
How to preserve the benefitsof DesignPatterns

Ellen Agerbo Aino Cornils
ComputerScienceDepartment,Universityof Aarhus,Denmark.

e-mail:
�
agerbo� cornils� @daimi.aau.dk

Abstract

The rapid evolution of DesignPatternshashamperedthe benefits
gainedfrom usingDesignPatterns.Theincreasein thenumberof
DesignPatternsmakes a commonvocabulary unmanageableand
thetracingproblemobscuresthedocumentationthatshouldbeen-
hancedby using DesignPatterns. We presentan analysisof the
DesignPatternsthatwill stronglyreducethenumberof Fundamen-
tal DesignPatternsandshow how stronglanguageabstractionscan
solve thetracingproblemandtherebyenhancethedocumentation.

1 Intr oduction

DesignPatternsarepresentedasa meansof encapsulatingtheex-
perienceof programmersin a form that is easily communicated
to otherprogrammersin all domainsregardlessof their expertise
within computerscience.

Thebenefitsthatthey claim to provide arethefollowing:

1. They encapsulateexperience.

2. They provide a commonvocabulary for computerscientists
acrossdomainbarriers.

3. They enhancethedocumentationof softwaredesigns.

Theobjective of this paperis to promotethepoint of view that
the forming of DesignPatternsshouldbe restrictive, and to sug-
gesta way of evaluatingexisting DesignPatternswhich leadsto a
reductionof thenumberof DesignPatterns.

In this thesiswe proposea set of guidelinesto follow when
evaluatinga DesignPattern,and we presentthe resultsof these
guidelinesappliedto theDesignPatternsof [Gammaet al. 95].

For theDesignPatternswhichremainDesignPatternsafterthis
evaluation, we have investigatedhow they could be placedas a
“Library DesignPattern” in a classlibrary and reusedby useof
inheritanceor delegation— any suchDesignPatternwill in this
paperbe denotedan LDP. One of the advantagesof using such
LDPs is thatonedoesn’t have to copy thestructureof theDesign
Patternanew eachtime a DesignPatternis appliedin a new con-
text. Therebyreducingthe implementationoverhead; a problem
connectedto theuseof DesignPatternsidentifiedby JanBoschin
[Bosch97]. Anotheradvantageis thatby usingtheLDP it will be

This paperis publishedin proceedingsof the Conferenceon
Object-OrientedProgramming,Systems,Languages,andAp-
plicationsheldin Vancouver, Canada1998

possibleto tracethat theDesignPatternis usedin an application,
whichconsequentlywill promotethedocumentationbenefit.

2 An Analysisof DesignPatterns

Theschoolbookdefinitionof aDesignPatternis thatit is adescrip-
tion of awell testedsolutionto arecurringproblemwithin thefield
of softwaredesignsin ObjectOrientedlanguages.

This definition clearly accentuateswhat the principal ideabe-
hindDesignPatternsis; namelyto distributetheknowledgeof good
design,sothatdesignersof softwareapplicationscanbenefitfrom
work previouslydonein similarareas.However, thedefinitionalso
leavesit up to the individual designerto decidewhatconstitutesa
DesignPatternsincetermslike “well tested”and“recurring” are
not objective termsthat can be evaluated“true” or “f alse” in an
unambiguousway. The consequenceof this is that new Design
Patternsappearin aseeminglyendlessstream;eachof thenew De-
sign Patternsbeingpresentedwith the bestof intents,sincethey
representsomeexperienceto bedistributedto theentiresocietyof
framework designers.Onehasbut to look at the PatternsHome
Page1 to beconvincedthat thereexistsnumerouspatternsandthat
theamountis continuouslyincreasedby PLoPconferencesanddis-
cussiongroups.

Theobviousconsequenceof this is that thenumberof Design
Patternswill grow to a level, whereit becomesimpossibleto main-
tain animpressionof whatDesignPatternsexist, let aloneto know
what problemstheseDesignPatternsactuallysolve. This will in
turn destroy thepossibilityof usingtheDesignPatternsasa com-
monvocabulary, which otherwiseholdsthepotentialof becoming
oneof the primary benefitsof usingDesignPatternsto document
software systems. It will also obscurethe entire field of Design
Patterns,so that it becomestoo hardto find theDesignPatternto
helpwith agivenproblem,whichmaydissuadedesignersfrom us-
ing DesignPatternsasa helpingtool in thedesignphase.In short,
anoverdoseof DesignPatternswill eliminatetwo of thethreeben-
efits that DesignPatternsoffer; they will make it too laboriousto
find andusethe encapsulatedexperience,andthey will make the
commonvocabulary too largeto beeasilycomprehended.

Therearetwo possiblesolutionsto this problem:Oneis to re-
strict thesubmittanceof new DesignPatterns,by inventingrestric-
tions that prospective DesignPatternsmust abideto in order for
beingaccepted.Theproblemwith this approachis that too much
control in theinnovative phaseof discoveringnew DesignPatterns
will invariably exclude new DesignPatternsunjustly, since it is
next to impossibleto find properrestrictionswithout knowing all
potentialDesignPatternsbeforehand.Anothersolutionis to evalu-

1http://hillside.net/patterns/patterns.html

atetheexistingDesignPatternsandfor eachDesignPatterndecide
whether� it qualifiesor not. Theproblemis againto find theguide-
lines by which to decidewhetheror not the prospective Design
Patternis accepted,but the advantageis that eachDesignPattern
will beevaluatedin its own right, whichshouldminimisetheprob-
ability of rejectinga DesignPatternunjustly.

