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element, the analyst must~be aware of stability and locking characteristics of various
elements. A judicious selection of an element involves factors such as the stability of
the element for the problem at hand, the expected smoothness of the solution and the
magnitude of deformations expected. In addition, the analyst must be aware of the
complexity of nonlinear solutions. The possibility of both physical and numerical
instabilities must be kept in mind and checked in a solution.

Thus the informed use of nonlinear software in both industry and research requires
considerable understanding of nonlinear finite element methodss: It is the objective of
this book to provide this understanding and to make the reader aware of the many
interesting challenges and opportunities in nonlinear finite element analysis.

1.2 RELATED BOOKS AND
FINITE ELEMENTS

A BRIEF HISTORY OF NONLINEAR

Several excellent texts and monographs devoted either entirely or partially to nonlinear
finite element analysis have already been published. Books dealing only with nonlinear
finite element analysis include Oden (1972), Crisfield (1991), Kleiber {1989), and Zhong
(1993). Oden’s work is particularly noteworthy since it pioneered the field of nonlinear
finite element analysis of solids and structures. Recent books are Simo and Hughes
and Wood (1997). Some of the books which are partially devoted to
nonlinear analysis are Belytschko and Hughes (1983), Zienkiewicz and Taylor (1991),
Bathe (1996) and Cook, Malkus and Plesha (1989). These books provide useful intro-
ductions to nonlinear finite element analysis. As a companion book, a treatment of
linear finite element analysis is also useful. The most comprehensive are Hughes (1987)
and Zienkiewicz and Taylor (1991).

In the following, we recount a brief history of nonlinear finite element methods. This
account differs somewhat from those in many other books in that it focuses more on the
software than published works. In nonlinear finite element analysis, as in many endea-
vors in this information-computer age, the software often represents a better guide to
the state-of-the-art than the literature.

Nonlinear finite element methods have many roots. Not long after the linear finite
element method became known through the work of the Boeing group and the famous
paper of Turner, Clough, Martin, and Topp (1956), engineers in many universities and
research laboratories began extensions of the method to nonlinear, small-displacement
static problems. It is difficult to convey the excitement of the early finite element
community and the disdain of classical researchers for the method. For example, for
many years the Journal of
nethod because it was considered of no scientific substance. But to many, particularly
:ngineers who had to deal with engineering problems, the promise of the finite element
nethod was clear: it offered the possibility of dealing with the complex shapes of real
lesigns.

The excitement in the 1960s was fueled by Ed Wilson’s liberal distribution of his first
Jrograms. The first generation of these programs had no name. In many laboratories
hroughout the world, engineers developed new applications by modifying and extend-
ng these early codes developed at Berkeley; they had a tremendous impact on engincer:
ng and the subsequent development of finite element software. The second generation:

Applied Mechanics shunned papers on the finite element

/
of linear programs developed at wnﬁ_no_o.u\ were called SAP ﬁ.mﬂncommﬂw_ W:mWWm ﬂm\wﬂ
gram). The first nonlinear program which .a<o_<aa m.HoB this wor at mn:o mwmﬁa
NONSAP, which had capabilities for equilibrium solutions and the solution of tr

X implicit i tion.
i EMWWMWWWMMWMMMWMMWMM nonlinear finite element methods were Argyris (1965) and
Marcal and King (1967). The number of papers soon Eo&ﬂﬁoa, and momim_w wwnmw
followed. Pedro Marcal taught at Brown University for a :E.ﬁ but _.wo Mnﬁ up m. “H_ 2 to
market the first nonlinear commercial finite element program in 1969; the %Ho%m s
called MARC and it is still a major player. At about the same time, John _émsmob:om-
developing a nonlinear finite element program at Westinghouse for EMN. oM.Hm app o8
tions. He left Westinghouse in 1969 to market Eo program >Zw<m“w¢< _o_u .HoMoMM mnw
years ‘dominated the commercial kuos_Eamn_ ME:m nﬂMEM:W MMMWW although i

. i ials than the complete nonlinear pr : et e

Bm_.ma M NWM%HMMWMHMMMMB the early ooMHBoHQ& software scene were David Hibbitt
mum,wﬁmcm..ﬁ:mon Bathe. Hibbitt worked EEH. Pedro Marcal until 1972, .mE.u _au.ab Mmm
founded HKS, which markets ABAQUS. This program has ._um& substantia 56”,9.
because it was one of the first finite element programs to Eﬁmoacm,wamwuﬂmémwmama
researchers to add elements and material models. Jiirgen Bathe launc %\ s is w,ww mmz m
~ shortly after obtaining his PhD at Berkeley under the tutelage of Ed Mos e

