How to presewe the benefitsof DesignPatterns

Ellen Agerbo

Aino Cornils

ComputerScienceDepartmentUniversity of Aarhus,Denmark.

e-mail: {agerbo| cornils@daimi.aau.dk

Abstract

The rapid evolution of DesignPatternshashamperedhe benefits
gainedfrom usingDesignPatterns.Theincreasdn the numberof
Design Patternsmakes a commonvocahulary unmanageabland
thetracingproblemobscureshe documentatiorthatshouldbe en-
hancedby using DesignPatterns. We presentan analysisof the
DesignPatternghatwill stronglyreducethenumberof Fundamen-
tal DesignPatternsandshav how stronglanguageabstractiongan
solwe thetracingproblemandtherebyenhancehe documentation.

1 Intr oduction

DesignPatternsare presentecisa meansof encapsulatinghe ex-
perienceof programmersn a form that is easily communicated
to otherprogrammersn all domainsregardlessof their expertise
within computerscience.

Thebenefitshatthey claimto provide arethefollowing:

1. They encapsulatexperience.

2. They provide a commonvocahulary for computerscientists
acrosgdomainbarriers.

3. They enhancehedocumentatiomf softwaredesigns.

The objective of this paperis to promotethe point of view that
the forming of DesignPatternsshouldbe restrictve, andto sug-
gestaway of evaluatingexisting DesignPatternswhich leadsto a
reductionof the numberof DesignPatterns.

In this thesiswe proposea set of guidelinesto follow when
evaluating a Design Pattern, and we presentthe resultsof these
guidelinesappliedto the DesignPatternsof [Gammaetal. 95].

For the DesignPatternswvhich remainDesignPatternsafterthis
evaluation, we have investigatedhow they could be placedas a
“Library DesignPattern”in a classlibrary andreusedby use of
inheritanceor delegation— ary suchDesignPatternwill in this
paperbe denotedan LDP. One of the adwantagesof using such
LDPsis thatonedoesnt have to copy the structureof the Design
Patternanav eachtime a DesignPatternis appliedin a nev con-
text. Therebyreducingthe implementatioroverhead a problem
connectedo the useof DesignPatternsidentifiedby JanBoschin
[Bosch97. Anotheradwantageis thatby usingthe LDP it will be

This paperis publishedin proceedingof the Conferenceon
Object-OrientedProgramming Systems Languagesand Ap-
plicationsheldin Vancouer, Canadal 998

possibleto tracethatthe DesignPatternis usedin an application,
which consequentlvill promotethedocumentatiorbenefit.

2 An Analysis of DesignPatterns

Theschoolbooldefinitionof a DesignPatternis thatit is a descrip-
tion of awell testedsolutionto arecurringproblemwithin thefield
of softwaredesignsn ObjectOrientedlanguages.

This definition clearly accentuatesvhat the principal ideabe-
hind DesignPatternds; namelyto distributetheknowledgeof good
design,sothatdesigner®f softwareapplicationscanbenefitfrom
work previously donein similarareas However, thedefinitionalso
leavesit up to the individual designerto decidewhat constitutesa
DesignPatternsincetermslike “well tested”and“recurring” are
not objective termsthat can be evaluated“true” or “false” in an
unambiguousvay. The consequencef this is that nev Design
Patternsappeain aseeminglyendlesstreameachof thenew De-
sign Patternsbeing presentedvith the bestof intents, sincethey
represensomeexperienceto be distributedto the entiresocietyof
framawvork designers.One hashut to look at the PatternsHome
Pagé* to be convincedthatthereexists numerougatternsandthat
theamounts continuouslyincreasedby PLoPconferenceanddis-
cussiongroups.

The obvious consequencef this is thatthe numberof Design
Patternswill grow to alevel, whereit becomesmpossibleto main-
tain animpressiorof whatDesignPatternsexist, let aloneto know
what problemstheseDesignPatternsactually solve. This will in
turn destry the possibility of usingthe DesignPatternsasa com-
monvocahulary, which otherwiseholdsthe potentialof becoming
one of the primary benefitsof using DesignPatternsto document
software systems. It will also obscurethe entire field of Design
Patterns,sothatit becomegoo hardto find the DesignPatternto
helpwith a givenproblem which maydissuadelesignergrom us-
ing DesignPatternsasa helpingtool in the designphase.In short,
anoverdoseof DesignPatternswill eliminatetwo of thethreeben-
efits that DesignPatternsoffer; they will make it too laboriousto
find and usethe encapsulateéxperience andthey will make the
commonvocalulary too largeto be easilycomprehended.

Therearetwo possiblesolutionsto this problem:Oneis to re-
strict the submittanceof new DesignPatternsby inventingrestric-
tions that prospectie DesignPatternsmustabideto in orderfor
beingaccepted.The problemwith this approachs thattoo much
controlin theinnovative phaseof discoveringnew DesignPatterns
will invariably exclude nev Design Patternsunjustly, sinceit is
next to impossibleto find properrestrictionswithout knowing all
potentialDesignPatternsheforehandAnothersolutionis to evalu-

Lhttp://hillside.net/patterns/patterns.html



atetheexisting DesignPatternsandfor eachDesignPatterndecide
whetherit qualifiesor not. The problemis againto find the guide-
lines by which to decidewhetheror not the prospectie Design
Patternis acceptedput the advantageis that eachDesignPattern
will beevaluatedn its own right, which shouldminimisethe prob-
ability of rejectinga DesignPatternunjustly.

