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The particle flux 1

We use an approach of statistical mechanics in which each particle is moving in a

six-dimensional phase space made of three position and three velocity coordinate axes. The

position of a single particle is identified by a set of seven quantities:

three position coordinates r = x i+ y j + z k;

three velocity coordinates. We use the velocity module Vn ≡ |Vn| with Vn = dr/dt

and the two components of the direction Ω ≡ Vn/Vn;

the time t, used in transient situations, when the steady-state hypothesis is not valid.

A population of particles is represented by the population density n(r, Vn,Ω, t) such that:

n(r, Vn,Ω, t) d3r dVn d2Ω is the number of particles, at time t, in the volume

element d3r surrounding point r, in the velocity element dVn surrounding Vn,

and in the solid angle element d2Ω surrounding Ω.

We note that n(r, Vn,Ω, t) is a distribution with respect to variables r, Vn and Ω. It is a

function with respect to t.

The dependent variable used in reactor physics is the particle flux. The angular flux is a

distribution, related to the population density, and defined as

φ(r, Vn,Ω, t) ≡ Vn n(r, Vn,Ω, t) .(1)
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The particle flux 2

The angular flux defined in Eq(1) gives the maximum information about the population of

particles. In many applications a more global representation is preferred. The integrated flux

is obtained by performing a distribution reduction on variable Ω:

φ(r, Vn, t) =

∫

4π
d2Ωφ(r, Vn,Ω, t)(2)

where we have used the same symbol to represent the two distributions.

The integrated flux is the total distance travelled in one second by all the particles

in the one cm3 volume

as it is obtained by multiplying the number of particles in that cm3 by the speed of each one.

This is equivalent to the total length of all the particle tracks laid down in one cm3 in one

second.

The integrated flux may be written with the particle energy E or lethargy u as independent

variable, in replacement of Vn. Change of variables leads to

E =
1

2
mV 2

n and u = ln
E0

E
,(3)
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The particle flux 3

where m is the mass of a particle and E0 is the maximum energy of a particle, so that

φ(r, E, t) =
1

mVn
φ(r, Vn, t) , 0 < E ≤ E0(4)

and

φ(r, u, t) = E φ(r, E, t) , 0 ≤ u < ∞ .(5)
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The particle current 1

We have represented in figure an element of surface d2S with a unit normal vector N

located on point r. The number d3n of particles, of velocity Vn and direction Ω, crossing d2S

during an element of time dt is equal to the number of particles located in the represented

slanted cylinder in figure.

This number is

d3n = n(r, Vn,Ω, t)
[

d2S (Vn dt)Ω ·N
]

.

N

Ω

V n
 d

t

2Sd

The angular current J(r, Vn,Ω, t) is a vector

defined in such a way that

d3n

d2S dt
= J(r, Vn,Ω, t) ·N

so that

J(r, Vn,Ω, t) = Ωφ(r, Vn,Ω, t) .(6)
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The particle current 2

We can define the integrated current as

J(r, Vn, t) =

∫

4π
d2ΩJ(r, Vn,Ω, t) =

∫

4π
d2ΩΩφ(r, Vn,Ω, t) .(7)

The angular current is positive if the particle crosses d2S in the direction of N , and negative

otherwise. We can also define the outgoing current J+ and incoming current J− by

integrating the angular current over outgoing and incoming directions, respectively. We write

J+(r, Vn, t) =

∫

Ω·N>0
d2Ω (Ω ·N)φ(r, Vn,Ω, t)(8)

and

J−(r, Vn, t) = −

∫

Ω·N<0
d2Ω (Ω ·N)φ(r, Vn,Ω, t)(9)

so that

J(r, Vn, t) ·N = J+(r, Vn, t)− J−(r, Vn, t) .(10)
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Spherical harmonics expansion 1

A frequently used approximation consists to develop the angular flux in spherical harmonics.

We are using the standard closure condition, assuming that the (L+ 1)–th Legendre

coefficients of the angular flux are zero, at all spatial points.