2 _wmmmu teaching at MIT. It was an outgrowth of the NONSAP codes, and w

.&wwﬂwwgon&& finite element programs marketed until about 1990 w..uocmow on mﬁmm—M

solutions and dynamic solutions by implicit methods. There were SE,EO Mzwﬁ:omm:w
' these methods in the 1970s, generated mainly by the Berkeley ._.mmmmnm_uﬁm and f om% <<~0m
.mrmw&mw roots: Thomas J.R. Hughes, Robert Taylor, Juan wﬁu.o, uE.mob.wm” e, mm %
] mm@@m, Pal Bergan, Kaspar Willam, Ekerhard Ramm m.nm Michael Onﬁn:mnmﬁ MoE 2
i wﬁo).ﬁa.oamnabﬁ researchers who have been at Berkeley; if*way undoubtedly the ma
incubator i arly years of finite elements. :
. ﬁcwMMMHJ%MMMM How\, N:oaonn nonlinear software is the Q:ucow finite element ooamﬂ
.h,m” lmo#.,ma&n element methods in their early years were strongly Em.cowoo& by the wor
S, @.n DOE laboratories, particularly the so-called hydro-codes, ﬁ\Em:..a Qc.m.b.p ﬁ
e 0 1964, Costantino developed what was probably the .w:.mﬁ explicit ms:%. m.onwoﬂ
& program, at the I1T Research Institute in Chicago (Costantino, 1967). It was Ep.:m Go
line materials and small deformations, and computed the Eﬁmﬁ,nmm nodal mozmnm v
aﬁﬁ_ lying a banded form of the stiffness matrix by .E.a nodal displacements. It émm
tTun on an IBM 7040 series computer, which cost B::omm of dollars and had a m%MM )
Qiifar Jess than 1 megaflop (million floating point operations per second) and 32
of RAM. Bhe stiffness matrix was stored on a tape and the progress of a
fion could be gauged by watching the tape a&.<9 after every step, the S.nm
ould reverse to permit a read of the stiffness matrix. These and the later Oou.ﬁo
machines with similar specifications, the CDC 6400 and 6600, were the machines
ich fnite element codes were run in the 1960s. A CDC 6400 cost almost $10
on, had 32k words of memory (for storing everything including the operating
ind compiler) and a real speed of about one Bmmmmow.
1969, i order to sell a proposal to the Air Force, the senior author ao<m€_uma what
€0Me t0 be known as the element-by-element technique: the computation of the
,mg,_no.” eS without use of a stiffness matrix. The resulting program, SAMSON, was a
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Lriroaiction

Chap. 1

two-dimensional finite element program which was used for a decade by weapons
laboratories in the US. In 1972, the program was extended to fully nonlinear three-
dimensional transient analysis of structures and called WRECKER. The funding was
provided by a visionary program manager, Lee Ovenshire, of the US Department of
Transportation, who foresaw in the early 1970s that crash testing of automobiles could
be replaced by simulation. : -

However, it was a little ahead of its time, for at that time a simulation of a 300-element
model for a 20 ms simulation took about 30 hours of computer time, which cost about
$30,000, the equivalent of three years salary of an Assistant Professor. Lee Ovenshire’s
program funded several pioneering efforts: Hughes’s work on contact-impact, Ivor
Mclvor’s work on crush, and the research by Ted Shugar and Carly Ward on the modeling
of the human head at Port Hueneme. But the Department of Transportation decided
around 1975 that simulation was too expensive and all funding was redirected to testing,
bringing this research effort to a screeching halt. WRECKER remained barely alive for
the next decade at Ford, and the development of explicit codes by Belytschko was shifted
to the nuclear safety industry at Argonne, where the code was called SADCAT and
WHAMS.

Parallel work was initiated at the DOE national laboratories. In 1975, Sam Key,
working at Sandia, completed HONDO, which also featured an element-by-element
explicit method. The program treated both material nonlinearities and geometric non-
linearities and was carefully documented. However, this program suffered from the
restrictive dissemination policies of Sandia, which did not permit codes to be released
for security reasons. These programs evolved further under the work of Dennis Flana-
gan, a graduate of Northwestern, who named them PRONTO.

A milestone in the advancement of explicit finite element codes was John Hallquist’s
work at Lawrence Livermore Laboratories, J ohn began his work in 1975, and the first
release of the DYNA code was in 1976, He drew on the work which preceded his with
discernment and interacted closely with many researchers from Berkeley, including
Jerry Goudreau, Bob Taylor, Tom Hughes, and Juan Simo. Some of the key elements
of his success were the development of contact-impact interfaces with Dave Benson, his
iwesome programming productivity, and the wide dissemination of the resulting codes,
DYNA-2D and DYNA-3D. In contrast to Sandia, Livermore placed almost no impedi-
nents on the distribution of the program, and like Wilson’s codes, John’s codes were
ioon found in universities and government and industrial laboratories throughout the

vorld. They were not as easy to modify, but many new ideas were developed with the

JDYNA codes as a testbed.
Hallquist’s development of effective contact-impact algorithms (the first ones were

rude compared to what is available today, but they often worked), the use of one-point -

[uadrature elements and the high degree of vectorization made possible striking break-

hroughs in engineering simulation, Vectorization has become somewhat irrelevant -

vith the new generation of computers, but it was crucial for running large problems
'n the Cray machines which dominated the 1980s. The one-point quadrature elements

7ith consistent hourglass control, to be discussed in Chapter 8, increased the speed of

aree-dimensional analysis by almost an order of magnitude over fully integrated three-
imensional elements.