We will in this paperpresentananalysisin theform of a setof
criteria,thatwe have usedfor anevaluationof theDesignPatterns
thatarepresentedin [Gammaet al. 95]. Our analysisdoesnot go
so far asto identify the true DesignPatternsandthrow away the
rest; insteadit focuseson assemblinga coreof FundamentalDe-
signPatternswhichshouldcapturegoodObjectOrienteddesignon
a highenoughlevel sothatit canbeusedin variouskindsof appli-
cations.TheDesignPatternsthatarenot judgedto beFundamental
aretheneitherclassifieddifferentlyor rejectedcompletely.

It is importantto notethatwe do not believe our analysisto be
theanalysisof DesignPatterns.It hasevolvedfrom our work with
theDesignPatternsfrom [Gammaetal. 95], which meansthat the
criteriaarebasedon a rathernarrow setof DesignPatterns.If the
analysiswastestedona largernumberof DesignPatterns,it might
be revealedthat the criteria arenot sufficient or that someof the
criteriaaretoo restrictive in that they unjustly rule out somevalid
DesignPatterns.We do believe, however, that the criteria form a
soundstartingpoint in a muchneededdiscussionon thequality of
theDesignPatterns.

In [Agerbo97] we have shown that by usingthe guidelinesof
this analysis,we canremove half of the DesignPatternsfrom the
core of FundamentalDesignPatterns,so that out of the original
23 DesignPatternsin [Gammaet al. 95] only 12 remain.We give
someexamplesof how theguidelinesof theanalysisareappliedon
a few of theDesignPatterns— for thecompleteanalysiswe refer
to [Agerbo97].

2.1 The Analysis

Wepresentananalysiswhosepurposeit is to restrictthenumberof
FundamentalDesignPatterns.As mentionedabove, we believe it
is betterto have a conservative analysis,thatwill accepttoo many
DesignPatternsratherthanunfairly rejectsomeDesignPatterns.
Our analysisis thereforebasedon threeguidelineson whennot to
accepta prospective DesignPattern. It will bepossibleto make a
stricteranalysisby addingfurtherguidelineswithout changingthe
originalguidelines.

2.1.1 DesignPatterns vs. languageconstructs

In [Gammaetal. 95] theauthorsstatethatoneperson’sDesignPat-
terncanbeanotherperson’s primitive building block, becausethe
pointof view affectsone’s interpretationof whatis andwhatis not
aDesignPattern.And thepointof view is influencedby thechoice
of programminglanguage.

In [Gammaet al. 95, p. 4] it is said:
“The choiceof programminglanguageis important,becauseit

influencesone’spointof view. OurpatternsassumeSMALLTALK/C++

level languagefeatures,andthat choicedetermineswhat canand
cannotbeimplementedeasily. If weassumedprocedurallanguages,
we might have includeddesignpatternscalled“Inheritance”,“En-
capsulation”,and“Polymorphism”.Similarly, someof ourpatterns
aresupporteddirectlyby lesscommonobject-orientedlanguages.”

Thus,they believe thatDesignPatternsdo not needto be lan-
guageindependent.

We agreewith [Gammaetal. 95] so far that the DesignPat-
ternsextractedfrom variousapplicationswill always be dictated
by the programminglanguageusedin the application;thingsthat

are easyto do will not be worth forming into a DesignPattern.
But where[Gammaet al. 95] seemto believe thatDesignPatterns
shouldemerge from eachprogramminglanguage,we are of the
conviction thattheFundamentalDesignPatternsshouldnotbecov-
eredby any generallyacceptedlanguageconstruct.This point of
view is rootedin ourbelief thataFundamentalDesignPatternmust
beindependentof any implementationlanguage.Thereshouldnot
be“DesignPatternsfor C++ programmers”or “DesignPatternsfor
Delphi programmers”,sincea suchpartition would have the fol-
lowing consequences:

� Programmersusingoneprogramminglanguagewill beable
to understandandexchangeDesignPatternswith otherpro-
grammersusing the sameprogramminglanguage,but not
with programmersusingsomeotherprogramminglanguage.
This will either createbarriersbetweenprogrammerswho
haveessentiallythesamebackground,namelytheobjectori-
entedline of thought,or it will meanthattheDesignPatterns
will not beusedto the full of their potentialevenwithin the
different societysof programmers. In either casethe De-
signPatternswill have lost theirability to provideacommon
vocabulary betweenobjectorienteddesignersregardlessof
their background.

An exampleof this canbe found in [Alpert et al. 98, p. 3]
wherethe authorsjustify the needfor gatheringthe Design
Patternsfrom [Gammaetal. 95] in a SMALLTALK version
with thefollowing:

“The Gangof Four’s DesignPatternspresentsdesignissues
andsolutionsfrom a C++ perspective. It illustratespatterns
for themostpartwith C++ codeandconsidersissuesgermane
to a C++ implementation.Thoseissuesareimportantfor C++

developers,but they alsomake thepatternsmoredifficult to
understandandapplyfor developersusingotherlanguages.”

� ThesameDesignPatterncanexist underdifferentnamesin
differentprogramminglanguages.It will behardto compare
two DesignPatternscomingfrom differentgroupsof Design
Patterns,sincethe backgroundsin given programminglan-
guageswill almostcertainlyhave animpacton thepresenta-
tion of theDesignPattern.

� If a programmerwho hasbeenusedto work in somepro-
gramminglanguagechangesto anotherprogramminglan-
guage,hewill have to learna wholenew setof DesignPat-
terns.

� A collectionof languagespecificDesignPatternswill sooner
or later evolve into cover-ups for shortcomingsof the pro-
gramminglanguage,thatwill explainhow thingscanbedone
cleverly usingsomeor otherlanguageconstruct.

