
LOG8430E: Design patterns 
and principles (SOLID)



Patterns, Principles 
and Best practices

• To deliver faster

• To manage change

• To manage complexity

2LOG8430 –©M. Fokaefs et F. Guibault



3LOG8430 –©M. Fokaefs et F. Guibault



“Software development is not a Jenga 
game.”
• In the beginning of the design phase, the system looks beautiful, elegant, 
pure…

• …but in the process, during development, we have hacks, fast and 
negligent implementations to respect the deadlines.

• The software degrades!

• What are the symptoms of a degrading design?
• In the next classes!

• To maintain the quality of the design, we need to base it on SOLID 
principles!
• Introduced by Uncle Bob (Robert C. Martin)

• What are these principles?

4LOG8430 –©M. Fokaefs et F. Guibault



5LOG8430 –©M. Fokaefs et F. Guibault



“Just because you can doesn’t mean you 
should.”
• A class needs to have a single responsibility.

6LOG8430 –©M. Fokaefs et F. Guibault



SRP violated?

7LOG8430 –©M. Fokaefs et F. Guibault



SRP guaranteed!

8LOG8430 –©M. Fokaefs et F. Guibault



“Just because you can doesn’t mean you 
should.”
• A class needs to have a single responsibility.

•…but what does that mean?

• A class should have only one reason to change.

• Is it possible to predict the changes to a class?

9LOG8430 –©M. Fokaefs et F. Guibault



10LOG8430 –©M. Fokaefs et F. Guibault



(Some) GRASP principles

• High cohesion
• The methods of a class use a lot of the other members of the same class.

11LOG8430 –©M. Fokaefs et F. Guibault



(Some) GRASP principles

• Low coupling
• The methods of a class do not use many members from other classes.

12LOG8430 –©M. Fokaefs et F. Guibault



“Just because you can doesn’t mean you 
should.”
• A class needs to have a single responsibility.

•…but what does that mean?

• A class should have only one reason to change.

• Is it possible to predict the changes to a class?

• High cohesion + Low coupling Ą Fewer responsibilities, fewer reasons 
to change.

• So, maintain the cohesion and the coupling of the class!

13LOG8430 –©M. Fokaefs et F. Guibault



14LOG8430 –©M. Fokaefs et F. Guibault



“Open-chest surgery isn’t needed when 
putting on a coat.”
• The software entities need to be open to extensions, but close to 

modifications.

•Always think: “what will happen if the entity changes?”

15LOG8430 –©M. Fokaefs et F. Guibault



OCP violated?

16LOG8430 –©M. Fokaefs et F. Guibault



OCP 
guaranteed!

17LOG8430 –©M. Fokaefs et F. Guibault



“Open-chest surgery isn’t needed when 
putting on a coat.”
• The software entities need to be open to extensions, but close to 

modifications.

•Always think: “what will happen if the entity changes?”

• Inheritance and polymorphism favor the extension.

• Refactoring: Replace type checking with polymorphism (if the class 
hierarchy already exists).

•Refactoring: Replace type checking with the “Strategy” pattern (if the 
class hierarchy does not exist yet).
• We will see these two cases in the following courses.

18LOG8430 –©M. Fokaefs et F. Guibault



19LOG8430 –©M. Fokaefs et F. Guibault



“If it looks like a duck, sounds like a duck, but 
needs batteries, you probably have the wrong 
abstraction.”
• The functions that use references to base classes must be able to use 

objects of the derived classes without knowing.

•All methods that take a parameter of type “Animal” can accept an 
argument of type “Dog”.

Person Animal

Dog
20LOG8430 –©M. Fokaefs et F. Guibault



“If it looks like a duck, sounds like a duck, but 
needs batteries, you probably have the wrong 
abstraction.”
• The functions that use references to base classes must be able to use 

objects of the derived classes without knowing.

• The preconditions cannot be enforced in the derived type.
• The derived methods cannot expect more than the base methods.

• The postconditions cannot be more relaxed in the derived type.
• The derived methods cannot provide less than the base methods.

21LOG8430 –©M. Fokaefs et F. Guibault



LSP violated

• A circle is an ellipse, whose two
focal points coincide.

• OCP violated!!

22LOG8430 –©M. Fokaefs et F. Guibault



23LOG8430 –©M. Fokaefs et F. Guibault



“You want me to plug this in where?”

• Multiple interfaces specific to clients are worth more than a single 
interface.

24LOG8430 –©M. Fokaefs et F. Guibault



ISP violated?

• Divide SimpleCodec into an Encoder and a Decoder .

25LOG8430 –©M. Fokaefs et F. Guibault



“You want me to plug this in where?”

• Multiple interfaces specific to clients are worth more than a single 
interface.

• The case of Amazon EC2: Across 16 versions, the operations of the 
service interface grew from 15 to 90!
• There are special considerations for SOA systems.

• We will see them in future classes.

Fokaefs, M., & Stroulia, E. (2014). Wsdarwin: Studying the evolution of web service systems. In Advanced 
Web Services (pp. 199-223). Springer, New York, NY.

26LOG8430 –©M. Fokaefs et F. Guibault



27LOG8430 –©M. Fokaefs et F. Guibault



“Would you solder a lamp directly to the 
electrical wiring in a wall?”
• Depend on abstractions. Do not depend on concrete classes.

28LOG8430 –©M. Fokaefs et F. Guibault



DIP violated?

UI

Service

MySQL

29LOG8430 –©M. Fokaefs et F. Guibault



DIP guaranteed!

Service
<Interface>
Database

MySQL

UI

30LOG8430 –©M. Fokaefs et F. Guibault



“Would you solder a lamp directly to the 
electrical wiring in a wall?”
• Depend on abstractions. Do not depend on concrete classes.

• The Holy Grail of software architecture!

• If we want to change the database, how many classes will we have to 
change?

• If we depend on software libraries, our system is locked within a 
specific language (DIP violated).

• If we depend on REST APIs, our system remains independent of 
languages (DIP guaranteed).

31LOG8430 –©M. Fokaefs et F. Guibault



32LOG8430 –©M. Fokaefs et F. Guibault



Design and Styles of Distributed 
Architectures

Next time
LOG2410

OO Design 
(SOLID)

Design 
Patterns

33LOG8430 –©M. Fokaefs et F. Guibault