The DYNA codes were first commercialized by a French firm, ESI, in the 1980s and ,..,.
alled PAMCRASH, which also Incorporated many routines from WEHA MS Tn 1989200

Sec. 1.3 Notation / 7

John Hallquist left Livermore and started his own firm to distribute LSDYNA, a
ercial version of DYNA. .
oo%ﬂ“ rapidly decreasing cost of computers and the .H.og_mﬁ:nmmm of mwi.o: %how_www
ioni ign i ast decade. The first major area of application
revolutionized design in the past . o e e
i ¥ i i liferated rapidly. In more and more in ,
motive crashworthiness, but it pro : : e and more industries, proto-
e bei laced by nonlinear finite element simulations. : .
o Tptons o I i i d many others are designed with
hing machines, chain saws, and many ‘
D tions of & i d other extreme loadings.
i i 1 operations, drop-tests and o :
the help of simulations of norma . 1 © extreme loadings.
i ¢ heet-metal forming, and extr
acturing processes, such as forging, s : 1 nd ext
Kmnmwma by mmwno elements. For some of these mEE_m:onm.,. _.E@:o: methods %3
mEEEEm increasingly powerful, and it is clear that both om_um_uEﬁ.ﬁm are necessary. ﬁoM
e le, while the explicit method is probably best mfﬁma for simulating me.wH M_Hn a
anEmB%n no@nnmmodm in the springback simulation implicit BQE.U% are more mcm.:_ M.. .
- Ho%w the power of implicit methods is increasing more BEH&% M_umﬁn Eﬁm_HoM wom% %__n
. per till have such a long way to go. Implicit me .
methods, perhaps because they s o b ———
inear h as contact and friction, have
tment of nonlinear constraints, suc : : : "
mennnaosm@. Sparse iterative solvers have also become much more effective. A robus
capability today requires the availability of both classes of methods.

1.3 NOTATION

onlinear finite element analysis represents a nexus of three mnEHm“ :w :MWMPWV WHHH
lement T i - t of matrix methods of structural analysis; (2 !
element methods, which evolved ou : ‘ . Lysis: (2) hon
1 anics; athematics, including numerica alysis,
near continuum mechanics; and (3) ma g pumencal analysis,
Tiea i analysis (Hughes, 1996). In each o

ear algebra and functional analy g : o e ks o
~ standard notati ‘ ¥ tely, the notations are quite di s

m._w andard notation has evolved. Unfortunately, . . .

% ,_,.p_wamm contradictory or overlapping. We have tried to keep the variety of nogﬁ%M
: @mwgaﬁg and consistent within the book and with the S_nﬁ.Eﬁ :HSEW. 4
iid readers who have some familiarity with the literature on continuum mechanics
ﬁw .:”anﬁo elements, many equations are given in matrix, tensor and indicial notation.

o

.. 1al notation. Equations pertaining to the finite element implementation are given in
al or'matrix notation.

cial notation In indicial notation, the components of tensors or matrices
.._ i y specified. Thus a vector, which is a first-order ﬂnumo.ﬁ is awsoﬁoa in Ea:.u_m_
by, x;, where the range of the index is the number of agm:m_.o:m nsp- N:Q..Rmh
term are summed, in conformance with the rules of Einstein notation.

ple in three dimensions, if x; is the position vector with magnitude r,

; 2 2 2
= ox = xx T XXy +X3x3 = X7+ (13.1)

quation indicates that x;  x, Xy ¥, X3 — I; We .<<E :m:m.:v\ write
.88 X, v and 7 rather than neina enhonrinte ta avnid canfiucinn with
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Appendix O: THE ORIGINS OF THE FINITE ELEMENT METHOD
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§O.1 INTRODUCTION

§0.1. Introduction

This Appendix summarizes the history of structural finite elements since 1950 to date. It functions
as a hub for chapter-dispersed historical references.

For exposition convenience, structural “finitelementology” may be divided into four generations
that span 10 to 15 years each. There are no sharp intergenerational breaks, but noticeable change
of emphasis. The following summary does not cover the conjoint evolution of Matrix Structural
Analysis into the Direct Stiffness Method from 1934 through 1970. This was the subject of a
separate essay [238], which is also given in Appendix H.

§0.1.1. Who Invented Finite Elements?

Not just one individual, as this historical sketch will make clear. But if the question is tweaked to:
who created the FEM in everyday use? there is no question in the writer’s mind: M. J. (Jon) Turner
at Boeing over the period 1950-1962. He generalized and perfected the Direct Stiffness Method,
and forcefully got Boeing to commit resources to it while other aerospace companies were mired in
the Force Method. During 1952-53 he oversaw the development of the first continuum based finite
elements. In addition to Turner, major contributors to current practice include: B. M. Irons, inventor
of isoparametric models, shape functions, the patch test and frontal solvers; R. J. Melosh, who
recognized the Rayleigh-Ritz link and systematized the variational derivation of stiffness elements;
and E. L. Wilson, who developed the first open source (and widely imitated and distributed) FEM
software.

