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Burnup and decay reactions 1
The exposure of an isotope A

ZX to neutron flux produces nuclear reactions that may
modify its nuclear characteristics.

Radiative capture (n,γ) A
ZX + 1

0n −→ A+1
Z X

Fission (n,f) A
ZX + 1

0n −→ C
DY + A+1−C−ν

Z−D Z + ν 1
0n

(n,xn) reaction A
ZX + 1

0n −→ A+1−x
Z X + x 1

0n

(n,α) transmutation A
ZX + 1

0n −→ A−3
Z−2Y + 4

2He

(n,p) transmutation A
ZX + 1

0n −→ A
Z−1Y + 1

1H

Some isotopes may be unstable, even at ground state, and are subject to radioactive
decay.

Alpha decay (α) A
ZX −→ A−4

Z−2Y + 4
2He

Negative beta decay (β−) A
ZX −→ A

Z+1Y + 0
−1e

Positive beta decay (β+) A
ZX −→ A

Z−1Y + 0
1e

Isomeric decay A
ZXm −→ A

ZX

Delayed neutron decay A
ZX −→ A−1

Z+1Y + 0
−1e + 1

0n

The secondary nucleus can also be left into a metastable state, called isomeric state,
and denoted Y m.
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Burnup reactions 1

The time-dependent number density N(t) of the nuclides of type A
ZX is decreasing at a rate

that is proportional to N(t) and to the lethargy-integrated microscopic absorption rate 〈σa φ〉:

dN

dt
= −N(t) 〈σa φ(t)〉(1)

with

〈σa φ(t)〉 =

Z

∞

0
du σa(u) φ(u, t)(2)

where the absorption cross section of isotope A
ZX is given in terms of the total and

scattering cross sections using σa(u) = σ(u) − σe(u) − σin(u).

In absence of sources, an initial quantity N(t0) of isotopes A
ZX is going to decrease at an

exponential rate, according to

N(t) = N(t0) e
−

R

t
t0

dt′ 〈σa φ(t′)〉
.(3)
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Burnup reactions 2
We see that the wear of a material due to neutron-induced reactions is function of of the
time-integral of the neutron flux over the irradiation period. We define the neutron exposure
ω(t) by the relation

ω(t) =

Z t

0
dt′

˙

φ(t′)
¸

.(4)

Another measure of wear is the burnup B(t) defined as the time-integrated power (or
energy) per initial unit mass. It is written

B(t) =
V

W

Z t

0
dt′

˙

Hφ(t′)
¸

.(5)

where V is the volume of the fuel, W is the mass of heavy isotopes at time t = 0 and H(E)

is the H–factor, used to compute the recoverable energy from neutron-induced reactions.

The main component of H(E) is κΣf (E) where κ is the energy produced by fission
(around 200 MeV) and Σf(E) is the macroscopic fission cross section.

Other neutron-induced reactions may produce energy and their contributions must be
included in H(E).

The unit of the neutron exposure is the neutron per kilo-barn (n/kb) and the unit of the
burnup is the mega-watt-day per metric tonne of initial heavy isotopes (MWd/Mg).
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Radioactive decay 1
A second cause of isotopic depletion is the radioactive decay of an unstable nucleus A

ZX.
Isomeric states are always unstable and decay toward the underlying ground state.

The positive beta decay is often combined with the electronic capture decay which can be
written A

ZX + 0
−1e −→ A

Z−1Y .

The time-dependent number density N(t) of the nuclides of type A
ZX is decreasing at a rate

that is proportional to N(t) and to the radioactive decay constant λ, so that

dN

dt
= −λ N(t) .(6)

The radioactive decay constant is different for each type of isotope (or isomeric state) and
each mode of decay. In absence of sources, an initial quantity N(t0) of isotopes A

ZX is going
to decrease at an exponential rate, according to

N(t) = N(t0) e−λ (t−t0) .(7)

The half-life T1/2 of an unstable isotope is the period of time required to decay N(t0)/2

nuclides. It is written

T1/2 =
ln 2

λ
.(8)
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Radioactive decay 2
The negative beta decay is efficient in
reducing the neutron/proton ratio (or
(A − Z)/Z) in fission products.

In case where A − Z >> Z, delayed
neutron decay may become possible.
This mode of decay is a negative beta
decay of specific half-life, producing a
daughter nucleus with a level of
excitation sufficient to emit a neutron.

The half-lives of the delayed
neutron precursors are smaller
than one minute.

The delayed neutrons allow to
reach Keff = 1 with a larger time
scale.

