
Département de génie informatique et de génie logiciel

École Polytechnique de Montréal

LOG6306 : Patrons pour la 
compréhension de programme

Foutse Khomh
foutse.khomh@polymtl.ca

Local M-4123

mailto:foutse.khomh@polymtl.ca


Design Decay

Adding 
new 

feature
s! Poor design 

Choices! 
(anti-

patterns)

Bug 
fixing

!



Design Decay

• Development team may implement software 
features with poor design, or bad coding…

• Code Smells (Low level (local) problems)
– Poor coding decisions

• Lexical smells (Linguistic Anti-patterns)
– Poor naming, commenting… of an entity

• Anti-patterns (High Level (global) problems)
– Poor design solutions to recurring design problems







Anti-patterns

Anti-patterns are “poor” solutions to 
recurring design and implementation 
problems

– Impact program comprehension, 
software evolution and maintenance 
activities

– Important to detect them early in 
software development process, to 
reduce the maintenance costs

—William H. Brown, 1998



Anti-patterns

7

• Design patterns are “good” solutions to recurring design issues, but on 

the other side,..

• Anti-patterns are “bad” design practices that lead to negative 

consequences.



Blob (God Class)

– Conception procédurale 
en programmation OO

– Large classe contrôleur

– Beaucoup d’attributs et 
méthodes avec une 
faible cohésion*

– Dépend de classes de 
données

* À quel point les méthodes sont étroitement liées aux attributs et  aux méthodes de la classe. 

• Blob (God Class)

– “Procedural-style design 
leads to one object with 
a lion’s share of the 
responsibilities while 
most other objects only 
hold data or execute 
simple processes”



Blob (God Class)

• FreeCAD project

• 2,540,559 lines of 

code

9



Blob (God Class)

10

▪ Symptoms:

▪ Large controller class

▪ Many fields and methods

with a low cohesion*

▪ Lack of OO design.

▪ Procedural-style than object

oriented architectures.

*How closely the methods are related to the instance variables in the class. 

Measure: LCOM (Lack of cohesion metric)



Blob (God Class)

11

▪ Consequences:

▪ Lost of the benefits of using

Object Oriented programming!

▪ Too complex to reuse or test.

▪ Expensive to load.

▪ …

*How closely the methods are related to the instance variables in the class. 

Measure: LCOM (Lack of cohesion metric)



Blob (God Class)

12



Blob (God Class) : Correction

13



Blob (God Class) : Correction

14



Blob (God Class) : Correction

15



Blob (God Class) : Correction

16



Spaghetti Code

– “Ad hoc software 
structure makes it
difficult to extend and 
optimize code.”

– Manque de structure : 
pas d’héritage, pas de 
réutilisation, pas de 
polymorphisme

– Conception procédurale 
en programmation OO

– Noms des classes 
suggèrent une 
programmation 
procédurale

– Longues méthodes sans 
paramètres avec une 
faible cohésion

– Utilisation excessive de 
variables globales



Spaghetti Code

18

▪ Symptoms :

▪ Many object methods with no 

parameters.

▪ Lack of structure: no inheritance, no 

reuse, no polymorphism.

▪ Long process-oriented methods with no 

parameters and low cohesion.

▪ Procedural thinking in OO programing. 



Spaghetti Code

19

▪ Consequences :

▪ The pattern of use of objects is very 

predictable.

▪ Code is difficult to reuse.

▪ Benefits of OO are lost; inheritance is 

not used to extend the system; 

polymorphism is not used.

▪ Follow-on maintenance efforts 

contribute to the problem.



Spaghetti Code

20

• Ring project

• 233,492 lines of code



Spaghetti Code

• FreeCAD project

• 2,540,559 lines of code

21



Refactoring



23

Reverse Conditional
You have a conditional that would be easier to understand 
if you reversed its sense.

Reverse the sense of the conditional and reorder the 
conditional's clauses.

if ( !isSummer( date ) )

charge = winterCharge( quantity );

else

charge = summerCharge( quantity );

if ( isSummer( date ) )

charge = summerCharge( quantity );

else

charge = winterCharge( quantity );



24

Rename Method
The name of a method does not reveal its purpose.

Change the name of the method.



25

Move Method
A method is, or will be, (using or) used by more features of 
another class than the class on which it is defined.