All of these pioneers were in the aerospace industry at least during part of their careers. That is
not coincidence. FEM is the confluence of three ingredients, one of which is digital computation.
And only large industrial companies (as well as some government agencies) were able to afford
mainframe computers during the 1950s.

Who were the popularizers? Four academicians: J. H. Argyris, R. W. Clough, H. C. Martin, and
O.C.Zienkiewicz are largely responsible for the “technology transfer” from the aerospace industry
to a wider range of engineering applications during the 1950s and 1960s. The first three learned the
method from Turner directly or indirectly. As a consultant to Boeing in the early 1950s, Argyris, a
Force Method expert then at Imperial College, received reports from Turner’s group, and weaved
the material into his influencial 1954 serial [22]. To Argyris goes the credit of being the first in
constructing a displacement-assumed continuum element [22, p. 62].

Clough and Martin, then junior professors at U.C. Berkeley and U. Washington, respectively, spent
“faculty internship” summers at Turner’s group during 1952 and 1953. The result of this seminal
collaboration was a celebrated paper [758], widely considered the start of the present FEM. Clough
baptized the method in 1960 [136] and went on to form at Berkeley the first research group to
propel the idea into Civil Engineering applications. Olek Zienkiewicz, originally an expert in finite
difference methods who learned the trade from Southwell, was convinced in 1964 by Clough to try
FEM. He went on to write the first textbook on the subject [821] and to organize another important
Civil Engineering research group in the University of Wales at Swansea.

§0.1.2. G1: The Pioneers

The 1956 paper by Turner, Clough, Martin and Topp [758], henceforth abbreviated to TCMT, is
recognized as the start of the current FEM, as used in the overwhelming majority of commercial
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Appendix O: THE ORIGINS OF THE FINITE ELEMENT METHOD

codes. Along with Argyris’ serial [22] they prototype the first generation, which spans 1950 through
1962. A panoramic picture of this period is available in two textbooks [572,596]. Przemieniecki’s
text is still reprinted by Dover. The survey by Gallagher [288] was influential at the time but is now
difficult to access outside libraries.

The pioneers were structural engineers, schooled in classical mechanics. They followed a century
of tradition in regarding structural elements as a device to transmit forces. This “element as force
transducer” was the standard view in pre-computer structural analysis. It explains the use of flux
assumptions to derive stiffness equations in TCMT. Element developers worked in, or interacted
closely with, the aircraft industry. (As noted above, only large aerospace companies were then able
to afford mainframe computers.) Accordingly they focused on thin structures built up with bars,
ribs, spars, stiffeners and panels. Although the Classical Force Method dominated stress analysis
during the 1950s [238], stiffness methods were kept alive by use in dynamics and vibration. It is
not coincidence that Turner was a world-class expert in aeroelasticity.

§0.1.3. G2: The Golden Age

The next period spans the golden age of FEM: 1962-1972. This is the “variational generation.”
Melosh showed [485] that conforming displacement models are a form of Rayleigh-Ritz based
on the minimum potential energy principle. This influential paper marks the confluence of three
lines of research: Argyris’ dual formulation of energy methods [22], the Direct Stiffness Method
(DSM) of Turner [759,761], and early ideas of interelement compatibility as basis for error bounding
and convergence [274,484]. G1 workers thought of finite elements as idealizations of structural
components. From 1962 onward a two-step interpretation emerges: discrete elements approximate
continuum models, which in turn approximate real structures.

By the early 1960s FEM begins to expand into Civil Engineering through Clough’s Boeing-Berkeley
connection [ 144,145] and had been baptized | 136,138]. Reading Fraeijs de Veubeke’s famous article
[275] side by side with TCMT [758] one can sense the ongoing change in perspective opened up
by the variational framework. The first book devoted to FEM appears in 1967 [821]. Applications
to nonstructural problems had started in 1965 [820], and were treated in some depth by Martin and
Carey [470].

From 1962 onwards the displacement formulation dominates. This was given a big boost by the
invention of the isoparametric formulation and related tools (numerical integration, fitted natural
coordinates, shape functions, patch test) by Irons and coworkers [394,397]. Low order displace-
ment models often exhibit disappointing performance. Thus there was a frenzy to develop higher
order elements. Other variational formulations, notably hybrids [573,578], mixed [353,723] and
equilibrium models [275] emerged. G2 can be viewed as closed by the monograph of Strang and
Fix [698], the first book to focus on the mathematical foundations.

§0.1.4. G3: Consolidation

The post-Vietnam economic doldrums are mirrored during this post-1972 period. Gone is the
youthful exuberance of the golden age. This is consolidation time. Substantial effort is put into
improving the stock of G2 displacement elements by tools initially labeled “variational crimes”
[697], but later justified. Textbooks by Hughes [385] and Bathe [54] reflect the technology of this
period. Hybrid and mixed formulations record steady progress [39]. Assumed strain formulations
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§0O.1 INTRODUCTION

appear [455]. A booming activity in error estimation and mesh adaptivity is fostered by better
understanding of the mathematical foundations [714].

