Directed Assembly of 3-D Microvascular Networks

Robotically controlled deposition (RCD) machine*

*Cesarano, J., "Freeforming objects with low-binder slurry," US patent no. 6,027326. *Software developed by Smay, J. (now at Oklahoma St. University)

Microvascular Network Fabrication

Removal of fugitive ink

Solidification of structural material

Design of Fugitive Organic Inks

Criteria for organic inks

- Exhibit thixotropic viscoelastic response
 - Flow through a deposition nozzle
 - Subsequently "set" immediately after exiting nozzle to retain shape
- Maintain architecture during resin infiltration and curing
- Offer a solid-to-liquid phase transition at moderate temperature for removal from final structure

Viscoelastic Deformation of Polymeric Scaffolds

Viscoelastic Beam Models

- Euler-Bernouilli theory (EBT)
 - No transverse shear deformation
 - Recommended for slender beams
 - *L*/*d* > 10

- Quasi-static solution

$$w(t) = \frac{C_1 q L^4}{384I} J(t)$$

 $C_1 = 5$ (simply supported) and 1 (clamped)

- Timoshenko beam theory (TBT)
 - Considers rotatory inertia
 - Recommended for thick beams
 - L/d < 10

$$-\frac{\partial}{\partial t} \left(\rho A \frac{\partial w}{\partial t} \right) + \frac{\partial}{\partial x} \left[\left(kG(t)A \right) \left(\frac{\partial w}{\partial t} - \psi \right) \right] + q = 0$$
$$-\frac{\partial}{\partial t} \left(\rho I \frac{\partial \psi}{\partial t} \right) \frac{\partial}{\partial x} \left(E(t)I \frac{\partial \psi}{\partial x} \right) + \left(kG(t)A \right) \left(\frac{\partial w}{\partial x} - \psi \right) = 0$$

Quasi-static solution

$$w(t) = \frac{C_1 q L^4}{384 I} \left[1 + C_2 \frac{1 + \upsilon}{k} \left(\frac{d}{L} \right)^2 \right] J(t)$$

 $C_1 = 5$ (simply supported) and 1 (clamped) $C_2 = 1.6$ (simply supported) and 8 (clamped)

Viscoelastic Beam Models and Experiments

Time-dependent mid-span deflection of Prussian blue paste®

- 0 < t < 1 s: viscoelastic recovery after shearing inside micronozzle during deposition
- *t* > 1 s: deflection rate slows down due to material stiffening

Viscoelastic Beam Models and Experiments

Effects of aspect ratio on experimental data and model predictions

- *L/d* ~ 23: Overestimation due to high degree of stretching during deposition
- *L/d* ~ 14: Good correlation with EBT predictions with clamped conditions
- *L/d* ~ 5: Underestimated due to localized deformation of filament near supports