Create a new method with a similar body in the class it 
uses most. Either turn the old method into a simple 
delegation, or remove it altogether.



26

Pull Up Method
You have methods with identical results on subclasses.

Move them to the superclass.



27

Extract Method
You have a code fragment that can be grouped together.

Turn the fragment into a method whose name explains the purpose 

of the method.

void printOwing() {

printBanner();

//print details

System.out.println ("name: " + _name);

System.out.println ("amount " + getOutstanding());

} 

void printOwing() {

printBanner();

printDetails(getOutstanding()); 

}

void printDetails (double outstanding) {

System.out.println ("name: " + _name);

System.out.println ("amount " + outstanding);

} 



28

Extract Method
You have a code fragment that can be grouped together.

Turn the fragment into a method whose name explains the purpose 

of the method.

void printOwing() {

printBanner();

//print details

System.out.println ("name: " + _name);

System.out.println ("amount " + getOutstanding());

} 

void printOwing() {

printBanner();

printDetails(getOutstanding()); 

}

void printDetails (double outstanding) {

System.out.println ("name: " + _name);

System.out.println ("amount " + outstanding);

} 



29

Inline Method
A method's body is just as clear as its name.

Put the method's body into the body of its callers and 
remove the method.

int getRating() {
return (moreThanFiveLateDeliveries()) ? 2 : 1;

}
boolean moreThanFiveLateDeliveries() {

return _numberOfLateDeliveries > 5;
}

int getRating() {
return (_numberOfLateDeliveries > 5) ? 2 : 1;

}



30

Inline Method
A method's body is just as clear as its name.

Put the method's body into the body of its callers and 
remove the method.

int getRating() {
return (moreThanFiveLateDeliveries()) ? 2 : 1;

}
boolean moreThanFiveLateDeliveries() {

return _numberOfLateDeliveries > 5;
}

int getRating() {
return (_numberOfLateDeliveries > 5) ? 2 : 1;

}

Opposite to Extract Method



31

Replace Conditional with Polymorphism
You have a conditional that chooses different behavior 
depending on the type of an object.

Move each leg of the conditional to an overriding method in a 

subclass. Make the original method abstract.

double getSpeed() {
switch (_type) {

case EUROPEAN:
return getBaseSpeed();

case AFRICAN:
return getBaseSpeed() - getLoadFactor() * _numberOfCoconuts;

case NORWEIGIAN_BLUE:
return (_isNailed) ? 0 : getBaseSpeed(_voltage);

}
throw new RuntimeException ("Should be unreachable");

}



32

Replace Conditional with Polymorphism
You have a conditional that chooses different behavior 
depending on the type of an object.

Move each leg of the conditional to an overriding method in a 

subclass. Make the original method abstract.



33

How To Perform Refactorings

• Either manually or automatically.

• When done manually, it is always done in 
small steps (called refactorings).

• Larger refactorings are sequences of 
smaller ones



34

Manual Refactoring

• Manual refactoring steps should always be 
small, because:

– They are safer this way, because the steps are 
simpler

– It is easier to backtrack

Pay attention to the mechanics:

– Mechanics should stress safety



35

Automatic Refactoring

• When automatic support is available, it should 
be preferred, but ...

• ... only if the tool is really safe.

• Example: Rename Method
– Does it check for another method with the same 

name?

– Does it account for overloading?

– Does it account for overriding?



36

Testing is Key When Refactoring

• Tests warn programmers of problems if they 
unknowningly break other parts of the 
application

• Tests give an immediate/quick analysis of the 
effects of a change



When to Refactor?

37

We should refactor when the code stinks.

“If it stinks, change it.”

Grandma Beck,
discussing child-rearing philosophy



A simple example

38

public List<int[]> getThem() {

List<int[]> list1 = new ArrayList<int[]>();

for (int[]

if (x[0]

x : theList)

== 4)

list1.add(x);

return list1;

}

Thiscode is quite simple

but what does it do?

https://www.slideshare.net/mariosangiorgio/clean-code-and-code-smells (slide30-46)

https://www.slideshare.net/mariosangiorgio/clean-code-and-code-smells


A simple example

39

public List<int[]> getThem() {

List<int[]> list1 = new ArrayList<int[]>();

for (int[]

if (x[0]

x : theList)

== 4)

list1.add(x);

return list1;

}

Thiscode is quite simple but 

what does it do?