An exampleof this is found in [Coplien94], that containsa
collectionof C++ idioms.

If we thenconcentrateon building a coreof FundamentalDe-
sign Patterns,that arenot coveredby any generallyacceptedlan-
guageconstruct,we can use this core to form the commonvo-
cabulary to beusedamongcomputerscientistsregardlessof back-
ground.

However, aDesignPatternwhichis coveredby alanguagecon-
structin onelanguagemightstill beadesignideaworthpreserving
in languageswhich doesnot have this languageconstruct.There-
forewe believe thattheDesignPatterns,which arenotFundamen-
tal becausethey arelanguagedependentmustbekeptasLanguage
DependantDesignPatterns(LDDPs). They shouldnot be parti-
tionedby thelanguagesthey areusefulin, but ratherby which lan-
guageconstruct(s)they arecoveredby. This way a designercan

2

usethe FundamentalDesignPatterns(FDPs)plus the part of the
LDDPsthatis necessaryfor theprogramminglanguageheusesfor
his implementations.In time,we imaginethatsomeof theLDDPs
will beremovedfrom thefield of DesignPatternswhenthecover-
ing languageconstructsareadoptedby the majority of the object
orientedlanguages.

Thesereflectionsleadto Guideline1:

Design Patterns covered by language constructs are not
Fundamental Design Patterns.

2.1.2 DesignPatterns are original ideas

Thefieldsin which theDesignPatternscanbeusedarenumerous.
It is analmostcertainfact thatthevariouspossibleapplicationsof
someDesignPatternwill not look the same;for eachapplication
the rolesof the DesignPatternhave beenparameterisedby roles
from the application. Therewill be restrictionsfrom the applica-
tionsthatwerenotconsideredin theDesignPatternandtheDesign
Patternwill beforcedto adjustaccordingly. It mightbeconvenient
if theseadjustmentswererecordedin someway, so thatprogram-
merswho areapplyingsomeDesignPatternin a givenfield could
exploit theexperiencesfrom previousapplicationswithin thesame
field. Theseexperiencesshouldin factbenamedDesignPatternsin
thatthey clearlyfit into thedefinitionof beingwell-testedsolutions
to recurringproblems,and

– they do encapsulateexperience

– they do enhancethedocumentationof frameworks

– they do provide acommonvocabularywithin thegivenfield

The obvious problemis that this would causean explosionof
“new” DesignPatterns;thedisadvantagesof which have beendis-
cussedin theprevioussection.These“new” DesignPatternswould
bring little new of generalinterest,andthey wouldnotbegenerally
understandablefor programmersregardlessof their background.
SincetheseDesignPatternscanbecategorizedasmerevariations
or applicationsof a DesignPattern,we have chosento placethem
asRelatedDesignPatternsin DesignPatternfamilies. In eachof
thesefamiliesthereis a headof the family — theoriginal Design
Pattern— whicheitheris aFundamentalor aLanguageDependant
DesignPattern. Whena designerwantsto make useof a Design
Pattern,hecanget themain ideafrom theheadof the family and
investigatetherelatedDesignPatternsfor morespecificsolutions.
That thesevariationswill not add to the numberof Fundamental
DesignPatternswill beensuredby Guideline2:

Applications and variations of Design Patterns are not
Fundamental Design Patterns.

2.1.3 DesignPatterns are designideas

Whenbuilding anapplicationwithin objectorientedprogramming,
therewill bemany problemsto solve. Thesizeof theseproblems
maynaturallydiffer, asmaywhatappearsto behardproblemsand
what is easilysolved. It is thereforedifficult to setany limits to
the sizeof problema DesignPatterncansolve. However sinceit
mustbe assumedthat the programmerswho usethe DesignPat-
ternsall areschooledin the objectorientedline of thought,they
possesa commongroundof knowledge,that will let themknow
the answersto certain problemswithout too much thought. In
[Gammaet al. 95] the authorshave an introductorysectioncon-
taininggoodadviceasto how to applytheobjectorientedconcepts

to build flexible, reusablesoftware. It is amongotherthingshere
explainedwhento useclassinheritanceasopposedto whento use
composition.Thesekindsof advicearethingsthatshouldbecom-
mon knowledgeto programmersin objectorientedprogramming
andwill thereforenot be thoughtof asproblemsneedingan ex-
plicit solution.Soeventhoughtheseadvicedo representsolutions
to recurringproblemswithin thefield of objectorientationthey are
notcastoutasnew DesignPatterns.

New DesignPatternsmustrepresentsolutionsto actualprob-
lemsin designthatcouldbeof interestto thesocietyof objectori-
entationin general,regardlessof one’s previousexperience.

This leadsto Guideline3:

A Design Pattern may not be an inherent object oriented way of
thinking.

2.2 Applying the analysis

WehaveappliedtheanalysisontheDesignPatternsin [Gammaetal. 95].
The DesignPatternspresentedin this collectionareprobablythe
bestknown patternsin thearea,whichshouldenablethereadersof
this paperto focuson theanalysisandits resultsinsteadof on the
functionalitiesof the DesignPatterns. Furthermorethey arepre-
sentedasdomainindependentpatterns,andeven thoughthey lay
no claimsasto beingan exhaustive collectionof DesignPatterns
in thefield of object-orienteddesign,they arefairly widely spread
in their proposeduses,so we felt that they would provide a sen-
sible base.For the obvious reasonsof space,we will not present
theevaluationsof all 23 DesignPatternsin this paper, but instead
presentanexampleof theapplicationof eachguidelineonaDesign
Pattern.For thedetailedanalysisof all theDesignPatternswerefer
to [Agerbo97].