Commercial FEM codes gradually gain importance. They provide a reality check on what works in
the real world and what doesn’t. By the mid-1980s there was gathering evidence that complex and
high order elements were commercial flops. Exotic gadgetry interweaved amidst millions of lines
of code easily breaks down in new releases. Complexity is particularly dangerous in nonlinear and
dynamic analyses conducted by novice users. A trend back toward simplicity starts [457,461].

§0.1.5. G4: Back to Basics

The fourth generation begins by the early 1980s. More approaches come on the scene, notably the
Free Formulation [82,86], orthogonal hourglass control [264], Assumed Natural Strain methods
[57,691], stress hybrid models in natural coordinates [576,599], as well as variants and derivatives
of those approaches: ANDES [225,492], EAS [671,672] and others. Although technically diverse
the G4 approaches share two common objectives:

(i) Elements must fitinto DSM-based programs since that includes the vast majority of production
codes, commercial or otherwise.

(i) Elements are kept simple but should provide answers of engineering accuracy with relatively
coarse meshes. These were collectively labeled “high performance elements” in 1989 [219].

Two more recent trends can be noted: increased abstraction on the mathematical side,! and canned
recipes for running commercial software on the physical side.

“Things are always at their best in the beginning,” said Pascal. Indeed. By now FEM looks like
an aggregate of largely disconnected methods and recipes. The blame should not be placed on the
method itself, but on the community split noted in the book Preface.

§0.1.6. Precursors

As used today, FEM represents the confluence of three ingredients: Matrix Structural Analysis
(MSA), variational approximation theory, and the digital computer. These came together in the
early 1950. The reader should not think, however, that they simultaneouly appeared on the table
through some alchemy. MSA came on the scene in the mid 1930s when desk calculators became
popular, as narrated in Appendix H. And variational approximation schemes akin to those of modern
FEM were proposed before digital computers. Three examples:

o  The historical sketch of [470] says that “Archimedes used finite elements in determining
the volume of solids.” The alleged linkage is tenuous. Indeed he calculated areas, lengths
and volumes of geometrical objects by dividing them into simpler ones and adding their
contributions, passing to the limit as necessary. Where does “variational approximation”
come in? Well, one may argue that the volume (area, length) measure of an object is a scalar
functional of its geometry. Transmute “measure” into “energy” and “simpler objects” into
“elements” and you capture one of the FEM tenets: the energy of the system is the sum of
element energies. But for Archimedes to reach modern FEM “long is the way, and hard,”’
since physical energy calculations require derivatives and Calculus would not be invented for
20 centuries.

' “If you go too far up, abstraction-wise, you run out of oxygen.” (Joel Spolsky).

0-5




Appendix O: THE ORIGINS OF THE FINITE ELEMENT METHOD

e In his studies leading to the creation of variational calculus, Euler divided the interval of
definition of a one-dimensional functional into finite intervals and assumed a linear variation
over each, defined by end values [434, p. 53]. Passing to the limit he obtained what is now
called the Euler-Lagrange differential equation of variational calculus. Thus Euler deserves
credit for being the first to use a piecewise linear function with discontinuous derivatives at
nodes to produce, out of the hat, an ODE with second derivatives. He did not use those
functions, however, to obtain an approximate value of the functional o

e In the early 1940s Courant wrote an expository article [153] advocating the variational treat-
ment of partial differential equations. The Appendix of this article contains the first FEM-style
calculations on a triangular net for determining the torsional stiffness of a hollow shaft. He
used piecewise linear interpolation over each triangle as Rayleigh-Ritz trial functions, and
called his idea “generalized finite differences.”

e A direct variational approach similar to Courant’s was continued by Synge and Prager in the
context of functional analysis [592] and exposed in Synge’s book [712] as the “hypercircle”
method

e  The seminal paper by Turner et al [758] cites two immediate DSM precursors, both dated 1953,
by Levy [443] and Schuerch [657]. (Only the former is available as a journal article; both have
“delta wings” in the title.) From [758], p.806: “In a recent paper Levy has presented a method
of analysis for highly redundant structures that is particularly suited to the use of high-speed
digital computing machines. ... The stiffness matrix for the entire structure is computed by
simple summation of of the stiffness matrices of the elements of the structure.”

Precursors prior to 1950 had no influence on the rapid developments of Generation 1 outlined in
§0.72. Two crucial pieces were missing. First, and most important, was the programmable digital
computer. Without computers FEM would be a curiosity, worth perhaps a footnote in an arcane
book. Also missing was a driving application that could get the long-term attention of scientists
and engineers as well as industrial resources to fund R&D work. Aerospace structural mechanics
provided the driver because the necessary implementation apparatus of MSA was available since
the late 1930s [282].