Looking at it we can’t tell 

what it is actually doing!



A simple example

40

public List<int[]> getFlaggedCells() {

List<int[]> flaggedCells = new ArrayList<int[]>();

for (int[] cell : 

if

gameBoard)

(cell[STATUS_VALUE] == FLAGGED)

flaggedCells.add(x); 

return flaggedCells;

}

Is this code any better?



A simple example

41

public List<Cell> getFlaggedCells() {

List<Cell> flaggedCells = new ArrayList<Cell>();

for (Cell cell : gameBoard) 

if (cell.isFlagged())

flaggedCells.add(x); 

return flaggedCells;

}

What about this?



A simple example

42

What we have done:

used intention 

revealing names

flaggedCells

rather than list1



A simple example

43

What we have done:

used intention revealing

names

replaced magic numbers

with constants

flaggedCells

rather than list1

cell[STATUS_VALUE]

rather than x[0]



A simple example

44

What we have done:

used intention revealing

names

replaced magic numbers

with constants

created an appropriate 

abstract data type

flaggedCells

rather than list1

cell[STATUS_VALUE]

rather than x[0]

Cell cell rather than
int[] cell



Benefits 

❖more flexible thanks to use of objects instead of 

primitives int[ ].

❖Better understandability and organization of code. 

Operations on particular data are in the same place, instead of being scattered. 

❖No more guessing about the reason for all these 

strange constants and why they are in an array.

45



Another example

46

int d;
What does it mean?

Days? Diameter? ...



Another example

47

int d;
What does it mean?

Days? Diameter? ...

int d; //elapsed time in days

Is this any better?



Another example

48

int d;
What does it mean?

Days? Diameter?

..

.
int d; //elapsed time in days

Is this any better?

int elapsedTimeInDays;

What about this?



One more Example

49

public bool isEdible() {
if (this.ExpirationDate > Date.Now && 

this.ApprovedForConsumption == true && 
this.InspectorId != null) {

return true;
} else { return
false;

}
}

How many things is the function doing?



public bool isEdible() {
if (this.ExpirationDate > Date.Now && 

this.ApprovedForConsumption == true && 
this.InspectorId != null) {

return true;
} else { return
false;

}
}

Can we implement it better?

1. Check expiration 

2. Check approval

3. Check inspection 

4. Answer the request

50

One more Example



Do one thing

51

public bool isEdible() { 
return isFresh() &&

isApproved() && 
isInspected();

}

❖ Now the function is doing one thing!

❖ Easier to understand (shorter method)

❖ A change in the specifications turns into a

single change in the code!

Is this any better? Why?

Long Method example (~1622 LOC)
https://github.com/dianaelmasri/FreeCadMod/blob/master/Gui/ViewProviderSketch.cpp

https://github.com/dianaelmasri/FreeCadMod/blob/master/Gui/ViewProviderSketch.cpp


One more take…

public void bar(){ 
foo(“A”);
foo(“B”);
foo(“C”);

}

What about this?

52



Avoid copy and past, it smells!!!

Don’t Repeat Yourself

public void bar(){ 
foo(“A”);
foo(“B”);
foo(“C”);

}

public void bar(){
String [] elements = {“A”, “B”, “C”};

for(String element : elements){ 
foo(element);

}

}

Now the logic to handle the elements is written once 

for all

53



54

Refactoring and code smells

Refactorings remove Bad Smells in the Code 
i.e., potential problems or flaws

• Some will be strong, some will be subtler

• Some smells are obvious, some aren’t

• Some smells mask other problems

• Some smells go away unexpectedly when we 
fix something else



22 Code Smells
What we don’t want to see in your code

• Inappropriate naming

• Comments

• Dead code

• Duplicate code

• Primitive obsession

• Large class

• God class

• Lazy class

• Middle Man

• Data clumps

• Data class

• Long method

• Long parameter list

• Switch statements

• Speculative generality

• Oddball solution

• Feature Envy

• Refuse bequest

• Black sheep

• Contrived complexity

• Divergent change

• Shotgun surgery

55



Bloaters

▪ Large class

▪ Long method (> 20 LOC is usually bad) 

https://github.com/dianaelmasri/FreeCadMod/blob/master/Gui/ViewProviderSketch.cpp