φ(r, Vn,Ω, t) =
L
∑

ℓ=0

2ℓ+ 1

4π

ℓ
∑

m=−ℓ

φm
ℓ (r, Vn, t)R

m
ℓ (Ω)(11)

where Rm
ℓ
(Ω) are the real spherical harmonics. The summation over index ℓ in Eq. (11)

corresponds to the more general case of a three-dimensional (3D) geometry.

In one-dimensional (1D) slab and spherical geometries, only the m = 0 value is

required, due to symmetry reasons.

In 1D cylindrical geometry, only 0 ≤ m ≤ ℓ values with m+ ℓ even are required.

In 2D geometries defined in the x− y plane, only even m+ ℓ values are required.
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Spherical harmonics expansion 2

There are important relations between the spherical harmonic moments of the angular flux

and the integrated flux and current values. We can show that

φ(r, Vn, t) = φ0
0(r, Vn, t)(12)

and that

J(r, Vn, t) = φ0
1(r, Vn, t) i+ φ1

1(r, Vn, t) j + φ−1
1 (r, Vn, t)k .(13)

Equation (11) can be truncated after the ℓ = 1 component, leading to the linearly anisotropic

flux approximation. We write:

φ(r, Vn,Ω, t) =
1

4π



φ0
0(r, Vn, t) + 3

1
∑

m=−1

φm
1 (r, Vn, t)R

m
1 (Ω)





=
1

4π
[φ(r, Vn, t) + 3Ω · J(r, Vn, t)] .(14)
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Spherical harmonics expansion 3

Analytical expressions for J+(r, Vn, t) and J−(r, Vn, t) can be found in the special case of

the linearly anisotropic flux approximation. We substitute Eq. (14) into Eq. (8) and set N = i

with Ω = µ i+
√

1− µ2 cosω j +
√

1− µ2 sinω k, so that

J+(r, Vn, t) =
1

4π

∫

Ω·N>0
d2Ω (Ω ·N) [φ(r, Vn, t) + 3Ω · J(r, Vn, t)]

=
1

4π

∫ 1

0
dµµ

∫ 2π

0
dω

[

φ(r, Vn, t) + 3µJx(r, Vn, t)

+ 3
√

1− µ2 cosω Jy(r, Vn, t)

+ 3
√

1− µ2 sinω Jz(r, Vn, t)

]

=
1

4
φ(r, Vn, t) +

1

2
J(r, Vn, t) ·N .

Similarly, we can show that

J−(r, Vn, t) =
1

4
φ(r, Vn, t)−

1

2
J(r, Vn, t) ·N(15)
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The Fick law 1

The Fick law is an approximation relating the integrated flux with the integrated current:

J(r, Vn, t) = −D(r, Vn)∇φ(r, Vn, t)

where D(r, Vn) is the diffusion coefficient. It is used in the context of the diffusion

approximation. It is computed by the lattice code.

In some applications with anisotropic streaming, the diffusion coefficient D(r, Vn) can be

replaced by a 3× 3 diagonal tensor D(r, Vn) containing directional diffusion coefficients.

These applications are not usual.

The Fick law is not a fundamental relation.
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Derivation of the transport equation 1

The absence of particle-particle interactions produces a linear form of the Boltzmann

equation. The transport equation is obtained as the phase-space balance relation for the

neutral particles located in a control volume.

We first define a control volume C,

surrounded by surface ∂C, as illustrated in

figure. We consider the particles located in

C travelling in direction Ω (within a d2Ω

interval), with a velocity equal to Vn (within a

dVn interval). a The number of such

particles, initially equal to

∫

C

d3r n(r, Vn,Ω, t) dVn d2Ω

is going to change during a small period of

time ∆t.

r

C

X

Y

Z

Ω

aThe reader should not confuse d
3
r, the elemental volume with dr = r

′
− r.
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Derivation of the transport equation 2