Matrix procedures had to be moved from desk calculators and punched-tape accounting machines
to digital computers, which affluent aerospace companies were able to afford amidst Cold War
paranoia. Can you.imagine defense funds pouring into hypercircles or Courant’s triangles? Once
all pieces were in place, synergy transformed the method into a product, and FEM took off.

2 That would have preceded the invention of direct variational methods (Rayleigh-Ritz) for over one century, while
representing also the first FEM-style calculation. A near miss indeed.

3 Curiously this book does not mention, even in passing, the use of digital computers that had already been commercially
available for several years. The few numerical examples, all in 2D, are done by hand via relaxation methods.
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Chapter 2

A brief history of FEM

An analysis of complex structures and other systems in a matrix formula-
tion is now unthinkable without the finite element method. Our personal
belief is that the origins of such a rich and applicable method cannot be
attributed solely to one person or school of thought but rather to a syn-
ergy of various scientific developments at various research establishments.
The notion of geometrical division can be traced back to the Greek natural
philosopher Archimedes who in order to compute the area of a complex
shape divided it into triangles and quadrilaterals whose area could be eas-
ily computed; the assembly of the individual areas provided the total area
of the complex shape. More recently, Courant used variational and mini-
mization arguments for the solution of physical problems. Courant [5], and
Prager and Synge [6] had both proposed the concept of regional discretiza-
tion which is essentially equivalent to the assumption of constant strain
fields within the elements. The adaptation, however, and development of
these concepts for structural analysis and other physical and technical prob-
lems was not conceptually achieved until during and shortly after World
War II.

2.1 The matrix displacement method

During World War II the demand for more efficient aeronautical structures
and methods for the analysis of complex structural systems provided the
second author, John Argyris, with the incentive for developing the matriz
displacement method, a concise matrix representation of the equilibrium
equations governing a skeletal structure. It was wartime that necessitated
this sudden explosion of knowledge. In fact in 1944, towards the end of
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World War II, with the advent of jet propulsion, there suddenly arose the
necessity of developing high subsonic speed fighters and fighter bombers.
At the same time there appeared the first electromechanical calculating
devices; the advent of such machines in the United States, Great Britain
and Germany was a revelation to the engineers who were active in aircraft
engineering and were faced with the necessity of analyzing and designing
swept-back wings for the first modern high-speed fighters. In those days,
practically all aircraft calculations were performed by some kind of force
method in which forces or stresses appeared as the major unknowns. When
the swept-back planes were to be designed it became apparent that in
a structure which had practically no two parts at right angles, the force
method was most inconvenient and unpractical.

In those days, John Argyris had heard of the Meteor fighter designed
by Gloucester Aircraft as the answer to the German ME-262. The ME-262
had good aerodynamic performance, but suffered many failures due to the
poor structural design of its swept back wings; this was a problem which
the manufacturers could not overcome at that time. In those far-away days
of 1944 John Argyris was working with HL Cox at the National Physical
Laboratory at Teddington, London. HL Cox was then the prime figure in
aircraft technology in Great Britain. In spite of the strict security precau-
tions, they spoke about the Meteor wings and the difficulty of analyzing
them. So, during the course of three brainstorming days and nights, Ar-
gyris realized that the force method was not suitable for this problem due
to the great difficulty in developing the self-equilibrating systems. Conse-
quently, he toyed with the idea of the displacement method and it suddenly
occurred to him that the triangle was incredibly well suited to these odd
swept-back wing structures —by using a number of triangles it was possi-
ble to discretize such high-speed subsonic structures! As the next step, an
elementary matrix code was designed. The first structure studied using
this new method was a simple wing model described by a set of 64 linear
equations. It was analyzed on the electromechanical calculator at the Na-
tional Physical Laboratory similar to a computing device being developed
at Harvard University in the United States. Needless to say, no software
was available to solve for the unknowns, so that simple, elementary solu-
tion techniques were conceived. In 2-3 days of frenzied work, displacements,
strains and stresses for a loading case were obtained. HL Cox, who was
aware of the on-going work, advised a direct comparison with experimental
tests for a simple wing model. All were surprised when it was discovered
that the maximum stresses did not deviate more than 8 to 9% from the
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experimental ones! This astonishing revelation percolated to the offices of
the aircraft industry, and immediately a security clamp down was imposed.

By 1945 the breakdown of the continuum into triangular elements had
been accomplished, and engineers had started to apply the matrix displace-
ment method to the analysis of swept-back wings. It was not immediately
realized that these developments had led to the birth of the finite element
method, but the importance of the matrix displacement method was under-
stood and the notion of ideal design and analysis of such complex structures
by triangular components or elements was being grasped.