2.2.1 Factory Method

Thepurposeof thisDesignPatternis to createobjectswhoseexact
classesareunknown until runtime.Thisisdonein [Gammaetal. 95]
by instantiatingtheobjectsin virtual methodsthatcanbeboundat
runtimeasshown in Figure1.

product = FactoryMethod
.....

.....

FactoryMethod()

Operation()

Creator

o

FactoryMethod()

ConcreteCreatorA ConcreteCreatorB

FactoryMethod()

ProductBProductA

AbstractProduct

Figure1: TheFactory Method DesignPattern

In alanguagewith virtual classesthegoalof thisDesignPattern
canbeachievedquitedifferently. Theconceptof virtual classesis
explainedin depthin [Madsen89], is implementedin BETA ([BETA93])
andhasbeenproposedasan extensionto JAVA ([Thorup97]). To
show how theuseof virtual classeswill solve theproblembehind
Factory Method, weneedanexpansionof theOMT-basednotation
thathasbeenusedin [Gammaet al. 95]. Wehavechosento usethe
notationin Figure2 for a further bindingof a virtual class.VP is

3

VP

V

SubV

VP

SubP

P

Figure2: Furthervirtual bindingsin subclasses

in theclassP declaredto ‘at least’have thetypeV, andthis typeis
thenextendedin a subclassof P to have thetypesubV.

Thesimilarity to thenotationfor inheritanceisnotcoincidental.
As with a specialisationP of a superclassSuperP, whereit canbe
saidthata P is ‘at least’a SuperP, the furtherbindingVP will ‘at
least’betheclassVP thatit extends.

Usingthisnotationwecannow show how to usevirtual classes
insteadof FactoryMethod to guaranteethat the productclasscan
bechosenby thesubclassesof thecreatorclass.Insteadof having a
virtual creator-methodto handlewhatconcreteclassto instantiate
atruntime,it is now possibleto attacktheproblemmoredirectlyby
makingtheproduct-classvirtual. Thismakesit possibleto bindthe
classto be instantiatedat runtime,insteadof binding thecreator-
methodat runtime.

Creator

Operation()

product = new Product
...

...

Product

ConcreteCreatorA

Product

ProductA

AbstractProduct

Figure3: Factory Method modelledusingvirtual classes

An advantagein usingvirtual classpatternsis thatit is notnec-
essaryto rewrite a new FactoryMethod for eachconcreteproduct
class.Furthermoreit is now possibleto extendtheinterfaceof the
AbstractProduct-class,whichis notpossibleusingtheoriginalFac-
toryMethod DesignPattern.

It is clearly demonstratedthat FactoryMethod is coveredby
the languageconstructvirtual classes, andaccordingto Guideline
1 it shouldthereforenotbeacceptedasaFundamentalDesignPat-
tern,but shouldinsteadbeclassifiedasaLanguageDependantDe-
sign Patternto beusedin programminglanguageswithout virtual
classes.

2.2.2 Observer

The motivation behindthis DesignPatternis to definea one-to-
many dependency betweenobjectssothatwhenoneobjectchanges
state,all its dependentsarenotifiedandupdatedautomatically. An
amountof data (a Subject) can have many representations(Ob-
servers) andwhenoneof theserepresentationsarechangedby the
user, the databehindit and all the other representationswill be
changed.Therepresentationsdo not know abouteachother. This
enablesa userto addor deletenew representationsashewishes.

return subjectState
observerState =

subject->GetState()

Observer

Update()

for all o in observers {
o.Update() }

Subject
observers

Attach(Observer)
Detach(Observer)
Notify()

ConcreteSubject

SetState()

subjectState

GetState()

subject
ConcreteObserver

Update()

observerState

Figure4: TheObserver DesignPattern

We claim that this DesignPatternis in fact an applicationof
theMediator DesignPattern.TheMediator DesignPatterndefines
anobject(a Mediator) thatencapsulateshow a setof objects(Col-
leagues) interact. The intent of the DesignPatternis to promote
loosecouplingby keepingobjectsfrom referringto eachotherex-
plicitly, andit makesit possibleto vary their interactionindepen-
dently. Thestructureis shown in Figure5.

ConcreteMediator

Mediator Colleague

ConcreteColleague2ConcreteColleague1

mediator

Figure5: TheMediator DesignPattern

Whenthe functionality of an Observer is desired,anapplica-
tion of the Mediator DesignPatterncan be implementedinstead
by letting the ConcreteSubject play the role of the ConcreteMedi-
ator andthe ConcreteObservers play the role of the ConcreteCol-
leagues. Thusthe ConcreteSubject will be the mediatorbetween
the ConcreteObservers andthecommunicationit needsto handle
will bethenotificationprocedure.ThatNotify is to becalledwhen-
ever thestateof theConcreteSubject changesis anapplicationspe-
cific feature,thatis addedin the“observer-part”.

There is more information in an Observer than in a Media-
tor sincethecommunicationbetweentheSubject andObservers is
fixed,but this is why it is anapplicationof Mediator andnot justa
variant.

Accordingto Guideline2, theObserver DesignPatternshould
thereforenot bea FundamentalDesignPattern,but a RelatedDe-
signPatternbelongingto thefamily of Mediator DesignPatterns.

4

2.2.3 Strategy

This Strategy DesignPatterndefinesa family of algorithms,en-
capsulateseachone and makes them interchangeable.Strategy
lets the algorithm vary independentlyfrom clients that useit. It
is usefulwhenmany relatedclassesdiffer only in behaviour, be-
causeit makes it possibleto configurea classwith oneof many
behaviours. The DesignPatterncanalsobe appliedwhena class
hasmany conditionalstatementsin anoperation,to avoid it becom-
ing clumsyandconfusing.Eachbehaviour canbeplacedin its own
class,thusbuilding asimplehierarchyof behaviours.Thestructure
of theStrategy DesignPatternis shown in figure6.

