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The steady-state source density 1

The neutral particles are neutrons and the source density is a multiplicative source of

secondary fission, scattering and (n,xn) secondary neutrons.

The steady-state source density is used in both lattice and static full-core calculations.

In the following developments, the energy variable E = mV 2
n /2 is used in replacement

of the neutron velocity Vn as independent variable.

In the case of a multiplying medium with neutrons, the differential form of the steady-state

transport equation is given by

Ω ·∇φ(r, E,Ω) + Σ(r, E)φ(r, E,Ω) = Q(r, E,Ω) .(1)
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The steady-state source density 2

Assuming that the fission reactions are isotropic in the LAB, the steady-state source density

is written

Q(r, E,Ω) =

∫

4π
d2Ω′

∫

∞

0
dE′ Σs(r, E ← E′,Ω← Ω

′)φ(r, E′,Ω′) +
1

4πKeff
Qfiss(r, E)

(2)

where

Σs(r, E ← E′,Ω← Ω
′) = macroscopic differential scattering cross section taking into

account diffusion and (n,xn) reactions.

Keff = effective multiplication factor. Keff is the factor by which the fission sources must be

divided in order to maintain the steady-state condition.

Qfiss(r, E) = isotropic fission sources.

In isotropic media, the scattering cross section is only a function of the scattering angle, and

Q(r, E,Ω) =
1

2π

∫

4π
d2Ω′

∫

∞

0
dE′ Σs(r, E ← E′,Ω·Ω′) φ(r, E′,Ω′) +

1

4πKeff
Qfiss(r, E) .

(3)
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The steady-state source density 3

It is convenient to expand the scattering cross section in term of Legendre polynomials, as

Σs(r, E ← E′,Ω ·Ω′) =
L
∑

ℓ=0

2ℓ+ 1

2
Σs,ℓ(r, E ← E′)Pℓ(Ω ·Ω

′)(4)

where L is the scattering order of the medium where the neutron is moving. L = 0 and

L = 1 correspond to isotropic scattering and to linearly anisotropic scattering in the LAB,

respectively. The Legendre coefficients Σs,ℓ(E ← E′) are defined as

Σs,ℓ(E ← E′) =

∫ 1

−1
dµΣs(E ← E′, µ)Pℓ(µ) .(5)
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The steady-state source density 4

Using the addition theorem of spherical harmonics, it is possible to rewrite the scattering

source of Eq. (1) in term of the spherical harmonics components of the flux:

Q(r, E,Ω) =

∫

∞

0
dE′

L
∑

ℓ=0

2ℓ+ 1

4π
Σs,ℓ(r, E ← E′)

ℓ
∑

m=−ℓ

Rm
ℓ (Ω)φm

ℓ (r, E′)

+
1

4πKeff
Qfiss(r, E)(6)

where

φm
ℓ (r, E) =

∫

4π
d2Ω Rm

ℓ (Ω)φ(r, E,Ω) .(7)
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The steady-state source density 5

We assume that the isotropic fission source is independent of the energy of the incident

neutron. For each fissile nuclide i, the energy of emitted neutrons is distributed according to

a probability density known as fission spectrum χi(E):

The quantity χi(E) dE is the probability for an emitted neutron to have an energy

equal to E (within a dE interval) in the LAB.

with

∫

∞

0
dE χi(E) = 1 .(8)

The isotropic fission source is written

Qfiss(r, E) =
Jfiss

∑

j=1

χj(E)

∫

∞

0
dE′ νΣf,j(r, E

′)φ(r, E′)(9)

where

Jfiss = total number of fissile isotopes

νΣf,j(r, E) = number of emitted neutrons per fission times the macroscopic fission cross

section of the jth fissile isotope.
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The steady-state source density 6

Substitution of Eq. (9) in Eq. (6) gives the complete expression of a multiplicative source in

reactor physics:

Q(r, E,Ω) =

∫

∞

0
dE′

L
∑

ℓ=0

2ℓ+ 1

4π
Σs,ℓ(r, E ← E′)

ℓ
∑

m=−ℓ

Rm
ℓ (Ω)φm

ℓ (r, E′)

+
1

4πKeff

Jfiss

∑

j=1

χj(E)

∫

∞

0
dE′ νΣf,j(r, E

′)φ(r, E′)(10)

where φ(r, E) ≡ φ0
0(r, E).
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Eigensolutions 1

The steady-state transport equation is an eigenproblem featuring a number of properties:

φ = 0 is a trivial solution. A set of non trivial eigensolutions exists for some discrete

values of Keff . We clearly obtain an eigenvalue problem, with Keff as the eigenvalue

and φ as the eigenvector. The fundamental solution corresponds to the maximum

possible value of Keff and is the only eigensolution with a physical meaning.

