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Elements of lattice calculation 1

A few first-generation lattice codes based of the four-factor formula are still in

production use today.

The second generation lattice codes features a consistent multigroup (between 50 and

400 groups) representation of the neutron energies.

The main components of a typical second generation lattice code are the following:

1. Library access and temperature interpolation.

2. Resonance self-shielding calculation.

3. Main flux calculation.

4. Homogenization and condensation of the reaction rates.

5. SPH factor calculation.

6. Isotopic depletion calculation.
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Elements of lattice calculation 2
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Elements of lattice calculation 3
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Slowing-down and self-shielding 1

At energies of the incident neutron greater than a few eV, thermal agitation of nuclides and

binding effects vanishes and the elastic scattering reaction leads to a pure slowing-down

effect. In this case, the transport equation simplifies to

Ω ·∇φ(r, u,Ω) + Σ(r, u)φ(r, u,Ω) =
1

4π



Sf (r, u) +
J
∑

j=1

Rj{φ(r, u)}



(1)

where Sf (r, u) is the fission source and where we assumed that the scattering reaction is

isotropic in the LAB.

The resonant absorption mechanism is based on different isotopes j playing antinomic roles:

The lights isotopes are mostly responsible of the slowing-down of neutrons but are not

the largest cause of absorption. This is also true for LMFBRs where the Oxygen,

Sodium and structural materials are playing this role.

The heavy isotopes are mostly responsible of the resonant absorption of neutrons but

are not the largest cause of slowing-down.
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Slowing-down and self-shielding 2

We introduced ρj(r, u) ≡ Rj{φ(r, u)} as the elastic slowing-down operator of isotope j:

ρj(r, u) ≡ Rj{φ(r, u)} =

∫ u

0
du′ Σs0,j(r, u← u′)φ(r, u′)

=
1

1− αj

∫ u

u−ǫj

du′ eu
′
−u Σs,j(r, u

′)φ(r, u′)(2)

where Σs0,j(r, u← u′) is the zeroth Legendre moment of the differential scattering cross

section and ǫj is the maximum lethargy jump a neutron can make using an elastic collision

with a nucleus of type j and mass ratio Aj (the ratio of the nucleus mass over the neutron

mass). The parameters αj and ǫj are defined as

αj =

(

Aj − 1

Aj + 1

)2

and ǫj = ln
1

αj

.(3)

ρj(r, u) du is the number of neutrons that will come out with a secondary lethargy

equal to u (within a du interval) per unit time.

Note that the integration in primary lethargy u′ is limited to values smaller than the

secondary lethargy u.
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Elastic slowing-down 1

In the case of an homogeneous media with J = 1, the elastic slowing-down equation (1)

simplifies to

Σ(u)φ(u) = Sf(u) + ρ(u)(4)

A second form of this equation is based on the slowing-down current.
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Elastic slowing-down 2

The slowing-down current q(u) defined as the number of neutrons that will cross lethargy u

per unit time. The count is performed for neutrons having a primary lethargy u′ smaller than

u and a secondary lethargy u′′ greater than u. The slowing-down current is defined as

qj(r, u) ≡ Qj{φ(r, u)} =

∫ u

0
du′

∫

∞

u

du′′ Σs0,j(r, u
′′ ← u′)φ(r, u′) .(5)

The slowing-down operator ρj(r, u) defined in Eq. (2) is a distribution in u although the

slowing-down current qj(r, u) defined in Eq. (5) is a function of u.