Context

ContextInterface()

strategy

AlgorithmInterface()

ConcreteStrategyA ConcreteStrategyB

AlgorithmInterface()

Strategy

AlgorithmInterface()

ConcreteStrategyC

AlgorithmInterface()

Figure6: TheStrategy DesignPattern

Whencomparingtheapplicabilityof theStrategy DesignPat-
ternwith theintentof theState DesignPatternin [Gammaet al. 95,
pp. 305],it will appearasif State solvesthesameproblemasStrat-
egy, thusmakingStrategy redundant.Both aim at encapsulating
behaviour in objects,but whereasState wantsthebehaviour to re-
flect the stateof the context andthereforechangeat runtime, the
Strategy DesignPatternleavesit up to theclient to choosea con-
cretestrategy to work with. In the State DesignPatternit should
bepossibleto changedirectly from onestateto anotherwhensome
condition is met, which meansthat the different concreteState
classeshave to be interdependentso that they canpasswhatever
datais necessaryto oneanother. In theStrategy DesignPattern,it
is the client that decideswhat ConcreteStrategy to apply, andthe
dataneededby theConcreteStrategy will beprovidedby giving the
Context objectasargumentto theStrategy.

It is thusobviousthatthereis afundamentaldifferencebetween
the two DesignPatterns,but it is not onethat is visible from the
structuresof theDesignPatternsaspresentedin [Gammaet al. 95];
in factthecloseconnectionsin thepurposesof thetwo DesignPat-
ternsis mirroredin almostidenticalstructuresof the DesignPat-
terns.

EvaluatingtheStrategy DesignPatternwebelievethatannounc-
ing thisasaDesignPatternis stretchingtheconceptof DesignPat-
ternstoo far. Having different implementationsof somemethod
encapsulatedin virtual methods,andusingdynamicdispatchfor
binding them at runtime shouldrepresenta fundamentalway of
thinking whenprogrammingin anobject-orientedlanguage.

WeconcludethattheStrategy ideashouldnotbeaDesignPat-
ternaccordingto Guideline3.

2.2.4 Results

For eachof the DesignPatternsin [Gammaetal. 95], we have in
[Agerbo97] discussedwhetherit is coveredby a known objectori-
entedlanguageconstruct(andtherebyanLDDP), anapplicationof
anotherDesignPattern(an RDP) or an inherentway of thinking
in object-orientedprogramming. The resultsof this analysisare
shown in tablein Figure7.

The Chain of Responsibility is evaluatedas a Fundamental
DesignPatterneventhoughit couldbecoveredby having explicit

delegationasa featurein thelanguage.But sincethis is only found
in delegationbasedlanguages,theideawill solveanactualproblem
in all classbasedlanguagesandshouldthereforeremaina Design
Pattern.

Concludingly, the Design Patternsleft as good designideas
seenfrom a generalobject orientedview are the twelve marked
asanFDPin thetablein Figure7.

This leadsus to concludethat it is beneficialto have a critical
approachto DesignPatterns,becauseit minimisesthe amountof
FundamentalDesignPatternsandtherebymakestheareaof Design
Patternseasierto geton topof.

3 SolvingtheTracing Problemby certain language
features

Oneof theadvantagesgainedby usingDesignPatternsis thatlarge
softwaresystemsarebetterdocumentedbecausea largepartof the
explanationonhow thesystemworkslies in whichDesignPatterns
thathave beenusedto designthesystem.

But whenthedesignershaveusedalargenumberof DesignPat-
ternsin theirapplicationsandsomeapplicationclassesplayrolesin
morethanoneDesignPatternit becomesdifficult to trace,which
DesignPatternshave beenused. This problemis known as the
TracingProblem.

Thesolutionto this problemcouldbe theuseof “Library De-
signPatterns”(in shortLDPs).WhenusingLDPsin theapplication
code,it will bepossibleto tracefrom whichDesignPatterntheim-
plementationideascame.

It is generallyrecognisedthatDesignPatternsprovide a com-
mon vocabulary that makes it possiblefor designersfrom widely
differentapplicationareasto communicatewith eachothers.If de-
signerswere to make a habit of usingcommonlyknown Design
Patternsin their applications,it would make it easierfor outsiders
to readandunderstandtheprogramsandtherebymakinglongterm
maintenanceaneasiertask.

We believe thata way of promotingthehabit of usingDesign
Patternsis to have theDesignPatternsasLDPs in a library where
they areeasilyaccessible.

Anotheradvantageof having aDesignPatternasanLDP is that
onedoesn’t have to copy thedesignideasanew eachtimeaDesign
Patternis appliedin a new context. However this will only work
whentheintentof theDesignPatternis mirroredin thelibrary ver-
sion,andany applicationthatusestheLDP automaticallyadheres
to the intent of the DesignPattern. Seenfrom a modellingpoint
of view it is of coursejust asgoodto copy the ideaof theDesign
Patternsdirectly from [Gammaetal. 95], but thissolutionplacesa
biggerdemandon thedesignerof theapplication.

Therearenaturallyalsocoststo paywhenusingLDPs. When
placing a DesignPattern in a library as an LDP, this imposesa
certainrigidnesson any applicationin which the LDP might be
applied. TheDesignPatternwill be fixed, in thesensethat it will
not bepossibleto adaptit in otherwaysthanwereforeseenwhen
makingtheLDP.