Only the flux distribution of the fundamental solution is almost positive everywhere in

the domain. The other eigensolutions are the harmonics of the flux and are partly

positive and partly negative.

Each eigensolution can be arbitrarily normalized. If φ(r, E) is a non-trivial solution,

then C φ(r, E) is also a non-trivial solution ∀ non-zero value of the constant C. The

value of C can be computed from the thermal power P of the reactor using

∫

∞

0
dE

∫

V

d3r H(r, E)φ(r, E) = P(11)

where V is the volume of the reactor and H(r, E) is the power factor giving the

recoverable energy in term of the flux.

It is possible to define a mathematical adjoint problem with the same eigenvalues as

the original problem.
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Eigensolutions 2

A multiplicative domain with Keff > 1 is said to be over-critical because its flux level will

increase with time if we remove the eigenvalue.

Each term of the steady-state transport equation is an operator for which an adjoint operator

can be found. The general rules for creating the adjoint of an operator are:

1. Transpose the matrix operators.

2. Change the sign of odd-parity differential operators.

3. Interchange the arguments of the kernels of integral operators.

Using these rules, the adjoint transport equation is written

−Ω ·∇φ∗(r, E,Ω) + Σ(r, E)φ∗(r, E,Ω) = Q∗(r, E,Ω)(12)

where the adjoint source density is

Q∗(r, E,Ω) =

∫

∞

0
dE′

L
∑

ℓ=0

2ℓ+ 1

4π
Σs,ℓ(r, E

′ ← E)
ℓ

∑

m=−ℓ

Rm
ℓ (Ω)φ∗mℓ (r, E′)

+
1

4πKeff

Jfiss

∑

j=1

νΣf,j(r, E)

∫

∞

0
dE′ χj(E

′)φ∗(r, E′) .(13)
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Eigensolutions 3

The adjoint flux is a function of E. The adjoint flux cannot be a distribution of E because the

term χj(E
′)φ∗(r, E′) in Eq. (13) cannot involve the product of two distributions of E′. The

adjoint flux solution is generally normalized to an arbitrary value:

∫

∞

0
dE

∫

V

d3r φ∗(r, E) = 1 .(14)

The adjoint transport equation is also an eigenvalue problem. Its eigenvalues are the same

as those of the original transport equation. Each eigenvalue can be expressed in term of the

corresponding eigenvectors φ(r, E) and φ∗(r, E) using the Rayleigh ratio:

Keff =

Jfiss

∑

j=1

∫

∞

0
dE′ χj(E

′)φ∗(r, E′)

∫

∞

0
dE νΣf,j(r, E)φ(r, E)

∫

∞

0
dE′ φ∗(r, E′)

[

Σ(r, E′)φ(r, E′)−

∫

∞

0
dE Σs,0(r, E

′ ← E)φ(r, E)

] .

The Rayleigh ratio is stationary with respect to a small variation δΣ. The first order variation

δKeff corresponding to such a variation in cross sections can be written in term of φ, φ∗, Σ

and δΣ, without using δφ or δφ∗. This is the origin of the classical perturbation theory.
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The transport correction 1

The transport equation is frequently solved by assuming the isotropy of the scattering

sources in the LAB (i. e., L = 0).

This approximation is generally not valid but can be mitigated by performing a

transport correction on the cross sections appearing in the transport equation.

The basic principle is to add a forward-peaked component in the Legendre expansion of the

differential scattering cross section. This additional component takes the form of a Dirac

delta term in Eq. (4).

Σs(r, E ← E′, µ) =
L
∑

ℓ=0

2ℓ+ 1

2
Σs,ℓ(r, E ← E′)Pℓ(µ)

+ ∆Σtr(r, E
′) δ(E − E′) δ(µ− 1)(15)

where Σs,ℓ(r, E
′ ← E) is a modified Legendre coefficient and ∆Σtr(r, E′) is the additional

coefficient multiplying the Dirac delta term.
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The transport correction 2

Coefficients Σs,ℓ(r, E ← E′) and ∆Σtr(r, E′) are computed so as to preserve the

Legendre moments of Eq. (5). We write

∫ 1

−1
dµΣs(r, E ← E′, µ)Pℓ(µ) = Σs,ℓ(r, E ← E′)(16)

for 0 ≤ ℓ ≤ L+ 1. Substituting Eq. (15) in Eq. (16) and using the relation Pℓ(1) = 1, we

obtain

Σs,ℓ(r, E ← E′) + ∆Σtr(r, E
′) δ(E − E′) = Σs,ℓ(r, E ← E′) if 0 ≤ ℓ ≤ L(17)

and

∆Σtr(r, E
′) = Σs,L+1(r, E

′).(18)