We will in this paperpresentainanalysisin the form of a setof
criteria, thatwe have usedfor anevaluationof the DesignPatterns
thatarepresentedn [Gammaetal. 95]. Our analysisdoesnot go
so far asto identify the true DesignPatternsandthrowv away the
rest; insteadit focuseson assemblinga core of FundamentaDe-
signPatternawvhich shouldcapturegoodObjectOrienteddesignon
ahigh enoughlevel sothatit canbeusedin variouskinds of appli-
cations.The DesignPatternghatarenotjudgedto be Fundamental
aretheneitherclassifieddifferently or rejectedcompletely

It is importantto notethatwe do not believe our analysisto be
theanalysisof DesignPatterns.It hasevolvedfrom our work with
the DesignPatternsfrom [Gammaetal. 95], which meanghatthe
criteriaarebasedon arathernarrav setof DesignPatterns.If the
analysiswastestedon a largernumberof DesignPatternsjt might
be revealedthat the criteria are not suficient or that someof the
criteriaaretoo restrictive in thatthey unjustly rule out somevalid
DesignPatterns. We do believe, however, thatthe criteriaform a
soundstartingpointin a muchneededliscussioron the quality of
the DesignPatterns.

In [Agerbo97 we have shavn thatby usingthe guidelinesof
this analysis,we canremove half of the DesignPatternsfrom the
core of FundamentaDesign Patterns,so that out of the original
23 DesignPatternsin [Gammaetal. 95] only 12 remain. We give
someexamplesof how theguidelinesof theanalysisareappliedon
afew of the DesignPatterns— for the completeanalysiswe refer
to [Agerbo91.

2.1 The Analysis

We presentinanalysisvhosepurposet is to restrictthe numberof

FundamentaDesignPatterns.As mentionedabore, we believe it

is betterto have a conserative analysisthatwill accepttoo mary

Design Patternsratherthan unfairly rejectsomeDesignPatterns.
Our analysisis thereforebasedon threeguidelineson whennot to

accepta prospectre DesignPattern. It will be possibleto malke a
stricteranalysisby addingfurtherguidelineswithout changingthe
original guidelines.

2.1.1 DesignPatternsvs. languageconstructs

In[Gammaetal. 95] theauthorsstatethatonepersons DesignPat-
tern canbe anotherpersons primitive building block, becausehe
point of view affectsones interpretatiorof whatis andwhatis not
aDesignPattern.And the pointof view is influencedby thechoice
of programmindanguage.

In [Gammaetal. 95, p. 4] it is said:

“The choiceof programminganguagés important,becauset
influenceonespointof view. OurpatternassumeMALLTALK/C+
level languagefeatures andthat choicedeterminesvhat canand
cannotbeimplementecaasily If weassumegroceduralanguages,
we might have includeddesignpatternscalled“Inheritance”,“En-
capsulation”and“Polymorphism”. Similarly, someof our patterns
aresupportediirectly by lesscommonobject-orientedanguages.

Thus,they believe that DesignPatternsdo not needto be lan-
guageindependent.

We agreewith [Gammaetal. 95] so far that the Design Pat-
ternsextractedfrom variousapplicationswill always be dictated
by the programminganguageusedin the application;thingsthat

are easyto do will not be worth forming into a Design Pattern.
But where[Gammaet al. 95] seemto believe that DesignPatterns
should emepge from eachprogramminglanguage we are of the
corviction thatthe FundamentaDesignPatternsshouldnotbecov-

eredby ary generallyacceptedanguageconstruct. This point of

view is rootedin ourbeliefthata FundamentaDesignPatternmust
beindependentf ary implementatiodanguage Thereshouldnot
be “Design Patternsfor C+ programmers’dr “Design Patternsfor

Delphi programmers” sincea suchpartition would have the fol-

lowing consequences:

e Programmersisingoneprogramminganguagewill beable
to understanandexchangeDesignPatternswith otherpro-
grammersusing the sameprogramminglanguage but not
with programmersisingsomeotherprogramminganguage.
This will either createbarriersbetweenprogrammerswvho
have essentiallythe samebackgroundnamelythe objectori-
entedline of thought,or it will meanthatthe DesignPatterns
will notbeusedto thefull of their potentialevenwithin the
different societysof programmers.In either casethe De-
signPatternawill havelosttheirability to provide acommon
vocalulary betweenobjectorienteddesignergegardlessof
their background.

An exampleof this canbe foundin [Alpert etal. 98, p. 3]
wherethe authorsjustify the needfor gatheringthe Design
Patternsfrom [Gammaetal. 95] in a SMALLTALK version
with thefollowing:

“The Gangof Four’s DesignPatternspresentsiesignissues
andsolutionsfrom a C+ perspectie. It illustratespatterns
for themostpartwith C+ codeandconsidersssueggermane
to a C+ implementation.Thoseissuesareimportantfor C+
developersbut they alsomalke the patternamoredifficult to
understanéndapplyfor developersusingotherlanguages.

e ThesameDesignPatterncanexist underdifferentnamesn
differentprogrammingdanguagesilt will behardto compare
two DesignPatternscomingfrom differentgroupsof Design
Patterns,sincethe backgroundsn given programminglan-
guageswill almostcertainlyhave animpacton the presenta-
tion of the DesignPattern.

e If a programmemwho hasbeenusedto work in somepro-
gramminglanguagechangeso anotherprogramminglan-
guage hewill have to learnawhole nen setof DesignPat-
terns.

e A collectionof languagespecificDesignPatternswill sooner
or later evolve into cover-upsfor shortcomingsof the pro-
grammindanguagethatwill explainhow thingscanbedone
cleverly usingsomeor otherlanguageconstruct.