▪ Data Clumps

▪ Primitive Obsession

▪ Long Parameter List

Bloaters are code, methods and classes that have increased to

such gargantuan proportions that they are hard to work with.

https://sourcemaking.com/refactoring/smells

Single responsibility 
principle violated

Symptoms of Bad 
Design

56

https://github.com/dianaelmasri/FreeCadMod/blob/master/Gui/ViewProviderSketch.cpp


Primitive obsession

public Class Car{

private int

public void

red, green, blue;

paint(int red, int green, int blue){

this.red 

this.green 

this.blue

= red;

= green;

= blue;

}
}

public Class Car{

private Color color;

public void paint(Color 

this.color = color;

color){

}

}

57
https://www.slideshare.net/mariosangiorgio/clean-code-and-code-smells

https://www.slideshare.net/mariosangiorgio/clean-code-and-code-smells


Data Clumps

58

bool SubmitCreditCardOrder (string creditCardNumber, int expirationMonth, int expirationYear, 

double saleAmount)

{ }

bool Isvalid (string creditCardNumber, int expirationMonth, int expirationYear)

{ }

bool Refund(string creditCardNumber, int expirationMonth, int expirationYear, double Amount)

{ }



59

bool SubmitCreditCardOrder (string creditCardNumber, int expirationMonth, int expirationYear, double 

saleAmount)

{     }

bool Isvalid (string creditCardNumber, int expirationMonth, int expirationYear)

{     }

bool Refund(string creditCardNumber, int expirationMonth, int expirationYear, double Amount)

{    }

class CreditCard {

private:

string creditCardNumber;, 

int expirationMonth;

int expirationYear;

};

bool SubmitCreditCardOrder ( CreditCard card, double saleAmount)

{    }

bool Isvalid (CreditCard card)

{    }

bool Refund(CreditCard card , double Amount)

{      }



Long Parameter List

60



Long Parameter List

61



62

Object-Orientation Abusers

▪ Switch Statements

▪ Alternative Classes with 
Different Interfaces

▪ Refused Bequest

All these smells are incomplete or incorrect

application of object-oriented programming

principles.

https://sourcemaking.com/refactoring/smells

Poor class hierarchy

Should use Polymorphism

62



Switch statements

• Why is this implementation bad? How can you 
improve it?

63

class Animal {  
int MAMMAL = 0, BIRD = 1, REPTILE = 2; 
int myKind;  // set in constructor 
... 
string getSkin() { 
switch (myKind) { 

case MAMMAL: return "hair"; 
case BIRD: return "feathers";  
case REPTILE: return "scales"; 
default: return "integument";

}
}

}

http://slideplayer.com/slide/7833453/ slides 59 to 62

http://slideplayer.com/slide/7833453/


Switch statements

Bad Implementation because

– A switch statement should not be used to distinguish between 

various kinds of object

– What if we add a new animal type?

– What if the animals differ in other ways like “Housing” or 

“Food:?

64



Switch statements

• Improved code: The simplest is the creation of subclasses

65

class Animal 
{ 

string getSkin() { return "integument"; } 
} 
class Mammal extends Animal 
{ 

string getSkin() { return "hair"; } 
} 
class Bird extends Animal 
{ 

string getSkin() { return "feathers"; } 
} 
class Reptile extends Animal 
{ 

string getSkin() { return "scales"; } 
}



Switch statements

How is this an improvement?

– Adding a new animal type, such as Insect

➢does not require revising and recompiling existing 
code 

– Mammals, birds, and reptiles are likely to differ in 
other ways : class “housing” or class “food”

➢But we’ve already separated them out so we won’t 
need more switch statements

✓we’re now using Objects as they were meant to be 
used

66



Refused bequest

67

Subclass doesn’t use superclass methods and attributes
public abstract class Employee{ 

int quota;

int getQuota();
private 

public

...

}

public class Salesman extends Employee{ ... }

public

...

class Engineer extends Employee{

public int getQuota(){
throw new NotSupportedException();

}

}

Engineer does not use quota. It should be 

pushed down to Salesman



Refused Bequest

68

Inheritance (is a …).

Does it make sense?? Delegation (has 

a…)



Refused Bequest

How this is an improvement?

• Won’t violate Liskov substitution principle, i.e., if inheritance was 

implemented only to combine common code but not because the 

subclass is an extension of the superclass.