Br
87
35

Kr
87
36

Kr86
36

γ

n
β−

β−

The delayed neutron fraction νdel/(νpr + νdel) is of the order of 0.0065 for a fission of
U-235 and of the order of 0.002 for a fission of Pu-239.

A nucleus may have a non-zero probability to decay accordingly to different channels.
The total radioactive decay constant is the sum of all decay constants:

λ = λα + λβ− + λβ+ + . . .(9)
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Depletion equations 1

Some isotopes produced by neutron-induced reactions are themselves going to decay or to
undergo another neutron-induced reaction. Equations (1) and (6) must be combined in
accordance to the depletion chain describing the father-daughter relations:

(n,γ)

β−

X Y

Z

Assuming X(0) = X0 and Y (0) = Z(0) = 0 as initial conditions, and assuming that the
neutron flux is constant and equal to φ, we obtain

dX

dt
+ 〈σγ φ〉X(t) = 0 ; X(0) = X0

dY

dt
+ λβ− Y (t) = 〈σγ φ〉X(t) ; Y (0) = 0

dZ

dt
= λβ−Y (t) ; Z(0) = 0 .(10)
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Depletion equations 2

We obtain a coupled system of K first-order
ordinary differential equations with initial
conditions, where K is the number of
depleting nuclides. These equations are also
known as the Bateman equations.

Many techniques are available to solve
the resulting system, such as the
Laplace transform method, the
Runge-Kutta family of numerical
methods, and the integration factor
method.

For in-core depletion calculations, one
assumes linear flux variation over
each irradiation period, or time stage.
The initial (and possibly final) flux
distributions are recovered from
previous neutron flux calculations.
In-core depletion can be performed at
constant flux or constant power

(expressed in MW/tonne of initial
heavy elements) but these values can
undergo step variations from one time
stage to another.

Figure represents Yk,l, the fission
yield for production of fission product k

by fissile isotope l.
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Depletion equations 3

In each burnup mixture of the unit cell, the depletion of K isotopes over a time stage (t0, tf )

follows the following equation:

dNk

dt
+ Λk(t) Nk(t) = Sk(t) ; k = 1, K(11)

Λk(t) = λk + 〈σa,k(t)φ(t)〉 ,(12)

Sk(t) =
L

X

l=1

Yk,l 〈σf,l(t)φ(t)〉Nl(t) +
K

X

ℓ=1

mk,ℓ(t) Nℓ(t) ,(13)

〈σx,l(t)φ(t)〉 =

Z

∞

0
du σx,l(u) φ(t, u)(14)

σx,k(t, u)φ(t, u) = σx,k(t0, u)φ(t0, u)

+
σx,k(tf , u)φ(tf , u) − σx,k(t0, u)φ(t0, u)

tf − t0
(t − t0)(15)
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Depletion equations 4

Some short-lived isotopes (isotopes with high values of Λ) can be lumped in the
cross-section processing stage (NJOY stage), before constructing the multigroup library
used by the lattice code. It is not possible to recover number-densities for these isotopes in
the lattice code.

(n,f)

U-235

λ3

λ1

Y2

Y1

A B

C D

λ2

(n,γ)

E
f

E
λ1

E
λ2

E
γ

(n,f)

U-235

Y1

B

D

λ2

(n,γ)

E
f
+Y

1
E
λ1

E
λ2

+Y2

E
λ3E

γ
+

Before lumping After lumping

E
λ3
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The power normalization 1
We note that the simultaneous presence of a radioactive decay constant and of a
microscopic reaction rate in Λk requires the correct power normalization of the neutron flux
before any attempt to solve the depletion equations.

1. Constant flux depletion. In this case, the lethargy integrated fluxes at
beginning-of-stage and end-of-stage are set to a constant F :

Z

∞

0
φ(t0, u)du =

Z

∞

0
φ(tf , u)du = F(16)

2. Constant power depletion. In this case, the power released per initial heavy element at
beginning-of-stage and end-of-stage are set to a constant W .

L
X

k=1

h

κf,k 〈σf,k(t0)φ(t0)〉 + κγ,k 〈σγ,k(t0)φ(t0)〉
i

Nk(t0) =

L
X

k=1

h

κf,k 〈σf,k(tf )φ(tf )〉 + κγ,k 〈σγ,k(tf )φ(tf )〉
i

Nk(tf ) = C0 W(17)

The end-of-stage power is function of the number densities Nk(tf ); iterations will
therefore be required for the end-of-stage power can be set equal to the desired value.
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The saturation model 1
Equations (11) are said to form a stiff system of equations when they feature very high and
very low values of Λk . Numerical instabilities can be avoided in two different ways:

by adopting a numerical method that has the capability to deal with stiff systems of
equations. The Kaps-Renthrop algorithm and integration factor method are numerical
methods with such capability.

by eliminating the depletion equations with high values of Λk .