We define the following quantities:

the rate of change of particles in V during ∆t is

d3A =

∫

C

d3r [n(r, Vn,Ω, t+∆t)− n(r, Vn,Ω, t)] dVn d2Ω ;(16)

the net number of particles streaming out of V during ∆t is obtained by integrating the

particle current over ∂C as

d3B =

∫

∂C

d2r (Ω ·N)φ(r, Vn,Ω, t) dVn d2Ω∆t(17)

where N is the unit vector, normal to ∂C, and pointing outside ∂C at point r. We now

use the divergence theorem to transform Eq. (17) into

d3B =

∫

C

d3r∇ ·Ωφ(r, Vn,Ω, t) dVn d2Ω∆t(18)
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Derivation of the transport equation 3

the number of collisions in d3r during ∆t is

d3C =

∫

C

d3rΣ(r, Vn) [Vn n(r, Vn,Ω, t)] dVn d2Ω∆t(19)

where we assume that the macroscopic total cross section Σ is independent of Ω and

t. The independence of cross sections with t is generally not valid and is introduced

here to simplify the notation.

the number of new particles created in d3r during ∆t is

d3D =

∫

C

d3r Q(r, Vn,Ω, t) dVn d2Ω∆t(20)

where Q(r, Vn,Ω, t) is the source density.

The particle balance is written

d3A = −d3B − d3C + d3D(21)
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Derivation of the transport equation 4

so that the integral over the control volume can be discarded from the four terms, leading to

n(r, Vn,Ω, t+∆t)− n(r, Vn,Ω, t)

∆t
= −∇ ·Ωφ(r, Vn,Ω, t)

− Σ(r, Vn) [Vn n(r, Vn,Ω, t)] + Q(r, Vn,Ω, t) .

Taking the limit as ∆t → 0 and introducing the angular flux as dependent variable, we obtain

the differential form of the transport equation:

1

Vn

∂

∂t
φ(r, Vn,Ω, t) + ∇ ·Ωφ(r, Vn,Ω, t) + Σ(r, Vn)φ(r, Vn,Ω, t) = Q(r, Vn,Ω, t) .

Using the identity ∇ ·w f(r) = w ·∇f(r), this equation can be rewritten as

1

Vn

∂

∂t
φ(r, Vn,Ω, t) + Ω ·∇φ(r, Vn,Ω, t) + Σ(r, Vn)φ(r, Vn,Ω, t) = Q(r, Vn,Ω, t) .

In steady-state conditions, this equation reduces to

Ω ·∇φ(r, Vn,Ω) + Σ(r, Vn)φ(r, Vn,Ω) = Q(r, Vn,Ω) .(22)
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Derivation of the transport equation 5

We finally note that the source density can be written in a spherical harmonic expansion:

Q(r, Vn,Ω, t) =
L
∑

ℓ=0

2ℓ+ 1

4π

ℓ
∑

m=−ℓ

Qm
ℓ (r, Vn, t)R

m
ℓ (Ω)(23)

where the value of L is smaller or equal to the value used to expand the angular flux.
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The characteristics form 1

The characteristics form of the transport equation corresponds to an integration of the

streaming operator Ω ·∇φ over the characteristics, a straight line of direction Ω.

At each time of its motion, the particle is assumed to be at distance s from a reference

position r on its characteristics, so that its actual position is r + sΩ.

The streaming operator can be transformed using the chain rule. We first write

d

ds
=

∂

∂x

dx

ds
+

∂

∂y

dy

ds
+

∂

∂z

dz

ds
with dsΩ = dr = dx i+ dy j + dz k .(24)

Taking the dot product with i, we obtain dsΩ · i = dx. Similarly, dsΩ · j = dy and

dsΩ · k = dz. After substitution in Eq. (24), we obtain

d

ds
= (Ω · i)

∂

∂x
+ (Ω · j)

∂

∂y
+ (Ω · k)

∂

∂z
= Ω ·∇ .(25)

Substituting Eq. (25) into the (steady-state) differential form, we obtain the backward

characteristics form:

d

ds
φ(r + sΩ, Vn,Ω) + Σ(r + sΩ, Vn)φ(r + sΩ, Vn,Ω)(26)