The slowing-down current can be derived with respect to u, leading to

d

du
qj(r, u) = Σs,j(r, u)φ(r, u)− ρj(r, u)(6)

where we used the identity

d

du

∫ u

0
du′ A(u, u′) = A(u, u) +

∫ u

0
du′

∂A

∂u
.(7)
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Elastic slowing-down 3

Substituting Eq. (6) in Eq. (4), we obtain a transport equation written in terms of the

slowing-down current. In the case of an homogeneous media with J = 1, we obtain the

second form of the elastic slowing-down equation:

d

du
q(u) = Sf (u)− Σa(u)φ(u) .(8)

Assuming elastic scattering, Eq. (5) can be written

qj(r, u) =
1

1− αj

∫ u

u−ǫj

du′
∫ u′+ǫj

u

du′′ eu
′
−u′′

Σs,j(r, u
′)φ(r, u′)

=
1

1− αj

∫ u

u−ǫj

du′
(

eu
′
−u − αj

)

Σs,j(r, u
′)φ(r, u′)

= ρj(r, u)−
αj

1− αj

∫ u

u−ǫj

du′ Σs,j(r, u
′)φ(r, u′) .(9)
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Placzek transients 1

A normalized source emits one monokinetic neutron per unit time and volume at lethargy

u = 0 in a non-absorbing, infinite and homogeneous material. In this case, Eqs. (4) and (8)

simplify to

ρ(u) = Σs(u)φ(u)− δ(u)(10)

and
d

du
q(u) = δ(u)(11)

where the Dirac delta function is used to represent the source.

Equation (11) is easily integrated in lethargy, leading to an Heaviside function:

q(u) = H(u) =

{

0 if u ≤ 0

1 otherwise.
(12)

The flux equation is obtained by substituting Eqs. (10) and (12) in Eq. (9):

H(u) +
α

1− α

∫ u

u−ǫ

du′ Σs(u
′)φ(u′) + δ(u) = Σs(u)φ(u) .(13)
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Placzek transients 2

The neutron flux, as solution of Eq. (13), presents discontinuities for values of the lethargy

equal to ǫ, 2ǫ, etc. and its limit as u→∞ tends toward a constant value. This behavior is

typical of Placzek transients.

0 0.5 1 1.5 2 2.5 3

0.6

0.8

1

1.2

1.4

A=2

A=4

A=100

A=12

ξ Σs φ

u/ε

A=100

A=2

ENE6101: Week 10 Neutron slowing-down and resonance self-shielding – 12/28



Placzek transients 3

If 0− ≤ u ≤ 0+, the solution of Eq. (13) is: φ(u) = δ(u)/Σs(u).

For values 0 < u ≤ ǫ:

1 +
α

1− α
+

α

1− α

∫ u

0+
du′ Σs(u

′)φ(u′) = Σs(u)φ(u)(14)

so that
1

1− α
+

α

1− α

∫ u

0+
du′ Σs(u

′)φ(u′) = Σs(u)φ(u) if 0 < u ≤ ǫ .(15)

Assuming a solution of the form φ(u) = C
Σs(u)

eβu, Eq. (15) becomes

1

1− α
+

αC

β (1− α)

(

eβu − 1
)

= C eβu(16)

so that β = α/(1− α) and C = 1/(1− α). The first Placzek transient is therefore

φ(u) =
1

(1− α) Σs(u)
e

α
(1−α)

u
if 0 < u ≤ ǫ .(17)
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Placzek transients 4

For values ǫ < u ≤ 2ǫ, we can show that

1 +
α

(1− α)2

∫ ǫ

u−ǫ

du′ e
α

(1−α)
u′

+
α

1− α

∫ u

ǫ

du′ Σs(u
′)φ(u′) = Σs(u)φ(u)

so that

1 +
1

1− α

(

e
α ǫ

(1−α) − e
α

(1−α)
(u− ǫ)

)

+
α

1− α

∫ u

ǫ

du′ Σs(u
′)φ(u′) = Σs(u)φ(u) .