• The subclass uses only a portion of the methods of the superclass. 

➢ No more calls to a superclass method that a subclass was not supposed to 

call.

69



Dispensable

▪ Comments

▪ Duplicate Code

▪ Dead Code

▪ Speculative Generality

▪ Lazy class

Something pointless and unneeded whose absence

would make the code cleaner, more efficient and

easier to understand.

https://sourcemaking.com/refactoring/smells

Class not providing logic

That isn’t useful

Predicting the future

70



Explain yourself in the code

Which one is clearer?

if(employee.isEligibleForFullBenefits())

//Check to see if the employee is eligible for full benefits
if((employee.flags & HOURLY_FLAG)&&(employee.age > 65))

(A)

(B)

Comments

71



int a [ ]; 
int b [ ] ;
int sumofa = 0;
for (int i=0; i<size1; i++){
sumofa += a[i];

}

int averageOfa= sumofa/size1;

….

int sumofb = 0;
for (int i = 0; i<size2; i++){
sumofb += b[i];

}

int averageOfb = sumofb/size2;

int calcAverage(int* array, int size) {

int sum= 0;
for (int i = 0; i<size; i++) 

sum + =array[i];

return sum/size;

}

int a[];

int b[];

int averageOfa = calcAverage(a[], size1)

int averageOfb = calcAverage(b[], size2)

Duplicate Code: In the same class

Refactor: Extract method

72
https://www.slideshare.net/annuvinayak/code-smells-and-its-type-with-example



Duplicate Code: In the same class

• Example: consider the ocean scenario:

• Fish move about randomly

• A big fish can move to where 

a little fish is (and eat it)

• A little fish will not move to where 

a big fish is 

• General move method:

public void move() {
choose a random direction; // same for both
find the location in that direction; // same for both
check if it’s ok to move there; // different
if it’s ok, make the move; // same for both

}

73

BigFish

move()

Fish

<<abstract>>move()

LittleFish

move()

http://slideplayer.com/slide/7833453/



Duplicate Code

Refactoring solution: 
• Extract the check on whether it’s 

ok to move

• In the Fish class, put the actual 

move() method

• Create an abstract okToMove()

method in the Fish class 

• Implement okToMove() in each 

subclass

74

BigFish
okToMove(locn):boolean

Fish
move()

<<abstract>>okToMove(locn):boolean

BigFish
okToMove(locn):boolean

http://slideplayer.com/slide/7833453/



Couplers

▪ Feature Envy

▪ Inappropriate Intimacy

▪ Middle Man

▪ Message Chains

All the smells in this group contribute to excessive

coupling between classes or show what happens if

coupling is replaced by excessive delegation.

https://sourcemaking.com/refactoring/smells

Misplaced responsibility

Too complex data access

Classes should know as little as possible 

about each other (    Cohesion)

75



It’s obvious that the method wants to beelsewhere, so we can simply 

use MOVE METHOD to give the method its dream home.

✓ We are reducing the coupling and enhancing the cohesion

Before Refactored

Feature Envy

76
https://www.slideshare.net/annuvinayak/code-smells-and-its-type-with-example



Feature Envy

– A method in one class uses primarily data and methods 

from another class to perform its work 

➢Indicates the method was incorrectly placed in the wrong 

class

– Problems:

• High class coupling

• Difficult to change , understand, and reuse

– Refactoring Solution: Extract Method & Method 

Movement

• Move the method with feature envy to the class containing 
the most frequently used methods and data items

77



Feature Envy

78

class OrderItemPanel {

private:

itemPanel _itemPanel; 

void updateItemPanel( ) {

Item item = getItem();

int quant = getQuantity( );

if (item == null)

_itemPanel.clear( );

else{

_itemPanel.setItem(item);

_itemPanel.setInstock(quant);

}

} 

}

http://slideplayer.com/slide/7833453/ slides 75 to 77

http://slideplayer.com/slide/7833453/


Feature Envy

• Method updateItemPanel is defined in class OrderItemPanel, 

but the method interests are in class ItemPanel

79

class OrderItemPanel {

private:

itemPanel _itemPanel; 

void updateItemPanel( ) {

Item item = getItem();

int quant = getQuantity( );

if (item == null)

_itemPanel.clear( );

else{

_itemPanel.setItem(item);

_itemPanel.setInstock(quant);