During the course of that work, it was realized that normal and shear
stresses were inappropriate for analysis involving triangles; it was simpler
to use three normal stresses in directions parallel to the sides of the triangle.
This came to engineers as no surprise since they were working daily with
strain rosettes that measured normal (direct) strains in three directions.
The knowledge of the data and simple transformation rules sufficed to yield
the classical cartesian strains and stresses. *

After the War, in 1953, permission was granted to publish the basic
idea of matrix methods, but without the major theoretical aspects of the
triangular element. Aspects of the triangular element were put in two inter-
nal reports of the Department of Aeronautics of Imperial College, London,
by Sydney Kelsey and S. Bagat in 1953 [7], [8]. In 1954-55, also with this
restriction in mind, a series of articles was published in Aircraft Engineer-
ing by Argyris and Kelsey [9], [10] presenting in a concise matrix notation,
unknown in those days, the interesting aspects of the unit load and unit
displacement methods, including thermal and other initial strains. Sydney
Kelsey also designed a wing-like structure with honeycomb panels with no
right angle. Tests performed on this structure in the experimental lab-
oratory of Imperial College revealed an astonishing accuracy of the stress
pattern under a number of loads. This secured the acceptance of the matriz
displacement method.

2.2 The finite element method

Essential contributions to the finite element method were made at Boeing
during the summers of 1952 and 1953 under the direction of M.J. Turner
{11] and led to a publication of an original paper [12]. As stated by R.
W. Clough in [11]: “Mr. Turner saw the need for an improved way of
taking account of the contributions of the wing skin to the stiffness of
airplane wings or arbitrary configurations, and he recognized that a Ritz-
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type procedure could be used to evaluate the contributions of individual
skin elements if the wing were represented as an assemblage of such discrete
structural components”. It was the work conducted at Boeing that provided
R.W. Clough with the inspiration for naming the method as the finite
element method. That name appeared first in a paper presented at the
1960 ASCE Conference [13]. In the 1960s, other researchers helped to
extend, disseminate and apply the finite element method.

There are other notable pioneering names: Olieg C. Zienkiewicz, Samuel
Levy, Harold C. Martin, Borje Langefors, Paul H. Denke, Baudoin Fraejis
De Veubeke, L. Brandeis Wehle Jr., Theodore H. Pian, Warner Lansing,
Bertran Klein, John S. Archer, Robert J. Melosh, John S. Przemieniecki,
Ian C. Taig, Richard H. Gallagher, Bruce Irons, etc. —the list does not
claim to be exhaustive.

2.3 The natural mode finite element method

In 1962 a new approach in the context of the matrix displacement method
was initiated by Argyris and Scharpf [14], [15]. Experimentation with prob-
lems involving large displacements, strains and inelastic behavior led to the
basic concepts of geometrical stiffness and the idea of natural modes. These
natural modes essentially represented invariant fields, including both rigid
body and pure straining measures, that were used to describe the elemental
kinematics. Since then this fundamental idea has evolved significantly, and
has facilitated the computer simulation of large and complex structures in
the linear and nonlinear regimes. In addition, it has provided an insight
into the fundamental behavior of structures undergoing small and large dis-
placements. It is now possible to create finite elements based on rigid body
and straining modes of deformation. The technique is particularly suited
to the creation of simple truss, beam, plate and shell triangular elements,
and tetrahedron volume elements for large scale and fast engineering com-
putations.

Although, over the years, many finite elements have been developed on
these principles, the natural mode method has only recently been applied
by Tenek and Argyris [16], [17] to the analysis of laminated beam and shell
composite structures through a general formulation able to treat, as special
cases, isotropic and sandwich plates and shells. The culmination of four
years of research conducted on this field is presented in this text in a simple
and comprehensible manner for linear and nonlinear statics.
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2.4 The basic ideas of FEM

In the article “A brief history of the beginning of the finite element method”
Gupta and Meek [18] presented summaries of the works of several authors
associated with the invention of the finite element method and its applica-
tion to structural mechanics. They discerned five groups of papers which
may be considered as the starting inspirations of FEM. They are the papers
by Courant [5], Argyris and Kelsey [9], [10], Turner, Clough, Martin and
Top [12], Clough [13], and Zienkiewicz and Cheung [19].

Courant

Courant [5] developed the idea of the minimization of a functional using
linear approximation over subregions. He specified the values at discrete
points similar to the node points of a finite element mesh. In his paper
he shows a mesh subdivision up to 9 approximate points to solve the St
Venant’s torsion of a square hollow box. He considered the potential energy
U of the system and used the condition of stationary potential energy which
he expressed as

5(V+U)=0. (2.1)

He specified the shear stresses in the shaft as first derivatives of a stress
function ¢, and stated that if ¢ is described in terms of a number of dis-
crete parameters a;, the stationary condition (2.1) leads to a set of linear
equations

oV +1U)
aa,-

Courant also applied the Rayleigh-Ritz method to create a functional for
¢ with two unknowns.

Courant did not fully clarify his piecewise linear approximation to the
¢ surface nor did he give any mathematical details of this approximation.
He clearly indicated, however, a procedure which could be used for the
minimization of the total potential energy for the torsion problem.