Writing L = 0, Eqs. (15) and (18) reduce to

Σs(r, E ← E′, µ) =
1

2

[

Σs,0(r, E ← E′)− Σs,1(r, E
′) δ(E − E′)

]

+ Σs,1(r, E
′) δ(E − E′) δ(µ− 1)(19)
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The transport correction 3

so that the substitution of Eq. (19) in the steady-state transport equation leads to

Ω ·∇φ(r, E,Ω) + Σ̄(r, E)φ(r, E,Ω) = Q(r, E,Ω)(20)

where the transport-corrected macroscopic total cross section is written

Σ̄(r, E) = Σ(r, E)− Σs,1(r, E)(21)

and where the transport-corrected steady-state source density is now given by

Q(r, E,Ω) =
1

4π

∫

∞

0
dE′

[

Σs,0(r, E ← E′)− Σs,1(r, E
′) δ(E − E′)

]

φ(r, E′)

+
1

4πKeff

Jfiss

∑

j=1

χj(E)

∫

∞

0
dE′ νΣf,j(r, E

′)φ(r, E′).(22)
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The transport correction 4

The transport equation (20) with the transport-corrected source density (22) is as easy

to solve as the transport equation for an isotropic collision in the LAB, but does include

a correction for anisotropic scattering effects.

This technique of transport correction is very useful with the integral form of the

transport equation, as these equations are otherwise limited to isotropic scattering in

the LAB.

In this case, the optical path is computed using the transport corrected total cross

section defined in Eq. (21). Lattice calculations are generally performed this way.

This formulation of the transport correction may lead to negative values of the

within-group scattering cross section components after multigroup discretization.

Equation (19) is known as the outscatter form of the transport correction. It should not

be used to compute diffusion coefficients.
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Multigroup discretization 1

Consists to divide the energy domain in a set of G energy groups inside which the

neutrons are assumed to behave as one-speed particles and to take averages of all

energy-dependent quantities over these groups.

The groups are defined in term of the lethargy variable. The average gain in lethargy

per collision is almost constant over the complete energy range.

We assume constant cross sections in each group. The definition of the lethargy limits

is made after close inspection of the position of the resolved resonances. The cross

sections of low-energy resonances must be precisely discretized and other resolved

resonances must be enclosed in an energy group.

Multigroup discretization may be performed in many instances of the global

computational scheme.

The first energy condensation occurs in the groupr module of NJOY, over the

energy structure of the cross section library, typically with 50 ≤ G ≤ 400.

The next energy condensation occurs in the lattice code, with 2 ≤ G ≤ 8.

In some case, the lattice code uses a multilevel energy representation and

performs two energy condensations; the first toward an intermediate energy

structure with 20 ≤ G ≤ 35, and the second toward the energy structure of the

reactor calculation.
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Multigroup discretization 2

The reference energy E0 used to define the lethargy u = ln(E0/E) is generally taken above

10 MeV in order to correspond to the maximum energy of neutrons in a nuclear reactor. The

lethargy is zero for the neutrons of energy E0 and increases as neutrons slow-down. We

divide the domain 0 ≤ E ≤ E0 into G groups Wg , so that

Wg = {u ; ug−1 ≤ u < ug} = {E ; Eg < E ≤ Eg−1} ; g = 1, G

where ug = ln(E0/Eg) and u0 = 0.

Before proceding with energy condensation, we define the average 〈X〉g of a function or of a

distribution X(E) over group g. The following definition is used:

〈X〉g =

∫ ug

ug−1

duX(u) =

∫ Eg−1

Eg

dE X(E) if X(E) is a distribution(23)

and

〈X〉g =
1

ug − ug−1

∫ ug

ug−1

duX(u) =
1

ln(Eg−1/Eg)

∫ Eg−1

Eg

dE

E
X(E)(24)

if X(E) is a function
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Multigroup discretization 3

The group-averaged values of the flux, cross section, differential cross section and source

density are therefore defined as

φg(r,Ω) ≡ 〈φ(r,Ω)〉g =

∫ ug

ug−1

duφ(r, u,Ω) ,(25)

φg(r) ≡ 〈φ(r)〉g =

∫ ug

ug−1

du φ(r, u) ,(26)

〈Σ(r)φ(r)〉g =

∫ ug

ug−1

duΣ(r, u)φ(r, u) ,(27)

〈

Σs,ℓ(r)φ(r)
〉

g←h
=

∫ ug

ug−1

du

∫ uh

uh−1

du′ Σs,ℓ(r, u← u′)φ(r, u′)(28)

and

〈Q(r,Ω)〉g =

∫ ug

ug−1

duQ(r, u,Ω) .(29)
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Multigroup discretization 4

The angular and integrated multigroup flux components are defined as

φg(r,Ω) ≡ 〈φ(r,Ω)〉g and φg(r) ≡ 〈φ(r)〉g .