The solution of this equation is the second Placzek transient. Its analytical expression is

φ(u) =
1

(1− α)Σs(u)

[

e
α ǫ

(1−α) − α−
α

1− α
(u− ǫ)

]

e
α

(1−α)
(u− ǫ)

.(18)
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Placzek transients 5

For values of u >> ǫ, the scattering density Σs(u)φ(u) becomes regular, so that the integral

in Eq. (13) can be written

∫ u

u−ǫ

du′ Σs(u
′)φ(u′) = ǫΣs(u)φ(u) .(19)

Equation (13) simplifies to

1 +
α

1− α
ǫΣs(u)φ(u) = Σs(u)φ(u)(20)

and the flux tends to its asymptotic value

φ(u) =
1

ξΣs(u)
if u >> ǫ(21)

where we introduced the average lethargy gain ξ as

ξ = 1−
α ǫ

1− α
.(22)
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Resonance self-shielding theory 1

The main problem considered in the resonance self-shielding model is how to use

self-shielded cross section and probability table information, as recovered from the isotopic

cross-section library. The final objective is to evaluate σ̃ρ,g , the microscopic self-shielded

cross section for any reaction ρ in coarse group g, which is formally defined as

σ̃ρ,g = µg

ug
∫

ug−1

du σρ(u) φ(u)

ug
∫

ug−1

du φ(u)

= µg
〈σρφ〉g

〈φ〉g
(23)

where

ug−1, ug = lethargy limits of group g

µg = superhomogénéisation (SPH) factor obtained from the multigroup equivalence

procedure.

φ(u) = averaged neutron flux in the region where the cross section is defined

σρ(u) = microscopic cross section for nuclear reaction ρ.
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Resonance self-shielding theory 2

The flux used in Equation (23) is the solution of the slowing-down equation:

Ω ·∇φ(r, u,Ω) + Σ(r, u)φ(r, u,Ω) =
1

4π



Sf (r, u) +
J
∑

j=1

Rj{φ(r, u)}





This equation is first simplified using the Livolant-Jeanpierre approximations

ENE6101: Week 10 Neutron slowing-down and resonance self-shielding – 17/28



Livolant-Jeanpierre approximations 1

Consider the neutron slowing-down equation. We will first assume that the domain contains

a single resonant isotope. The neutron flux is the solution of Eq. (1):

Ω ·∇φ(r, u,Ω) + Σ(r, u)φ(r, u,Ω) =
1

4π

[

R+{φ(r, u)}+R∗{φ(r, u)}
]

(24)

where

R+{φ(r, u)} = slowing-down operator for nuclear reactions with non-resonant isotopes

R∗{φ(r, u)} = slowing-down operator for nuclear reactions with a single heavy isotope

and it is assumed that neutron sources originating from inelastic, (n,xn) and fission nuclear

reactions vanish over the slowing-down energy domain.

The two slowing-down operators can be written:

R+{φ(r, u)} =

∫

∞

0
du′ Σ+

s0(r, u← u′) φ(r, u′)(25)

and

R∗{φ(r, u)} =

∫

∞

0
du′ Σ∗

s0(r, u← u′) φ(r, u′) .(26)
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Livolant-Jeanpierre approximations 2

We next simplify Eq. (24) by using a set of approximations proposed by Livolant and

Jeanpierre. We first assume that the neutron flux in each region is factorized as the product

of a resonant fine-structure function ϕ(r, u) with a regular distribution in lethargy ψ(r, u):

φ(r, u,Ω) = ϕ(r, u,Ω)ψ(r, u) .(27)

and

φ(r, u) = ϕ(r, u)ψ(r, u) .(28)

The distribution ψ(r, u) is called the macroscopic flux and represents the asymptotic

behavior of the neutron flux between the resonances. This distribution is defined in terms of

R+{φ(r, u)}, which acts as a smoothing operator on the neutron flux:

ψ(r, u) =
1

Σ+
s (r, u)

R+{φ(r, u)}(29)

where Σ+
s (r, u) is the macroscopic scattering cross section of the non-resonant isotopes.
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Livolant-Jeanpierre approximations 3

The first assumption is based on the fact that the resonant isotope is heavy and that