=0. (2.2)

Argyris and Kelsey

In the series of papers “Energy Theorems and Structural Analysis” Argyris
and Kelsey [9], [10] developed the matrix theory of structures for discrete
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elements. They developed the concepts of flexibility and stiffness and pro-
vided equations which have become standard in structural mechanics. They
include

flexibility : [F] = / RFIEEZ
i (2.3)
stiffness: [K] = /V [a] T [k][a]dV,

in which [f],[k] are constitutive relations and [b], [a] are stress-force and
strain-displacement relationships, respectively. They applied their theory
to a rectangular panel for the case of nodal displacements which vary lin-
early along the edges of the element and calculated its stiffness matrix; the
first element in plane stress using interpolation functions in terms of nodal
displacements was developed! The panel had an 8 x 8 stiffness matrix which
was expressed as a sum of shear and direct strain matrices:

[K] = [Ks] + [Ka)- (2.4)

Thus Argyris and Kelsey developed the rectangular panel stiffness matrix
in plane stress using element interpolation functions in terms of nodal dis-
placements. They also showed that, in the context of aircraft skin models,
the triangular panel behavior may well be approximated by using energy
minimization procedures which were shown later to provide a firm basis for
finite element formulation.

Turner, Clough, Martin and Top

The pioneering paper of Turner et al. [12] discusses the truss member and
derives its stiffness matrix in global coordinates in the form:

) LIS XD VTR V7!

AE | =X X X\ M
K|=—

[ ] L AF‘ —Ap, u2 _”2

o A —pt P

, (2.5)

where ), 2 are member direction cosines, L is the member length and A its
area of cross-section. The paper continues with a discussion on rectangular
plate elements and then turns to triangular elements, stating that the latter
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will be used as the basic building block for calculating stiffness matrices for
plates of arbitrary shape. It then proceeds to the study of the triangular
element in plane stress. It starts by assuming constant strains which are
integrated to yield the displacements u,v. Then, it expresses the relation
between stresses 0zz, 0yy and oy and the nodal displacements in the form

o = [S]{5}. (2.6)

The nodal forces were obtained from the three stresses via

F = [T|{o} = [T][SH?}. (2.7)

The element stiffness matrix was defined as

[K] = [T][S]. (2.8)

Note that equation (2.8) is equivalent to the second of equations (2.3)
developed by Argyris and Kelsey. The Turner paper also addresses the
question of convergence.

Clough

The name finite element method is attributed to Clough [13], [11], who
was a coauthor of the original paper by Turner [12]. In [11], [13], he out-
lined how he first invented the name finite element method because he
wished to show the distinction between the continuum analysis and the
matrix method of structural analysis. In [20] he outlined the research pro-
gram undertaken at Boeing Company in 1952-1953 for the calculation of
the flexibility coefficients for low aspect ratio wing structures for dynamic
analysis. He extended Turner’s work from 1957 onwards; continued conver-
gence studies on stress components; and popularized the ideas of the finite
element method.

Zienkiewicz and Cheung

The development of the non-structural applications by means of minimiza-
tion of the total potential energy of a system is developed systematically
for the first time in the paper by Zienkiewicz and Cheung [21], in which
heat transfer and St Venant’s torsion of prismatic shafts are analyzed. In
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this paper they set up the approximation to the functional in terms of the
nodal values of the triangular domain, into which the region is subdivided.

The function minimization techniques, originally discussed by Courant,
were clarified by Zienkiewicz in 1965; this opened the way to the analysis
of field problems by the FEM. A first book on the FEM was published in
1957 [19] with new editions appearing in recent years [22].

Zienkiewicz expressed his personal views on the origins, milestones and
directions of the finite element method in [23]. He stated that the finite
element method was made possible only by the advent of the electronic
digital computer, and discussed the “variational” approaches via extremum
principles.

Thus if the strain field in an elastic continuum is defined by a suitable
operator S acting on the displacements u as

e = Su, (2.9)

with the corresponding stresses given as

o = De, (2.10)

where D is a matrix of elastic constants, then the finite element solution
sought could be obtained by the minimization of the potential energy

= f eTDedQ — | tFudl — / b u dq. (2.11)
2 0] 0

T

The displacement field is approximated as

u" = Na, (2.12)

where @ are nodal values of u or other parameters satisfying prescribed
displacements on the boundary I'; t are the prescribed tractions on the
boundary I's; and b are the body forces. The functions IN are given in
terms of the coordinates and are known as shape or basis functions. The
minimization of (2.11) leads to a set of discrete algebraic equations of the
form

Ka=f, (2.13)
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where
ri

K=YK., K.= / (SN)TD(SN)dQ, (2.14)
Qe

and

F=Y f, f.= / NTbda + / NTtdr, (2.15)
Qe re

The domains €2, and I'® correspond to elements into which the whole con-
tinuum problem is divided. Equations (2.14), (2.15) are used to generate
element stiffness coefficients and forces providing that the approximation
shape functions of Eq. (2.12) are defined on a local basis. These equa-
tions summarize the basic philosophy of classical finite element methods.
Zienkiewicz points out that such a derivation of the finite element procedure
is a particular case of the approach introduced much earlier by Rayleigh [24]
and Ritz [25]. The main difference lies in the use of the local shape func-
tions N which yield a banded structure of the assembled stiffness matrix
K and preserve the local assembly structure of the matrix equations.
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