These equations can be lumped at the origin of the cross-section library creation.

They can also be lumped in the depletion module, using a saturation model, as
presented in this section. The latter approach is preferred in cases where the
knowledge of the number densities for the lumped isotopes is required.

Once the lumping operation has been completed, the remaining depletion
equations can be solved using a classical numerical method.

Depleting isotopes with Λk(t0)
ˆ

tf − t0
˜

≥ Vmax and Λk(tf )
ˆ

tf − t0
˜

≥ Vmax, with Vmax

set to an arbitrary large value (= 80 is fine), are considered to be at saturation. They are
described by making dNk/dt = 0 in Eq. (11) to obtain

Nk(t) =
Sk(t)

Λk(t)
; if k is at saturation.(18)
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The saturation model 2
Beginning-of-stage and end-of-stage Dirac contributions can be added:

Nk(t) =
1

Λk(t)

ˆ

aδ(t − t0) + Sk(t) + bδ(t − tf )
˜

; if k is at saturation(19)

where a and b are chosen in order to satisfy the time integral of Eq. (11):

Nk(t+f ) − Nk(t−0 ) +

Z t+
f

t−
0

Nk(t) Λk(t) dt =

Z t+
f

t−
0

Sk(t) dt(20)

A first possibility consists to set the following values of a and b:

a = Nk(t−0 ) −
Sk(t+f )

Λk(t+f )
and b = 0 .(21)

This approach is preferred in cases where the matrix mk,ℓ is triangular (mk,ℓ = 0 if k < ℓ ).
If this is not the case, it is numerically convenient to chose the following values of a and b:

a = Nk(t−0 ) −
Sk(t+0 )

Λk(t+0 )
and b =

Sk(t+0 )

Λk(t+0 )
−

Sk(t+f )

Λk(t+f )
(22)
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The saturation model 3

The numerical solution techniques used in the isotopic depletion module of the lattice code
are the following:

Isotopes with very short half-life are taken at saturation and are solved apart from
non-saturating isotopes.

In the lattice code DRAGON, the lumped depletion matrix system containing the
non-saturating isotopes is solved using either a fifth order Cash-Karp algorithm or a
fourth order Kaps-Rentrop algorithm, taking care to perform all matrix operations in
sparse matrix algebra.

Matrices Mkl(t0) and Mkl(tf ) are therefore represented in diagonal banded storage
and kept apart from the yield matrix Ykl.

Every matrix multiplication or linear system solution is obtained via the LU algorithm.
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The integration factor method 1

The integration factor method is an analytical solution technique.

The time domain is divided into steps, over which the neutron flux variation is assumed
to be known.

An exact analytical integration of each depletion equation is used in order to compute
the isotopic number densities at the end of a given time step.

Power series are used in order to represent exponential terms with small arguments.
This approach is adapted to cases where the source term in Eq. (13) can be
expressed only in terms of already known isotopic densities, so that

Sk(t) =
L

X

l=1

Yk,l 〈σf,l(t)φ(t)〉Nl(t) +

k−1
X

ℓ=1

mk,ℓ(t) Nℓ(t) .(23)

This condition is not satisfied with the heavy elements and can only be used to study fission
products. Assuming constant flux and constant cross sections, Eq. (11) can now be written

dNk

dt
+ Λk Nk(t) =

L
X

l=1

Yk,l 〈σf,lφ〉Nl(t) +

k−1
X

ℓ=1

mk,ℓ Nℓ(t) ; k = 1, K .(24)
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The integration factor method 2

The RHS of Eq. (24) is rewritten as a sum of exponential terms of the form

L
X

l=1

Yk,l 〈σf,lφ〉Nl(t) +

k−1
X

ℓ=1

mk,ℓ Nℓ(t) =
J

X

j=1

ak,j tnj e−Vjt(25)

where nj is an integer ≥ 0. The first 35 terms of the RHS summation are a pure power
series with

Vj = 0 and nj = j − 1 ; j ≤ 35 .(26)

These 35 terms are useful to eliminate any exponential function with Vj ≤ 7 from the
solution. Such exponential functions may arise in presence of nuclides with very long
half-lives. For the sake of efficiency of computation, each time an exponential is found to be
greater than e−7, it is replaced by a 35–term power series of the form

e−Vt ≃

35
X

ℓ=1

(−Vt)ℓ−1

(ℓ − 1)!
if Vt ≤ 7 .(27)
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The integration factor method 3

Equation (24) is multiplied by an integration factor and is integrated between 0 and t. The
LHS leads to

Z t

0
dt′ eΛkt

»

dNk

dt′
+ Λk Nk(t′)

–

= Nk(t) eΛkt − Nk(0+)(28)

so that

Nk(t) = e−Λkt

2

4Nk(0+) +
J

X

j=1

Z t

0
dt′ ai,j t′

nj e(Λk−Vj)t′

3

5

= Nk(0+) e−Λkt +

J
X

j=1

Ik,j(t)(29)
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The integration factor method 4

The value of Ik,j(t) is given by one of the following three formulas:

Ik,j(t) =
ak,j

Λk − Vj

h

e−Vjt − e−Λkt
i

(30)

if nj = 0 and Λk 6= Vj .