}

} 

}



• Refactoring solution: 

– Extract method doUpdate in class OrderItemPanel

– Move method doUpdate to class ItemPanel

80

class OrderItemPanel {

private:

itemPanel _itemPanel; 

void updateItemPanel( ) {

Item item = getItem();

int quant = getQuantity( ); 

_itemPanel.doUpdate(item, quant);

}

} 

class ItemPanel {
public:
void doUpdate(Item item, int quantity){

if (item == null)

clear( );

else{

setItem(item);

setInstock(quantity);

}

} 

}



Message chains

81

a.getB().getC().getD().getTheNeededData()

Law of Demeter: Each unit should 

only talk with friends

a.getTheNeededData()

https://www.slideshare.net/mariosangiorgio/clean-code-and-code-smells

https://www.slideshare.net/mariosangiorgio/clean-code-and-code-smells


82

▪ To refactor a message chain, use Hide Delegate.

https://sourcemaking.com/refactoring/smells

Message chains Refactor: Hide delegate

Message chains

82



83

Change preventers

▪ Divergent change

▪ Shotgun surgery

▪ Parallel Inheritance Hierarchies

if you need to change something in one place in your code, you

have to make many changes in other places too.

Program development becomes much more complicated and

expensive as a result.

https://sourcemaking.com/refactoring/smells

A class has to be changed in several parts

A single change requires changes in severall classes

83



When changes are all over the place, they are hard to find

and it’s easy to miss an important change

Shotgun surgery

84



public class Account { 
       
       private String type; 
       private String accountNumber; 
       private int amount; 
       
       public Account(String type,String accountNumber,int amount) 
       { 
              this.amount=amount; 
              this.type=type; 
              this.accountNumber=accountNumber; 
       } 
       
     
       public void debit(int debit) throws Exception 
       { 
              if(amount <= 500) 
              { 
                     throw new Exception("Mininum balance shuold be over 500"); 
              } 
              
              amount = amount-debit; 
              System.out.println("Now amount is" + amount); 
              
       } 
       
       public void transfer(Account from,Account to,int cerditAmount) throws Exception 
       { 
              if(from.amount <= 500) 
              { 
                     throw new Exception("Mininum balance shuold be over 500"); 
              } 
              
              to.amount = amount+cerditAmount; 
              
       } 
       
} 
 

85

The problem occurs when we add another criterion in validation logic that is if 

account type is personal and balance is over 500 then we can perform above 

operations

http://javaonfly.blogspot.ca/2016/09/code-smell-and-shotgun-surgery.html



public class AcountRefactored { 
       
       private String type; 
       private String accountNumber; 
       private int amount; 
       
       
       
       public AcountRefactored(String type,String accountNumber,int amount) 
       { 
              this.amount=amount; 
              this.type=type; 
              this.accountNumber=accountNumber; 
       } 
       
       private boolean isAccountUnderflow() 
       { 
              if(amount <= 500) 
              { 
                     return true; 
              } 
              return false; 
              
       } 
       
       
       public void debit(int debit) throws Exception 
       { 
              if(isAccountUnderflow()) 
              { 
                     throw new Exception("Mininum balance shuold be over 500"); 
              } 
              
              amount = amount-debit; 
              System.out.println("Now amount is" + amount); 
              
       } 
       
       public void transfer(AcountRefactored from,AcountRefactored to,int cerditAmount) throwsException 
       { 
              if(isAccountUnderflow()) 
              { 
                     throw new Exception("Mininum balance shuold be over 500"); 
              } 
              
              to.amount = amount+cerditAmount; 
              
       } 

86http://javaonfly.blogspot.ca/2016/09/code-smell-and-shotgun-surgery.html



Negative Impact of Bad Smells

87

Bad Smells hinder code comprehensibility

[Abbes et al.CSMR 2011]

https://www.slideshare.net/fabiopalomba/icse15-smell-inducingchange



Bad Smells increase change- and fault-proneness

[Khomh et al.EMSE 2012]

Negative Impact of Bad Smells

88
https://www.slideshare.net/fabiopalomba/icse15-smell-inducingchange



Bad Smells increase maintenance costs

[Banker et al.Communications of theACM]

Negative Impact of Bad Smells

89
https://www.slideshare.net/fabiopalomba/icse15-smell-inducingchange