The multigroup cross section components preserve the values of the reaction rates:

Σg(r) =
1

φg(r)
〈Σ(r)φ(r)〉g , νΣf,j,g(r) =

1

φg(r)

〈

νΣf,j(r)φ(r)
〉

g
,(30)

Σs,ℓ,g←h(r) =
1

φh(r)

〈

Σs,ℓ(r)φ(r)
〉

g←h
(31)

The multigroup transport correction obtained by energy condensation of Eq. (18), leading to

∆Σtr,g(r) = Σs,1,g(r).(32)
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Multigroup discretization 5

The multigroup transport corrected macroscopic cross section is written

Σg(r) = Σg(r)−∆Σtr,g(r)(33)

and the multigroup P0 transport-corrected component of the differential scattering cross

section is written

Σs,0,g←h(r) = Σs,0,g←h(r)− δgh ∆Σtr,g(r)(34)

where δgh is the Kronecker delta function. Equation (34) is likely to produce negative

Σs,0,g←g(r) components.

ENE6101: Week 7 The neutron flux – part 2 – 20/24



Multigroup steady-state equation 1

The transport equation for neutrons can be written in multigroup form, leading to a set of G

coupled integro-differential equations. We will now present the steady-state transport

equations. The multigroup of the steady-state transport equation in group g is written

Ω ·∇φg(r,Ω) + Σg(r)φg(r,Ω) = Qg(r,Ω)(35)

where 1 ≤ g ≤ G. The multigroup source density is

Qg(r,Ω) =
G
∑

h=1

L
∑

ℓ=0

2ℓ+ 1

4π
Σs,ℓ,g←h(r)

ℓ
∑

m=−ℓ

Rm
ℓ (Ω)φm

ℓ,h(r)

+
1

4πKeff

Jfiss

∑

j=1

χj,g

G
∑

h=1

νΣf,j,h(r)φh(r)(36)

and the average fission spectrum in group g is

χj,g ≡ 〈χj〉g =

∫ ug

ug−1

duχj(u) .(37)
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Multigroup steady-state equation 2

The differential transport equation, with a first-order transport correction, is written:

Ω ·∇φg(r,Ω) + Σg(r)φg(r,Ω) +
1

4π
∆Σtr,g(r)φg(r) = Qg(r,Ω) .(38)

The differential transport equation, without transport correction, is written:

Ω ·∇φg(r,Ω) + Σg(r)φg(r,Ω) = Qg(r,Ω) .(39)

The integral infinite-domain form, without transport correction, is

φg(r,Ω) =

∫

∞

0
ds e−τg(s) Qg(r − sΩ,Ω)(40)

where the optical path in group g is

τg(s) =

∫ s

0
ds′ Σg(r − s′Ω) .(41)
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Adjoint multigroup equation 1

We have obtain an eigenproblem taking the form if a set of coupled differential equations.

This problem is not self-adjoint, due to slowing-down effects.

The corresponding adjoint equation is written in term of the multigroup adjoint flux.

The adjoint flux is a function of energy; not a distribution. They are therefore defined as

φ∗g(r,Ω) ≡ 〈φ∗(r,Ω)〉g =
1

ug − ug−1

∫ ug

ug−1

du φ∗(r, u,Ω) ,(42)

The adjoint multigroup form of the steady-state transport equation in group g is written

−Ω ·∇φ∗g(r,Ω) + Σg(r)φ
∗

g(r,Ω) = Q∗g(r,Ω)(43)

where 1 ≤ g ≤ G. The adjoint multigroup source density is

Q∗g(r,Ω) =
G
∑

h=1

L
∑

ℓ=0

2ℓ+ 1

4π
Σs,ℓ,h←g(r)

ℓ
∑

m=−ℓ

Rm
ℓ (Ω)φ∗mℓ,h (r)

+
1

4πKeff

Jfiss

∑

j=1

νΣf,j,g(r)
G
∑

h=1

χj,h φ∗h(r) .(44)
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Solution approaches 1

The most accurate, and most expensive, solution technique is the Monte Carlo

method. Many million of particles histories are simulated, based on a sequence of

random numbers. The simulation of each particle is taking into account its interactions

with an accurate representation of the geometric domain and using a

continuous-energy or multigroup representation of the cross sections.

The second class of approaches are the deterministic solution techniques. These

approaches do not use any random number generator. They are based on the

application of numerical analysis techniques to the transport equation.

The deterministic approaches are based on many approximations related to their

energetic and spatial discretization and to the limitation of the angular representation:

integro-differential form⇒ Pn or SN methods,

characteristics form⇒ method of characteristics or

integral form⇒ collision probability method.

The particle flux is used as dependent variable and the transport equation is solved

with its boundary conditions. A multigroup representation of the cross sections is

generally imposed.
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