An exampleof this is foundin [Coplien94, thatcontainsa
collectionof C+ idioms.

If we thenconcentraten building a core of FundamentaDe-
sign Patterns that are not coveredby ary generallyacceptedan-
guageconstruct,we can usethis core to form the commonvo-
calulary to be usedamongcomputerscientistsegardlesof back-
ground.

However, aDesignPatternwhichis coveredby alanguageon-
structin onelanguagamightstill bea designideaworth preserving
in languagesvhich doesnot have this languageconstruct. There-
fore we believe thatthe DesignPatternswhich arenot Fundamen-
tal becausehey arelanguagedependeninustbe keptasLanguage
DependanDesignPatterns(LDDPs). They shouldnot be parti-
tionedby thelanguageshey areusefulin, but ratherby which lan-
guageconstruct(skhey arecoveredby. This way a designercan



usethe FundamentaDesignPatterns(FDPs)plus the part of the
LDDPsthatis necessarjor theprogrammindanguagehe usesfor
his implementationsin time, we imaginethatsomeof the LDDPs
will beremovedfrom thefield of DesignPatternswhenthe cover-
ing languageconstructsare adoptedby the majority of the object
orientedlanguages.

Thesereflectiondeadto Guidelinel:

Design Patterns covered by language constructs are not
Fundamental Design Patterns.

2.1.2 DesignPatterns are original ideas

Thefieldsin which the DesignPatternscanbe usedarenumerous.
It is analmostcertainfactthatthe variouspossibleapplicationsof

someDesignPatternwill not look the same;for eachapplication
the roles of the DesignPatternhave beenparameterisetby roles
from the application. Therewill be restrictionsfrom the applica-
tionsthatwerenot consideredn the DesignPatternandthe Design
Patternwill beforcedto adjustaccordingly It mightbe convenient
if theseadjustmentsvererecordedn someway, sothatprogram-
merswho areapplyingsomeDesignPatternin a givenfield could

exploit theexperiencesrom previousapplicationswithin thesame
field. Theseexperienceshouldin factbenamedDesignPatternsn

thatthey clearlyfit into thedefinitionof beingwell-testedsolutions
to recurringproblemsand

— they do encapsulatexperience
— they do enhancehe documentatiomf framevorks

— they do provide acommonvocalulary within the givenfield

The obvious problemis that this would causean explosion of
“new” DesignPatternsithe disadwantageof which have beendis-
cussedn theprevioussection. Thesé'new” DesignPatternsyvould
bringlittle new of generainterestandthey would notbegenerally
understandabléor programmergegardlessof their background.
SincetheseDesignPatternscanbe cateyorizedas merevariations
or applicationsof a DesignPattern,we have choserto placethem
asRelatedDesignPatternsin DesignPatternfamilies In eachof
thesefamiliesthereis a headof the family — the original Design
Pattern— which eitheris a Fundamentabr aLanguageéDependant
DesignPattern. When a designemwvantsto make useof a Design
Pattern,he cangetthe mainideafrom the headof the family and
investigatethe relatedDesignPatternsfor morespecificsolutions.
That thesevariationswill not addto the numberof Fundamental
DesignPatternswill beensuredy Guideline2:

Applications and variations of Design Patterns are not
Fundamental Design Patterns.

2.1.3 DesignPatterns are designideas

Whenbuilding anapplicationwithin objectorientedprogramming,
therewill be mary problemsto solve. The sizeof theseproblems
may naturallydiffer, asmaywhatappearso be hardproblemsand
whatis easilysolved. It is thereforedifficult to setary limits to
the size of problema DesignPatterncansolve. However sinceit
must be assumedhat the programmersvho usethe DesignPat-
ternsall are schooledin the objectorientedline of thought,they
possesa commongroundof knowledge,that will let themknow
the answersto certain problemswithout too much thought. In
[Gammaetal. 95] the authorshave an introductory sectioncon-
taininggoodadviceasto how to applythe objectorientedconcepts

to build flexible, reusablesoftware. It is amongotherthingshere
explainedwhento useclassinheritanceasopposedo whento use
composition.Thesekinds of advicearethingsthatshouldbe com-
mon knowledgeto programmersn object orientedprogramming
andwill thereforenot be thoughtof as problemsneedingan ex-

plicit solution. Soeventhoughtheseadvicedo represensolutions
to recurringproblemswithin thefield of objectorientationthey are
notcastoutasnew DesignPatterns.

New DesignPatternsmustrepresensolutionsto actualprob-
lemsin designthatcouldbe of interestto the societyof objectori-
entationin generalregardlessof ones previousexperience.

This leadsto Guideline3:

A Design Pattern may not be an inherent object oriented way of
thinking.

2.2 Applying the analysis

We have appliedtheanalysisontheDesignPatternsn [Gammaetal.

The DesignPatternspresentedn this collection are probablythe
bestknown patternsn theareawhich shouldenablethereaderof
this paperto focuson the analysisandits resultsinsteadof on the
functionalitiesof the DesignPatterns. Furthermorethey are pre-
sentedas domainindependenpatterns,and even thoughthey lay
no claimsasto beingan exhaustve collectionof DesignPatterns
in thefield of object-orientediesign they arefairly widely spread
in their proposeduses,so we felt that they would provide a sen-
sible base. For the obvious reason®f space we will not present
the evaluationsof all 23 DesignPatternsin this paper but instead
presenanexampleof theapplicationof eachguidelineonaDesign
Pattern.For thedetailedanalysisof all the DesignPatternswe refer
to [Agerbo97.