Anotherdisadvantageis theuseof namesin theLDPs.Having
an abstractmethoddeclaredin a classof the LDP with the name
anOperation will enforcethattheapplicationusingtheLDP hasto
implementthemethodunderthenameanOperation wheretheuse
of anothernamemight have beenmoreinformative. This is how-
ever a small price to pay to have ready-to-usesolutionsavailable
in a library, andacommonproblemfor all whousefunctionsfrom
libraries.

Themostobvious way of usinga library of DesignPatternsis
by letting theclassesin theapplicationinherit from theclassesin

5

Name Qualifiesas Applicationof Guideline
DesignPattern

AbstractFactory FDP
Builder FDP
FactoryMethod LDDP 1: Coveredby Virtual classes
Prototype LDDP 1: Coveredby Pattern variables
Singleton LDDP 1: Coveredby Singular objects
Adapter 3: Reuseof existingcode.
Bridge FDP
Composite FDP
Decorator FDP
Facade LDDP 1: Coveredby Nested Classes
Flyweight FDP
Proxy FDP
Chainof Responsibility FDP� (1: Coveredby Explicit Delegation)
Command LDDP 1: Coveredby Procedure classes
Interpreter RDP 2: Applicationof Composite
Iterator FDP
Mediator FDP
Memento FDP
Observer RDP 2: Applicationof Mediator
State FDP
Strategy 3: Dynamicdispatch
Templatemethod LDDP 1: Coveredby Complete block structure
Visitor LDDP 1: Coveredby Multiple dispatch

Figure7: Analysisof DesignPatternsfrom [Gammaetal. 95]

theLDP. In languageswithout multiple inheritancethis will cause
problemswhenever the classesin the applicationalreadyinherit
from otherclasses— eitherbecausethey arepartof existing hier-
archiesin theapplicationor becausethey playrolesfrom morethan
oneDesignPattern. In the following subsectionwe show how the
useof compositioncansolve this problem,provided that certain
featuresareaccessiblein theprogramminglanguage.

3.1 Simulating Multiple Inheritance by Composi-
tion

Oneof the advantagesin usingmultiple inheritancecomparedto
compositionis thatwith aclassinheritingfromseveralotherclasses,
wheresomeof thosehave virtually declaredclassesor methods,it
is possibleto re-bindthese.

In BETA this advantagecouldalsobeachievedwith composi-
tion by creatinga singularlydefinedpartobjectAddr:

Addr: @ Address(# ... extension ... #)

asaninstanceof a locally definedanonymoussubclassof Address.
An exampleof thisandthestructurein ourexpandedOMT-notation
is shown below.

SinceprintLabel is definedasa virtual methodin theclassAd-
dress, andAddr isasingularinstanceof alocallydefinedsubpattern
of Address it is possibleto further bind printLabel in Addr. This
way, the methodprintLabel can be extendedto serve the Person
classbetter.

Usingthiskindof composition,designerscanaddrolestoclasses
throughoutthewholesystemdevelopmentby nestingpart objects

Address:
(#

Street:@ Text;
Town:@ Integer;
printLabel: � (# do inner; (*print Street, Town*) #)

#);

Person:
(#

Name:@ Text;
Addr:@ Address

(# printLabel:: (# do ... ; (*print Name*); #)
#)

#)

Address

Addr

Person

6

containingroles from the Library DesignPatternsinto the appli-
cation� classesandstill beableto gainfrom thevirtual classesand
methodsin theLDPs.

3.2 Implementing the LDPs

In [Agerbo97] we have discussedhow andto whatextent thefun-
damentalDesignPatternscould be placedin a library of Design
Patterns.In thisarticleweshow anexampleof thesediscussionsto
illustratewhatwe believe couldbepossibleandprofitableto keep
in a library.

The classesin the applicationsusingsucha library aresome-
timesalreadysubclassesof otherclassesin theapplicationor play
rolesfrom oneor moreDesignPatterns.Therefore,in thedescrip-
tionsof theLDP’s we assumethat sucha library is usedin a lan-
guagewith multiple inheritanceor thepossibilityto simulatemulti-
ple inheritance,becausetheuseof LDP’swill meanthattheclasses
in theapplicationinherit from theclassesin theLDP.

Thefollowing discussionsarebasedon thedescriptionsof the
DesignPatternsfound in [Gammaetal. 95], andrequirethebook
at handfor full understanding.

3.2.1 Flyweight

Theapplication-dependentissuesto considerwhenmakinganLDP
arethefollowing:

� Whatkind of objectis a key?

� How doesa key identify aflyweight-object?

� How is the stateof an object split into extrinsic stateand
intrinsic state?

� Whatoperationsshouldtheflyweightssupport?

Theseconsiderationshave led to aFlyweight-LDP asshown in
Figure8.

By having the LDPs FlyweightFactory declaringkeyType asa
virtual classandthe proceduregetFlyweight a virtual procedureit
makes it possiblefor the concreteapplicationto decidewhat key
to useaswell asto specifyhow that sort of key shouldidentify a
flyweight object. It is enoughfor theabstractFlyweightFactory to
know thatthereis akey andaflyweightdeterminedby thekey to be
ableto maintainthe pool of sharedflyweightsunderthe invariant
thatthereis only oneinstanceof eachflyweight.

In theapplicationof theLDP the flyweightType shouldbe fur-
therboundto theclassof sharedflyweights,MyConcreteFlyweight,
— it is thusguaranteedthateachflyweight in thepoolOfFlyweights
hasthis type, which in turn guaranteesthat the IntrinsicState has
beenfurtherextendedin accordancewith theconcreteapplication.