R∗{φ(r, u)}, the slowing-down operator for the resonant isotope, is acting over a short

lethargy range. This results in

R∗{φ(r, u)} = ψ(r, u)R∗{ϕ(r, u)} .(30)

A second approximation consists of assuming a spatially flat value for distribution ψ(r, u)

across the domain. The substitution of Eqs. (27), (29) and (30) in slowing-down Eq. (24) and

the simplification of the ψ(r, u) distribution leads to

Ω ·∇ϕ(r, u,Ω) + Σ(r, u)ϕ(r, u,Ω) =
1

4π

[

Σ+
s (r, u) +R∗{ϕ(r, u)}

]

.(31)

Equation (31) is a simplified transport equation that is solved in the resonance self-shielding

calculation module of the lattice code. This is a source equation that is defined only over

resonant energy groups. The cross sections Σ(r, u) and Σ∗

s0(r, u) are resonant functions of

the lethargy.
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Equivalence in dilution 1

A first class of resonant self-shielding models is based on equivalence in dilution in which an

heterogeneous case is represented by an equivalent homogeneous case. Two techniques

currently exist to compute the equivalent dilution of the homogeneous case:

Use rational expansions of fuel-to-fuel collision probabilities, either in close or open cell

(or assembly).

In its simplest form, this technique reduces to the Bell-factor approximation

applied on a cylindrical fuel pin. This class of models originates from WIMS-D and

is still used in many legacy codes in some advanced form.

Helpful extensions have been proposed by Stamm’ler (code PHOENIX) and later

by Hébert and Marleau (code DRAGON, module SHI:) to increase the number of

terms in the rational expansions.

Use the Sanchez-Coste method. Both the heterogeneous and homogeneous cases

are solved using probability tables. Many implementations exists

the APOLLO1 original technique is a simplified Sanchez-Coste method where a

unique hard-coded probability table covers the complete epithermal domain

the APOLLO2 module AUTOP: is the official implementation.
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Equivalence in dilution 2

We assume an infinite and homogeneous medium and represent as Σ+ the macroscopic

total cross section of the non-resonant isotopes in the coarse energy group g under

consideration. Eq. (31) simplifies to

[

Σ+ +N∗ σ∗(u)
]

ϕ(u) = Σ+
s +R∗{ϕ(u)}(32)

where σ∗(u) is the microscopic total cross section of the resonant isotope.

Equation (32) is similar to the flux calculator in the groupr module of NJOY:

[σe + σ∗(u)]ϕ(u) = γ σe +
1

N∗
R∗{ϕ(u)}(33)

where we defined the dilution σe and gamma factor γ as

σe =
Σ+

N∗
and γ =

Σ+
s

Σ+
.(34)
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Equivalence in dilution 3

The equation solved in NJOY is identical to Eq. (33) if we set γ = 1. The solution of Eq. (33)

is therefore identical to the solution φ(u) of the groupr flux calculator, taken at a dilution σe,

multiplied by γ:

ϕ(u) = γ φ(u) .(35)

Equation (35) is the justification for self-shielding models based on an equivalence in

dilution. All averaged quantities such as 〈φ〉g or 〈σ∗

ρφ〉g can be interpolated from the

tabulation produced by NJOY, as soon as we know the dilution parameter σe of the actual

problem. It is then sufficient to multiply these interpolated values by γ to obtain the actual

averaged quantities.

The equivalence in dilution method consists to compute in the lattice code an equivalent

dilution characterizing the heterogeneous geometry so that an equivalent homogeneous

geometry is going to have similar absorption reaction rates.
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Equivalence in dilution 4

The APOLLO and WIMS-D families of lattice codes are using successful models for

representing an heterogeneous lattice geometry by one or many equivalent homogeneous

media.

solve

broaden σ∗(u) and σs
∗(u)  as a function of T

loop over σe

loop over T

tabulate <σρ ϕ>g and <ϕ>g in cross-section library

as a function of T and σe

set T

σe =
N*

Σ+

Σ+

Σ+
γ = s

and

compute the dilution σe:

1. homogeneous geometry: use

2. heterogeneous geometry: use a self-shielding model

2.1 The original WIMS-D method

2.2 The Stamm’ler method (PHOENIX, DRAGON 3, WIMS-AECL)

2.3 The Sanchez-Coste method (APOLLO2)

interpolate <σρ ϕ>g and <ϕ>g at T and σe,g 

compute the SPH factors µg

<σρ ϕ>g

<ϕ>g
compute σρ,g = µg

∼

In NJOY: In the lattice code (equivalence in dilution):
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Subgroup approach 1

Another class of resonant self-shielding models relies on the subgroup (or multiband)

approach:

We replace all Riemann integrals over resonant quantities in energy with Lebesgue

integrals in total cross section and to discretize these Lebesgue integrals with

probability tables.

The resulting equation is called a subgroup equation and has the form of an ordinary

transport equation. It can be solved by classical approaches, such as the CP,

discrete-ordinates or characteristics method. In a resonnant group, this equation is

approximated as

Ω ·∇φk(r,Ω) + Σk(r)φk(r,Ω) =
1

4π

[

Σ+
s (r) +

K
∑

k′=1

Wk,k′

ωk

Σs,k′ (r)φk′ (r)

]

(36)

where 1 ≤ k ≤ K is the subgroup index of the probability table. Wk,k′ is a correlated

weight matrix taking into account the correlation between the diffusion source and the

collision term.

This approach is used in the following codes: APOLLO2 (validation path), HETAIRE,

ECCO, HELIOS, WIMS8 and DRAGON4 (module USS:).
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Subgroup approach 2

Recent codes such as HELIOS, WIMS8 and DRAGON4 are using the subgroup method

(production path). The subgroup method is also available in APOLLO2 as validation path.

set T

compute the SPH factors µg

<σρ ϕ>g

<ϕ>g

compute σρ,g = µg
∼

In the lattice code (subgroup method):

interpolate the dilution-tabulated cross sections and/or the

 Autolibs in temperature

compute the probability tables using:

1. RMS approach to preserve the dilution tabulation (HELIOS,

    WIMS9, DRAGON4)

2. CALENDF method (APOLLO2, ECCO, DRAGON4)

compute the averaged flux and effective cross sections:

and

solve the subgroup equations
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Distributed self-shielding effects 1

The principle is to assign many sub-regions Vi to the resonant part of the geometry

and to consider many resonant regions in the self-shielding calculation.

This possibility allows the subdivision of a fuel rod into annulus and to represent the

Plutonium build-up in the outer ring with a better accuracy. The so-called rim effect is

represented in the figure where we see the effect on the absorption rate distribution of

using one or six resonant regions in the self-shielding calculation.

This capability is a characteristic of advanced self-shielding models.

Radius (cm)

A
b

s
o

rp
ti
o

n
 r

a
te

 (
1

/c
c
/s

)

0.1 0.2 0.3 0.4
0.2

0.4

0.6

0.8

1.0

1.2

ENE6101: Week 10 Neutron slowing-down and resonance self-shielding – 27/28



Many resonant isotopes case 1

If the medium contains many resonant isotopes:

We perform a different self-shielding calculation of each of them, assuming that all

the other admixed isotopes are non-resonant.

Any admixed resonant isotope is represented by its self-shielded cross sections

that are used as components to compute Σ+ and Σ+
s .

Outer iterations must be performed in order to converge on self-shielded cross

sections for all the resonant isotopes present in the medium.

This simple approach is sufficient to represent mixtures of different resonant isotopes,

as long as their low-energy resonances are not overlapping. If overlapping occurs:

One must select a more advanced self-shielding model with capabilities to

represent mutual shielding effects.

Another option is to finely discretize these overlapping resonances with the

multigroup energy mesh of the main flux calculation and to avoid using a

self-shielding model at these energies.
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