2.2.1 Factory Method

The purposeof this DesignPatternis to createobjectswhoseexact

classesreunknavn until runtime. Thisis donein [Gammaetal. 95]
by instantiatingthe objectsin virtual methodghatcanbe boundat

runtimeasshawn in Figurel.

Creator

AbstractProduct

FactoryMethod()
Operation() o~ - -+~ .....

- " ProductB ‘

ConcreteCreatorA ConcreteCreatorB

FactoryMethod() r-

i
I
|

FactoryMethod() [f--=--=== -
I
|

Figurel: TheFactory Method DesignPattern

In alanguagewith virtual classeshegoalof thisDesignPattern
canbeachiezed quite differently The conceptof virtual classess

95].

explainedin depthin [Madsen89, isimplementedn BETA ([BETA93))

andhasbeenproposedasan extensionto JAVA ([Thorup97). To
shav how the useof virtual classewill solve the problembehind
Factory Method, we needanexpansiorof the OMT-basechotation
thathasbeenusedin [Gammaetal. 95]. We have choserto usethe
notationin Figure2 for a further binding of a virtual class. VP is



SubVv

SubP

VP

D
< H> ||« HD

Figure2: Furthervirtual bindingsin subclasses

in the classP declaredo ‘at least’have thetypeV, andthis typeis
thenextendedn asubclas®f P to have thetypesubVv.

Thesimilarity to thenotationfor inheritancds notcoincidental.
As with a specialisatiorP of a superclassSuperP, whereit canbe
saidthataP is ‘at least’a SuperP, the further binding vP will ‘at
least’betheclassvP thatit extends.

Usingthis notationwe cannow shav how to usevirtual classes
insteadof FactoryMethod to guaranteehat the productclassan
be choserby the subclassesf the creatorclassinsteadof having a
virtual creatormethodto handlewhat concreteclassto instantiate
atruntime,it is now possibleto attackthe problemmoredirectly by
makingtheproduct-classirtual. Thismakesit possibleto bindthe
classto be instantiatedat runtime, insteadof binding the creator
methodat runtime.

Creator A
Operation() ¢
|
I

product = new Product

ConcreteCreatorA

Figure3: Factory Method modelledusingvirtual classes

AbstractProduct

ProductA

An adwantagen usingvirtual classpatternds thatit is notnec-
essaryto rewrite a new FactoryMethod for eachconcreteproduct
class.Furthermordt is now possibleto extendthe interfaceof the
AbstractProduct-class whichis notpossibleusingtheoriginal Fac-
toryMethod DesignPattern.

It is clearly demonstratedhat FactoryMethod is covered by
the languageconstructvirtual classes, andaccordingto Guideline
1it shouldthereforenot be acceptedisa FundamentaDesignPat-
tern,but shouldinsteadbeclassifiedasa LanguageDependanDe-
sign Patternto be usedin programminganguageswithout virtual
classes.

2.2.2 Obsewer

The motivation behindthis Design Patternis to definea one-to-
mary dependencbetweerobjectssothatwhenoneobjectchanges
state all its dependentarenotified andupdatecautomatically An
amountof data(a Subject) can have mary representation§Ob-
servers) andwhenoneof theserepresentationarechangedy the
user the databehindit andall the other representationsvill be
changed.Therepresentationdo not know abouteachother This
enables userto addor deletenew representationashewishes.

. observers
Subject Observer
Attach(Observer) Update()
Detach(Observer)
Y 0 — - — — — for all o in observers {
Notify() ° 0.Update() }
. subject
ConcreteSubject ConcreteObserver
observerState =
GetState() ©----- ’ Update() ©------ subject->GetState()
SetState()
observerState
subjectState

Figure4: TheObserver DesignPattern

We claim that this DesignPatternis in fact an applicationof
theMediator DesignPattern.The Mediator DesignPatterndefines
anobject(a Mediator) thatencapsulatebow a setof objects(Col-
leagues) interact. The intent of the DesignPatternis to promote
loosecouplingby keepingobjectsfrom referringto eachotherex-
plicitly, andit malesit possibleto vary their interactionindepen-
dently Thestructureis shavn in Figure5.

mediator
Colleague

‘ ConcreteMediator }—" ConcreteColleaguel ‘ ConcreteColleague2

\ t

Mediator

Figure5: TheMediator DesignPattern

Whenthe functionality of an Observer is desired,anapplica-
tion of the Mediator DesignPatterncan be implementednstead
by letting the ConcreteSubject play the role of the ConcreteMedi-
ator andthe ConcreteObservers play the role of the ConcreteCol-
leagues. Thusthe ConcreteSubject will be the mediatorbetween
the ConcreteObservers andthe communicatiorit needsto handle
will bethenotificationprocedureThatNotify is to becalledwhen-
everthestateof the ConcreteSubject changess anapplicationspe-
cific feature thatis addedn the“obsener-part”.

Thereis more informationin an Observer thanin a Media-
tor sincethecommunicatiorbetweerthe Subject andObservers is
fixed,but thisis why it is anapplicationof Mediator andnotjusta
variant.

Accordingto Guideline2, the Observer DesignPatternshould
thereforenot be a FundamentaDesignPattern,but a RelatedDe-
signPatternbelongingto the family of Mediator DesignPatterns.