We have chosento have the abstractclassFlyweight declare
the classesExtrinsicState and IntrinsicState since this separation
is a fundamentalpropertyof a flyweight object. This will how-
ever meanthatany applicationusingtheLDP will have to usethe
termsExtrinsicState andIntrinsicState insteadof moreapplication-
specificnames.In the text editor examplemotivating this Design
Patternthe extrinsic statecould typically be the character’s font,
size andplacement. The useof the LDP would hereimply that
theseattributesshouldbe nestedinto an extensionof the virtual
patternExtrinsicState.

Theadvantageof having Flyweight asanLDP liesprimarily in
the FlyweightFactory class,wheretheuseof virtual classesmakes
it possibleto have an abstractimplementationof the poolOfFly-
weights eventhoughthekeyType andflyweightType is only known

in theconcreteapplication.This implementationof thepoolOfFly-
weights ensuresthat the intentof theDesignPatternis metwhen-
ever this LDP is appliedin anapplication.

3.3 Discussion

SincetheLDPsarereusedby includingrolesin theclassesof the
applicationby nestingan instanceof a locally definedanonymous
subclassof the wantedLDP-classasdescribedin section3.1, the
useof LDPswould annotatewheretheDesignPatternswereused
in the application. This automaticannotationis a very important
contribution to thedocumentationof softwaresystems.It is in fact
the preconditionof the third advantageof usingDesignPatterns;
“They enhancethedocumentationof softwaredesigns”.

A numberof the languagefeaturesin BETA prove especially
usefulin connectionto theLDPsbysupportinggenericityandreuse
of models.This is further elaboratedon in [Agerbo97] wherewe
show how theintentof aDesignPatterncouldbekeptin anLDP for
10outof the12 “true” DesignPatterns,andthatit in 6 outof these
10 casesis dueto virtual classesandnestedclasses. This possibil-
ity of reusingenoughof a DesignPatternto apply it from anLDP
andstill keepingtheintentreducesthe implementationoverhead, a
problemconnectedto theuseof DesignPatternsidentifiedby Jan
Boschin [Bosch97].

Thefact,thatit ispossibleto makeausefulLDP outof aDesign
Pattern,provesthatit is possibletomakeareusableimplementation
of it. And sincetheDesignPatternsin [Gammaet al. 95] formulate
gooddesign-or implementation-ideas,the languagefeaturesthat
supportthemmustbeconsideredflexible andusefulin relationto
reuseof design.

4 RelatedWork

SinceDesignPatternsareareasonablynew concept,mostof theef-
forts sofar hasbeenput into discoveringnew DesignPatternsand
investigatingtheir usefulness.To thebestof our knowledge,little
work hasbeendonein evaluatingtheexistingDesignPatterns.The
only othercritical evaluationof DesignPatternswe have found is
thearticle“DesignPatternsvs. LanguageDesign”([Gil97]) where
JosephGil andDavid H. Lorenzhave offereda taxonomyof the
DesignPatternsfrom [Gammaet al. 95] basedon how far they are
from becomingactual languagefeatures. They have partitioned
theDesignPatternsaseitherclichés, idiomsor cadets, which cor-
respondto an applicationof Guideline1 and3 from our analysis
on the DesignPatterns.The taxonomywaspresentedasa work-
shoppaperat ECOOP’97,andit needsa morethoroughargumen-
tation for its classifications,which we have discussedin depthin
[Agerbo97]. Their resultingtaxonomyis difficult to compareto
oursdirectly, sincethey allow the sameDesignPatternto appear
in several categories,andtheir reasoningsaresomewhat fuzzy at
places.However thefactthat thetwo categorisationsarenot iden-
tical shows that it will be hardto obtaina consensuson any one
evaluationof DesignPatterns;especiallywill it behardto agreeon
what DesignPatternsare formalisationsover inherentobjectori-
entedwaysof thinking — [Gil97] claimsthat threeof theDesign
Patternsfall into this category, noneof which we have categorised
in thesameway. However thefactthat two almostidenticalsetof
Guidelineshave evolved independentlyindicatesthat they canbe
usedasvalid startingpointsfor adialogueonthequalityof Design
Patterns.

The tracingproblemhasbecomea generallyrecognisedprob-
lem within thefield of DesignPatterns.

7

keyType

insert(keyType, flyweightType)

from

getFlyweight(keyType)::

flyweightType

poolOfFlyweights
getFlyweight(keyType):<

FlyweightFactory

Object

MyFlyweightFactory

specification of how
key determines flyweightoperation in

inner

application

flyweightTypekeyType

extended

specification of if flyweight(key) exists

Object Objectfrom

�
	
�
�����������������	

 inner

 return existing flyweight
else

insert(key,flyweight(key))
 poolOfFlyweights->

ExtrinsicState

2

3

IntrinsicState

extended

extended

5

ExtrinsicState

MyFlyweight

operation(ExtrinsicState):<

MyConcreteFlyweight

operation(ExtrinsicState)::

State allstate

IntrinsicState

from

MyUnsharedConcreteFlyweight

operation(ExtrinsicState)::

IntrinsicState Istate

elements

�� ���������� !��"$#&%('

3 4

1

4

5

Flyweight

21

Figure8: Flyweight-LDP

8

GörelHedinhasin [Hedin97] proposedatechniquefor formal-
isingDesignPatternswhichallows theDesignPatternapplications
to be identifiedin the sourcecode. The techniqueis basedon at-
tributegrammars,andplacesa demandon theprogrammerthathe
explicitly annotateshis programwith DesignPatternroles. This
hasthe benefit,that it will alsoenableautomaticchecking, i.e. it
will be possibleto decidewhethera DesignPatternhasbeenap-
plied correctly. The largestdifferencebetweenthis approachand
ours, is that our will partly reducethe implementationoverhead,
whereasHedin’s solutioncanwork asa debuggerfor DesignPat-
ternswhereoursolutioncannotguaranteethattheDesignPatterns
areappliedcorrectly.

