposition 3.4.5 and exercise 3.x.19 to three dimensions.
Generalize 3.4.5 and exercise 3.x.19 to n dimensions.

Prove that no analog of the serendipity element exists for biquar-
tic polynomials. (Hint: show that one can not remove all interior
points.)

Show that the decomposition (3.6.2) is unique.

Develop three-dimensional Hermite and Argyris elements. Are the
latter C'*?

Develop four-dimensional Lagrange elements.
Prove the “if” part of Proposition 3.4.7.
Show that the Hermite element is not C'L.

Can the derivative nodes for the Hermite elements be chosen to give
an affine-equivalent family for arbitrary triangles?

Use (3.4.7) to prove (3.4.8).

Let P denote the space of polynomials of degree k in n variables.
Prove that dimP? = (" —]L_ K , where the latter is the binomial
coefficient. (Hint: show that (3.6.2) holds in n-dimensions and use

this to prove that the numbers dim P} form Pascal’s triangle.)
Develop three-dimensional tensor-product and serendipity elements.

Give conditions on rectangular subdivisions that allow the tensor-
product elements to be C°.

Give conditions on rectangular subdivisions that allow the bicubic
Hermite elements to be C! (see exercise 3.x.16). Are the conditions
the same as in exercise 3.x.327

What conditions on simplicial subdivisions allow three-dimensional
Lagrange elements to be C°?

Let T be a triangle with vertices pi (1 < k < 3) and A; € P; satisty
Aj(pr) = 6;p for 1 < j < 3. Show that

1 eymyn g () (mh(nl)
2|T) /TAV\2 As do = (L+m+n+2)

where £, m and n are nonnegative integers. What is the correspond-
ing formula for a tetrahedron?