2.2.3 Strategy

This Strategy DesignPatterndefinesa family of algorithms,en-
capsulatesachone and makes them interchangeable .Strategy

lets the algorithm vary independentlyfrom clients that useit. It

is usefulwhenmary relatedclassediffer only in behaiour, be-
causeit makesit possibleto configurea classwith one of mary

behaiours. The DesignPatterncanalsobe appliedwhena class
hasmary conditionalstatements anoperationto avoid it becom-
ing clumsyandconfusing.Eachbehaiour canbeplacedin its own

classthushuilding asimplehierarchyof behaiours. Thestructure
of the Strategy DesignPatternis shavn in figure6.

strategy
=

Context Strategy

Algorithminterface()

A

ConcreteStrategyA

Contextlnterface()

ConcreteStrategyB ConcreteStrategyC

AlgorithmInterface() AlgorithmInterface() AlgorithmInterface()

Figure6: The Strategy DesignPattern

Whencomparingthe applicability of the Strategy DesignPat-
ternwith theintentof the State DesignPatternin [Gammaetal. 95,
pp- 305],it will appeaasif State solvesthesameproblemasstrat-
egy, thusmaking Strategy redundant.Both aim at encapsulating
behaiour in objects but whereasstate wantsthe behaiour to re-
flect the stateof the contet andthereforechangeat runtime, the
Strategy DesignPatternleavesit up to the clientto choosea con-
cretestratgy to work with. In the State DesignPatternit should
bepossibleto changalirectly from onestateto anothemwhensome
condition is met, which meansthat the different concreteState
classeshave to be interdependenso that they can passwhateser
datais necessaryo oneanother In the Strategy DesignPattern,it
is the client that decideswhat ConcreteStrategy to apply andthe
dataneededy the ConcreteStrategy will beprovidedby giving the
Context objectasargumentto the Strategy.

It isthusobviousthatthereis afundamentatiifferencebetween
the two DesignPatterns,but it is not onethatis visible from the
structure®of theDesignPatternsaspresenteéh [Gammaetal. 95];
in factthecloseconnectionsn the purpose®f thetwo DesignPat-
ternsis mirroredin almostidentical structuresof the DesignPat-
terns.

EvaluatingtheStrategy DesignPatternwe believe thatannounc-
ing this asa DesignPatternis stretchinghe concepiof DesignPat-
ternstoo far. Having differentimplementationsf somemethod
encapsulateéh virtual methods,and using dynamic dispatchfor
binding them at runtime should representa fundamentalway of
thinking whenprogrammingn anobject-orientedanguage.

We concludethatthe Strategy ideashouldnotbea DesignPat-
ternaccordingo Guideline3.

2.2.4 Results

For eachof the DesignPatternsin [Gammaetal. 95], we have in
[Agerbo97 discussedvhetherit is caveredby a known objectori-
entedlanguageconstrucf{andtherebyan LDDP), anapplicationof
anotherDesignPattern(an RDP) or an inherentway of thinking
in object-orientedprogramming. The resultsof this analysisare
shavn in tablein Figure?.
The Chain of Responsibility is evaluatedas a Fundamental

DesignPatterneventhoughit could be coveredby having explicit

delggationasafeaturein thelanguageBut sincethisis only found
in delggationbasedanguagegheideawill solveanactualproblem
in all classbasedlanguagesndshouldthereforeremaina Design
Pattern.

Concludingly the Design Patternsleft as good designideas
seenfrom a generalobject orientedview are the twelve marked
asanFDPin thetablein Figure?7.

This leadsusto concludethatit is beneficialto have a critical
approachto DesignPatterns,becausdt minimisesthe amountof
FundamentaDesignPatternsandtherebymakestheareaof Design
Patternseasierto geton top of.

3 Solvingthe Tracing Problemby certain language
features

Oneof theadwantagegainedby usingDesignPatternds thatlarge
softwaresystemsarebetterdocumentedbecause large partof the
explanationon how thesystemworksliesin which DesignPatterns
thathave beenusedto designthe system.

Butwhenthedesigneriave usedalargenumberof DesignPat-
ternsin theirapplicationsandsomeapplicationclasseplayrolesin
morethanone DesignPatternit becomedifficult to trace,which
Design Patternshave beenused. This problemis known asthe
TracingProblem

The solutionto this problemcould be the useof “Library De-
signPatterns”(in shortLDPs). WhenusingLDPsin theapplication
code,it will bepossibleto tracefrom which DesignPatterntheim-
plementatiorideascame.

It is generallyrecogniseahat DesignPatternsprovide a com-
mon vocahulary that malesit possiblefor designerdrom widely
differentapplicationareago communicatevith eachothers.If de-
signerswereto make a habit of usingcommonlyknown Design
Patternsin their applicationsjt would male it easierfor outsiders
to readandunderstandhe programsandtherebymakinglongterm
maintenancen easiertask.

We believe thata way of promotingthe habit of using Design
Patternsis to have the DesignPatternsasLDPsin alibrary where
they areeasilyaccessible.

Anotheradwantageof having aDesignPatternasanLDP is that
onedoesnt have to copy thedesignideasanav eachtime aDesign
Patternis appliedin a newv context. However this will only work
whentheintentof the DesignPatternis mirroredin thelibrary ver
sion,andary applicationthatusesthe LDP automaticallyadheres
to the intent of the DesignPattern. Seenfrom a modelling point
of view it is of coursejust asgoodto copy theideaof the Design
Patterngdirectly from [Gammaetal. 95], but this solutionplacesa
biggerdemandnthe designeiof theapplication.

Therearenaturallyalsocoststo pay whenusingLDPs. When
placing a DesignPatternin a library as an LDP, this imposesa
certainrigidnesson ary applicationin which the LDP might be
applied. The DesignPatternwill befixed in the sensehatit will
not be possibleto adaptit in otherwaysthanwereforeseerwhen
makingthe LDP.