Jiri Soukophasalsotriedto solvethetracingproblem.In hisar-
ticle “ImplementingPatterns”([Soukup95]) heproposesto build a
library of DesignPatternsconsistingof so-calledpatternclasses. A
patternclassencapsulatesall thebehaviour andlogic of theDesign
Patternandtheclassesthatform theDesignPatternin theapplica-
tion thuscontainnomethodsrelatedto theDesignPattern.Whatis
left in theclassesareonly pointersandotherdatarequiredfor the
DesignPattern.Theproblemof thissolutionis thatall thestructure
of theDesignPatternis lost, sinceeverythingis now containedas
methodsin thepatternclass.

5 Conclusion

Theobjectiveof thisarticleis to regainthebenefitsof usingDesign
Patterns:

1. They encapsulateexperience.

2. They provide a commonvocabulary for computerscientists
acrossdomainbarriers.

3. They enhancethedocumentationof softwaredesigns.

Webelieve thatthefield of DesignPatternsshouldbenarrowed
down toaminimum,to preservethefirst two benefitsof DesignPat-
terns.By partitioningtheDesignPatternsinto FundamentalDesign
Patterns,LanguageDependantDesignPatternsandRelatedDesign
Patterns,wehaveacoreof theDesignPatterns— theFundamental
DesignPatterns— which fully providesthebenefitsof DesignPat-
terns. Only 12 of the 23 DesignPatternsfrom [Gammaetal. 95]
areclassifiedasFundamentalDesignPatternsfollowing thesecri-
teria.This leadsusto concludethatit is beneficialto haveacritical
approachto DesignPatterns,becauseit minimisesthe amountof
FundamentalDesignPatternsand therebymakes the areaof De-
signPatternseasierto geton topof.

Using DesignPatternsin softwaresystemsshouldmake it an
easiertaskto documentthe systems.Thereis however the prob-
lem, thatthemoreDesignPatternsthatareapplied,themorediffi-
cult it will beto recognisethestructureof theparticipatingDesign
Patterns.This is referredto asthetracingproblem.

We have in this paperdescribedhow theuseof LDPscanpre-
serve the DesignPatternsin a library, and how the useof these
would guaranteeautomaticannotationin a programthatsomeob-
ject participatesin anapplicationof aDesignPattern.Furthermore
we claim that thepresenceof nestedclassesandvirtual classesin
the programminglanguagewill reducethe implementationover-
head,sincethesetwo languagefeaturesmakes it possibleto cap-
ture the intentof theDesignPatternin thecollaborationsbetween
theobjects,andto inherit the interdependenciesin anapplication.
This is in describedin detailin [Agerbo97], andwehavegiventwo
examplesin this article.

Thustheuseof LDPswill provideuswith ameansof ensuring
thethird benefitof DesignPatterns,andit will to someextentelim-
inate the implementationoverheadif the chosenimplementation
languageposessthenecessarylanguageabstractions.

References

[Agerbo97] Ellen Agerbo and Aino Cornils (1997): Theory of
Language Supportfor Design Patterns.Departmentof Com-
puterScience,AarhusUniversity.

[Alpert etal. 98] ShermanR. Alpert, Kyle Brown and Bobby
Woolf (1998): The Design Patterns Smalltalk Companion.
Addison-Wesley PublishingCompany.

[Bosch97] JanBosch(1997):DesignPatterns& Frameworks:On
theIssueof Language Support.WorkshoponLanguageSupport
for DesignPatternsandObject-OrientedFrameworks (LSDF),
ECOOP’97.

[Coplien94] J.O.Coplien(1994): AdvancedC++: Programming
StylesandIdioms.Addison-Wesley, Reading,MA.

[Gammaet al. 95] Erich Gamma,RichardHelm, RalphJohnson,
JohnVlissides(1995): Elementsof ReusableObject-Oriented
Software. Addison-Wesley PublishingCompany.

[Gil97] JosephGil and David H. Lorenz (1997): Design Pat-
terns vs. Language Design. Workshopon LanguageSupport
for DesignPatternsandObject-OrientedFrameworks (LSDF),
ECOOP’97.

[Hedin97] GörelHedin(1997):Language Supportfor DesignPat-
ternsusignAttributeExtension.WorkshoponLanguageSupport
for DesignPatternsandObject-OrientedFrameworks (LSDF),
ECOOP’97.

[Madsen89]O. L. Madsen,B. Møller-Pedersen(1989): Virtual
classes: A powerful mechanismin object-orientedprogram-
ming. Proceedingof OOPSLA’89.

[Madsen92]O. L. Madsen, B. Møller-Pedersen(1992): Part-
objectsand their location.Proceedingof TOOLS’92 pp. 283-
297.

[BETA93] O. L. Madsen,B. Møller-Pedersen,K. Nygaard(1993):
Object-OrientedProgrammingin theBETA ProgrammingLan-
guage. Addison-Wesley PublishingCompany.

[Soukup95] Jiri Soukup (1995): ImplementingPatterns. Pat-
ternLanguagesof ProgramDesign.Eds.CoplienandSchmidt.
Addison-Wesley 1995.

[Thorup97] K. K. Thorup (1997): Genericity in JAVA with Vir-
tual Types.Proceedingsof ECOOP’97 pp. 444-469.Springer-
Verlag.

9