Ik,j(t) =
ak,j

Λk − Vj

»

tnj e−Vjt − nj e−Λkt

Z t

0
dt′ t′

nj−1
e(Λk−Vj)t′

–

,(31)

if nj 6= 0 and Λk 6= Vj , or

Ik,j(t) =
ak,j

nj + 1
tnj+1e−Vjt if Λk = Vj .(32)

Collecting together terms with the same dependence on time, Eq. (29) can now be written as

Nk(t) =

J+1
X

j=1

ci,j tnj e−Vjt(33)
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The integration factor method 5

so that

ak+1,j =
k

X

ℓ=1

mk+1,ℓ cℓ,j(34)

will be used by nuclide k + 1 as a source contribution in Eq. (25).
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The integration factor method 6
An analytic solution over a time interval ∆t, will be possible if

1. The neutron flux φ(t) is constant within ∆t. However, the method can be adapted to
the case where the neutron flux varies linearly within ∆t.

2. The variation of the fission rates within ∆t is assumed to be given by an expression as

〈σf,lφ〉 = fl,0 δ(t) +
Jf

X

j=1

fl,j tnj e−Vjt(35)

where δ(t) is a Dirac delta distribution. This component is used as initial condition in
the solution of Eq. (24), so that

Nk(0+) = Nk(0−) +
L

X

l=1

Yk,l fl,0 ; k = 1, K .(36)

3. The matrix mk,ℓ is triangular (mk,ℓ = 0 if k < ℓ).

4. The resonance self-shielding of the heavy isotopes is constant within ∆t.

Otherwise, a numerical solution approach, similar to the Runge-Kutta method, will be used.
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Depletion of heavy isotopes 1
The burnup chain of the heavy isotopes in
the uranium cycle is represented in figure.

When the radioactive decay constant of an
isotope is big in comparison of the
microscopic absorption rate 〈σaφ〉, we may
assume that the decay is instantaneous and
remove this isotope from the burnup chain.
This is the case of the radiative capture of a
neutron in U-238 which can be consider to
produce directly a Np-239 nucleus.

When a U-235 nuclide absorbs a neutron,
the most likely reaction is fission. However, a
fraction of the absorptions will result in the
production of a U-236 nuclide. The
absorption of a neutron in U-236 will
produce a U-237 nuclide that will decay
immediately in Np-237, a more stable
isotope. Another decay of Np-237 will
produce a Pu-238 nuclide.

U-234

U-235

U-236

U-238

Np-237

Pu-238

Pu-239

Pu-240

Pu-241

Pu-242

Np-239

Am-241

Am-242m

Am-243

Cm-242

Cm-243

Cm-244

α

α

α

α

β−

β−

β−

β−

β−

β−

β−

β−

β+

(n,2n)(n,2n)

(n,2n)

(n,2n)

(n,γ)

(n,γ)

(n,γ)

(n,γ)

(n,γ)

(n,γ)

(n,γ)

(n,γ)

β−

β−

(n,2n)

(n,2n)

(n,2n)

(n,γ)

(n,γ) (n,γ)

(n,γ) (n,γ)

(n,γ)

(n,γ)
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Depletion of heavy isotopes 2
The uranium cycle corresponds to the majority of applications of nuclear energy.

It is used in many reactor systems such as

the pressurized water reactor (PWR),

the boiling water reactor (BWR),

the Canada deuterium uranium reactor (CANDU) and

the liquid-metal fast-breeder reactor (LMFBR).

The conversion ratio is the ratio of the number of fissile nuclides produced per unit time
over the number of fissile nuclides burned per unit time. A nuclear reactor with a
conversion ratio greater than one is referred as a breeder.

Reactor system Enrichment Conversion ratio

CANDU U-235 at 0.711% ≃ 0.8

PWR U-235 at 3.3 % ≃ 0.5

BWR U-235 at 2.6 % ≃ 0.5

LMFBR (Super-Phoenix) Pu-239 at 16.0 % > 1
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