Anotherdisadwantages the useof namesn the LDPs. Having
an abstractmethoddeclaredin a classof the LDP with the name
anOperation will enforcethatthe applicationusingthe LDP hasto
implementthe methodunderthe nameanOperation wherethe use
of anothemamemight have beenmoreinformative. This is how-
ever a small price to pay to have ready-to-usesolutionsavailable
in alibrary, andacommonproblemfor all who usefunctionsfrom
libraries.

The mostobvious way of usinga library of DesignPatternsis
by letting the classesn the applicationinherit from the classesn



Name Qualifiesas Applicationof Guideline
DesignPattern

AbstractFactory FDP
Builder FDP
FactoryMethod LDDP 1: Coveredby Virtual classes
Prototype LDDP 1: Coveredby Pattern variables
Singleton LDDP 1: Coveredby Singular objects
Adapter 3: Reuseof existing code.
Bridge FDP
Composite FDP
Decorator FDP
Facade LDDP 1: Coveredby Nested Classes
Flyweight FDP
Proxy FDP
Chainof Responsibility FDPx (1: Coveredby Explicit Delegation)
Command LDDP 1: Coveredby Procedure classes
Interpreter RDP 2: Applicationof Composite
Iterator FDP
Mediator FDP
Memento FDP
Obserer RDP 2: Applicationof Mediator
State FDP
Stratgy 3: Dynamicdispatch
Templatemethod LDDP 1: Coveredby Complete block structure
Visitor LDDP 1: Coveredby Multiple dispatch

Figure7: Analysisof DesignPatternsfrom [Gammaetal. 95]

the LDP. In languagesvithout multiple inheritancethis will cause
problemswheneer the classesn the applicationalreadyinherit
from otherclasses— eitherbecausehey arepartof existing hier-

archiedn theapplicationor becausé¢hey playrolesfrom morethan
oneDesignPattern. In the following subsectiorwe shav how the
useof compositioncan solve this problem, provided that certain
featuresareaccessiblén the programmingdanguage.

3.1 Simulating Multiple Inheritance by Composi-
tion

One of the advantagesn using multiple inheritancecomparedo
compositionis thatwith aclassinheritingfrom severalotherclasses,
wheresomeof thosehave virtually declarecclasseor methodsit
is possibleto re-bindthese.

In BETA this adwantagecould alsobe achieved with composi-
tion by creatinga singularlydefinedpartobjectAddr:

Addr: @ Address(# ... extension ... #)

asaninstanceof alocally definedanorymoussubclas®f Address.
An exampleof thisandthestructuren ourexpandeddMT-notation
is shawvn below.

SinceprintLabel is definedasa virtual methodin the classAd-
dress, andAddr is asingularinstanceof alocally definedsubpattern
of Address it is possibleto further bind printLabel in Addr. This
way, the methodprintLabel can be extendedto sene the Person
classbetter

Usingthiskind of compositiondesignerganaddrolesto classes
throughoutthe whole systemdevelopmentby nestingpart objects

Address:
(#

Street:@ Text;

Town:@ Integer;

printLabel:< (# do inner; (*print Street, Town*) #)
#);

Person:
#
Name:@ Text;
Addr:@ Address
(# printLabel:: (# do ... ; (*print Name*); #)

#)

#)

Person




containingroles from the Library DesignPatternsinto the appli-
cationclassesandstill be ableto gainfrom thevirtual classesand
methodsn the LDPs.

3.2 Implementing the LDPs

In [Agerbo97 we have discussedhow andto what extentthe fun-
damentalDesignPatternscould be placedin a library of Design
Patterns.In this articlewe shav anexampleof thesediscussionso
illustratewhatwe believe could be possibleandprofitableto keep
in alibrary.

The classesn the applicationsusingsucha library are some-
timesalreadysubclassesf otherclassesn the applicationor play
rolesfrom oneor moreDesignPatterns.Thereforen the descrip-
tions of the LDP’s we assumehat sucha library is usedin a lan-
guagewith multiple inheritanceor the possibilityto simulatemulti-
pleinheritancepbecaus¢heuseof LDP’swill meanthattheclasses
in theapplicationinheritfrom the classesn the LDP.

Thefollowing discussionsre basedon the descriptionof the
DesignPatternsfoundin [Gammaetal. 95], andrequirethe book
at handfor full understanding.

3.2.1 Flyweight

Theapplication-dependeigsuedo considewhenmakinganLDP
arethefollowing:

e Whatkind of objectis akey?
o How doesakey identify a flyweight-object?

e How is the stateof an object split into extrinsic stateand
intrinsic state?

¢ Whatoperationshouldthe flyweightssupport?

Theseconsiderationfave led to aFlyweight-LDP asshavn in
Figure8.

By having the LDPs FlyweightFactory declaringkeyType asa
virtual classandthe proceduregetFlyweight a virtual proceduret
malesit possiblefor the concreteapplicationto decidewhat key
to useaswell asto specifyhow thatsort of key shouldidentify a
flyweight object. It is enoughfor the abstractFlyweightFactory to
know thatthereis akey andaflyweightdeterminedy thekey to be
ableto maintainthe pool of sharedflyweightsunderthe invariant
thatthereis only oneinstanceof eachflyweight.

In the applicationof the LDP the flyweightType shouldbe fur-
therboundto theclassof shaedflyweights,MyConcreteFlyweight,
— it is thusguaranteethateachflyweightin the poolOfFlyweights
hasthis type, which in turn guaranteeshat the IntrinsicState has
beenfurtherextendedn accordancevith the concreteapplication.