= Q(r + sΩ, Vn,Ω) .
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The integral form 1

We first introduce an integrating factor e−τ(s, Vn) where the optical path is defined as a

function of the macroscopic total cross section Σ(r, Vn) using

τ(s, Vn) =

∫ s

0
ds′ Σ(r − s′ Ω, Vn) .(27)

We next compute the following relation:

d

ds

[

e−τ(s,Vn) φ(r − sΩ, Vn,Ω)

]

= e−τ(s,Vn)

[

− Σ(r − sΩ, Vn)φ(r − sΩ, Vn,Ω)

+
d

ds
φ(r − sΩ, Vn,Ω)

]

(28)

where we used the identity d
ds

∫ s

0 ds′ g(s′) = g(s).

Substitution of the forward characteristics form into Eq. (28) leads to

−
d

ds

[

e−τ(s,Vn) φ(r − sΩ, Vn,Ω)

]

= e−τ(s,Vn) Q(r − sΩ, Vn,Ω) .(29)
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The integral form 2

Equation (29) can be integrated between 0 and ∞, so that

−

∫

∞

0
ds

d

ds

[

e−τ(s,Vn) φ(r − sΩ, Vn,Ω)

]

=

∫

∞

0
ds e−τ(s,Vn) Q(r − sΩ, Vn,Ω)(30)

or

φ(r, Vn,Ω) =

∫

∞

0
ds e−τ(s,Vn) Q(r − sΩ, Vn,Ω) .(31)

This form of the transport equation is generally limited to isotropic sources in the LAB:

Q(r, Vn,Ω) =
1

4π
Q(r, Vn) .(32)

Equation (31) is the integral form of the

transport equation for the infinite-domain

case. A particle from source Q(r′, Vn,Ω)

will travel with an exponential attenuation

factor in direction Ω and contribute to the

flux at point r.

s r

r'

Ω
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Boundary and continuity conditions 1

The domain V where the particles move may be surrounded by a boundary ∂V where

boundary conditions are imposed. We also introduce N(rs), the outward normal at

rs ∈ ∂V . Solution of the transport equation in V requires the knowledge of the angular flux

φ(rs, Vn,Ω, t) for Ω ·N(rs) < 0.

The albedo boundary condition is used to relate the incoming flux with the known

outgoing flux. This condition is written

φ(rs, Vn,Ω) = β φ(rs, Vn,Ω
′) with Ω ·N(rs) < 0(33)

where Ω
′ is the direction of the outgoing particle. The albedo β is equal to zero and

one for a vacuum and reflective boundary condition, respectively. Intermediate values

can also be used. Specular reflection corresponds to the case where

Ω ·N(rs) = −Ω
′ ·N(rs) and (Ω×Ω

′) ·N(rs) = 0 .(34)

ENE6101: Week 6 The neutron flux – part 1 – 20/21



Boundary and continuity conditions 2

The white boundary condition is a reflective condition where all particles leaving V

return back in V with an isotropic angular distribution:

φ(rs, Vn,Ω) =
1

π

∫

Ω
′
·N (rs)>0

d2Ω′
[

Ω
′ ·N(rs)

]

φ(rs, Vn,Ω
′)(35)

with Ω ·N(rs) < 0.

The periodic boundary condition corresponds to the case where the flux on one

boundary is equal to the flux on another parallel boundary in a periodic lattice grid:

φ(rs, Vn,Ω, t) = φ(rs +∆r, Vn,Ω, t) where ∆r is the lattice pitch.(36)

The zero-flux boundary condition corresponds to the absence of particles on ∂V . This

condition is non-physical as particles are continuously leaving the domain V ,

producing a non-zero number density on ∂V . The vacuum boundary condition must

always be preferred to represent an external boundary.

Inside V , the angular flux φ(r, Vn,Ω, t) must be continuous across all internal interfaces in

the direction Ω of the moving particle. The continuity condition is not required along

directions which are not parallel to the path of travel.
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