We have chosento have the abstractclassFlyweight declare
the classesExtrinsicState and IntrinsicState sincethis separation
is a fundamentalproperty of a flyweight object. This will how-
ever meanthatary applicationusingthe LDP will have to usethe
termsExtrinsicState andIntrinsicState insteadof moreapplication-
specificnames.In the text editor examplemotivating this Design
Patternthe extrinsic statecould typically be the charactes font,
size and placement. The use of the LDP would hereimply that
theseattributes shouldbe nestedinto an extensionof the virtual
patterneExtrinsicState.

Theadwantageof having Flyweight asanLDP lies primarily in
the FlyweightFactory class,wherethe useof virtual classesnales
it possibleto have an abstractimplementationof the poolOfFly-
weights eventhoughthekeyType andflyweightType is only knowvn

in the concreteapplication. This implementatiorof the poolOfFly-
weights ensureghatthe intent of the DesignPatternis metwhen-
everthis LDP is appliedin anapplication.

3.3 Discussion

Sincethe LDPsarereusedby includingrolesin the classef the
applicationby nestinganinstanceof alocally definedanorymous
subclasof the wantedLDP-classas describedn section3.1, the
useof LDPswould annotatevherethe DesignPatternswereused
in the application. This automaticannotationis a very important
contribution to the documentatiomf softwaresystemslt is in fact
the preconditionof the third advantageof using DesignPatterns;
“They enhancdéhe documentatiorf softwaredesigns”.

A numberof the languagefeaturesin BETA prove especially
usefulin connectiorto theLDPsby supportinggenericityandreuse
of models. This is further elaboratedn in [Agerbo97 wherewe
shav how theintentof a DesignPatterncouldbekeptin anLDP for
10outof the12“true” DesignPatternsandthatit in 6 out of these
10 casess dueto virtual classesandnestedclasses This possibil-
ity of reusingenoughof a DesignPatternto applyit from anLDP
andstill keepingtheintentreducegheimplementatioroverheada
problemconnectedo the useof DesignPatternsidentifiedby Jan
Boschin [Bosch97.

Thefact,thatit is possibleco make ausefulLDP outof aDesign
Pattern provesthatit is possibleo make areusablémplementation
of it. And sincetheDesignPatternsn [Gammaetal. 95] formulate
good design-or implementation-ideaghe languagefeaturesthat
supportthemmustbe consideredlexible andusefulin relationto
reuseof design.

4 RelatedWork

SinceDesignPatternsareareasonablyien conceptmostof theef-
forts sofar hasbeenputinto discovering new DesignPatternsand
investigatingtheir usefulnessTo the bestof our knowledgelittle
work hasbeendonein evaluatingthe existing DesignPatterns.The
only othercritical evaluationof DesignPatternswe have foundis
thearticle“Design Patternsvs. LanguageDesign” ([Gil97]) where
JosephGil andDavid H. Lorenz have offered a taxonomyof the
DesignPatternsfrom [Gammaetal. 95] basedon how far they are
from becomingactuallanguagefeatures. They have partitioned
the DesignPatternsaseitherclichés idiomsor cadets which cor-
respondto an applicationof Guidelinel and3 from our analysis
on the DesignPatterns. The taxonomywas presentedas a work-
shoppaperat ECOOP’97 andit needsa morethoroughargumen-
tation for its classificationsyhich we have discussedn depthin
[Agerbo97. Their resultingtaxonomyis difficult to compareto
oursdirectly, sincethey allow the sameDesignPatternto appear
in several categories,andtheir reasoningsare somevhat fuzzy at
places.However the factthatthe two categorisationsarenotiden-
tical shaws thatit will be hardto obtaina consensusn ary one
evaluationof DesignPatternsgspeciallywill it be hardto agreeon
what Design Patternsare formalisationsover inherentobjectori-
entedwaysof thinking — [Gil97] claimsthatthreeof the Design
Patternsfall into this category, noneof which we have categorised
in the sameway. However the factthattwo almostidenticalsetof
Guidelineshave evolved independentlyndicatesthat they canbe
usedasvalid startingpointsfor a dialogueon the quality of Design
Patterns.

Thetracing problemhasbecomea generallyrecognisedrob-
lemwithin thefield of DesignPatterns.



FlyweightFactory

getFIyweight(keyType):ﬁ

@

Flyweight

-
poolOfFlyweights

insert(keyType, flyweightType|

from Object fromObject

- T @ /T

elements

IntrinsicState ExtrinsicState

N J
from Object
e — e —

’ keyType ‘ ’ flyweightType ‘

-

%

MyFlyweight

operation(ExtrinsicState):s

‘ extended

©)

ExtrinsicState

MyConcreteFlyweight

operation(ExtrinsicState)::

extended

IntrinsicState Istate

o
[
1
|
|
|

®

IntrinsicState

MyFlyweightFactory

getFlyweight(keyType)::¢

){(tended

T
|

®

’ keyType‘ ’ flyweightType ‘

©)

MyUnsharedConcreteFlyweight

State allstate

operation(ExtrinsicState):?
I
|
1
|

@

®@O® 6

if flyweight(key) exists i nner specification of specification of how
return existing flyweight operation in key determines flyweigh
else application
i nner

poolOfFlyweights->
insert(key,flyweight(key))

Figure8: Flyweight-LDP



GorelHedinhasin [Hedin97 proposedatechniqueor formal-
ising DesignPatternswhich allows the DesignPatternapplications
to beidentifiedin the sourcecode. The techniques basedon at-
tribute grammarsandplacesa demandbn the programmethathe
explicitly annotatesis programwith DesignPatternroles. This
hasthe benefit,thatit will alsoenableautomaticcheding, i.e. it
will be possibleto decidewhethera DesignPatternhasbeenap-
plied correctly The largestdifferencebetweenthis approachand
ours, is that our will partly reducethe implementationoverhead,
whereaHedin’s solutioncanwork asa dehuggerfor DesignPat-
ternswhereour solutioncannot guarante¢hatthe DesignPatterns
areappliedcorrectly

Jiri Soulop hasalsotriedto solve thetracingproblem.In hisar
ticle “ImplementingPatterns”([Soukup9%) he proposego build a
library of DesignPatternsconsistingof so-calledpatternclassesA
patternclassencapsulatesll thebehaiour andlogic of the Design
Patternandthe classeshatform the DesignPatternin the applica-
tion thuscontainno methodgelatedto the DesignPattern.Whatis
left in the classesareonly pointersandotherdatarequiredfor the
DesignPattern.The problemof this solutionis thatall thestructure
of the DesignPatternis lost, sinceeverythingis now containedas
methodsn the patternclass

5 Conclusion

Theobjective of thisarticleis to regainthe benefitof usingDesign
Patterns:

1. They encapsulatexperience.

2. They provide a commonvocahulary for computerscientists
acrosdomainbarriers.

3. They enhanceahe documentatiomf softwaredesigns.

We believe thatthefield of DesignPatternsshouldbenarraved
down to aminimum,to presere thefirst two benefitsof DesignPat-
terns.By partitioningthe DesignPatternsnto FundamentaDesign
PatternsLanguagéDependanbesignPatternsandRelatedDesign
Patternswe have a coreof the DesignPatterns— the Fundamental
DesignPatterns— whichfully providesthebenefitsof DesignPat-
terns. Only 12 of the 23 DesignPatternsfrom [Gammaetal. 95|
areclassifiedas FundamentaDesignPatternsfollowing thesecri-
teria. This leadsusto concludethatit is beneficialto have acritical
approachto DesignPatterns,becausét minimisesthe amountof
FundamentaDesign Patternsand therebymalkes the areaof De-
signPatternseasierto getontop of.

Using DesignPatternsin software systemsshouldmalke it an
easiertaskto documentthe systems.Thereis however the prob-
lem, thatthe more DesignPatternsthatareapplied,the morediffi-
cultit will beto recognisehe structureof the participatingDesign
Patterns.Thisis referredto asthetracingproblem.

We have in this paperdescribechow the useof LDPscanpre-
sene the DesignPatternsin a library, and how the use of these
would guaranteeutomaticannotationn a programthatsomeob-
jectparticipatesn anapplicationof a DesignPattern.Furthermore
we claim thatthe presencef nestedclassesandyvirtual classesn
the programminglanguagewill reducethe implementationover-
head,sincethesetwo languagefeaturesmalesit possibleto cap-
ture theintentof the DesignPatternin the collaborationsdbetween
the objects,andto inherit the interdependencieis anapplication.
Thisis in describedn detailin [Agerbo97, andwe have giventwo
examplesn this article.

Thustheuseof LDPswill provide uswith ameansof ensuring
thethird benefitof DesignPatternsandit will to someextentelim-
inate the implementationoverheadif the chosenimplementation
languageposesshe necessarjanguageabstractions.

References

[Agerbo97] Ellen Agerbo and Aino Cornils (1997): Theory of
Language Supportfor Design Patterns. Departmentof Com-
puterScience AarhusUniversity

[Alpert etal. 98] ShermanR. Alpert, Kyle Brown and Bobby
Woolf (1998): The Design Patterns Smalltalk Companion.
Addison-Weslegy PublishingCompayy.

[Bosch97] JanBosch(1997): DesignPatterns& Frameavorks: On
thelssueof Languaye SupportWorkshopon LanguageSupport
for DesignPatternsand Object-Oriented-rameavorks (LSDF),
ECOOP97.

[Coplien94] J.0.Coplien(1994): AdvancedC++: Programming
Stylesand Idioms.Addison-Wésleg/, Reading MA.

[Gammaetal. 95] Erich Gamma,RichardHelm, Ralph Johnson,
JohnVlissides(1995): Elementsof ReusableObject-Oriented
Softwae. Addison-Weslg/ PublishingCompary.

[Gil97] JosephGil and David H. Lorenz (1997): Design Pat-
terns vs. Languae Design. Workshopon LanguageSupport
for DesignPatternsand Object-Oriented~ramevorks (LSDF),
ECOOP97.

[Hedin97] GorelHedin(1997): Languaye Supportor DesignPat-
ternsusignAttributeExtensionWorkshopon LanguageSupport
for DesignPatternsand Object-Oriented-rameavorks (LSDF),
ECOOP97.

[Madsen89]O. L. Madsen,B. Mgller-Pederser(1989): Virtual
classes: A powerful medanismin object-orientedprogram-
ming Proceedingf OOPSLA’89.

[Madsen92]O. L. Madsen,B. Mgller-Pedersen(1992): Part-
objectsand their location. Proceedingof TOOLS'92 pp. 283-
297.

[BETA93] O.L. MadsenB. Mgller-Pederserk. Nygaard(1993):
Object-Oriented”rogrammingin the BETA ProgrammingLan-
guage. Addison-Wesley PublishingCompap.

[Soukup95] Jiri Soukup (1995): ImplementingPatterns. Pat-
ternLanguage®f ProgramDesign.Eds.Coplienand Schmidt.
Addison-Wesley 1995.

[Thorup97] K. K. Thorup (1997): Genericityin JAVA with Vir-
tual Types.Proceeding®f ECOOP’97 pp. 444-469.Springef
Verlag.



