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Plan
Génération de coupes (lignes)
 Illustration sur le problème du voyageur de commerce

Génération de variables (colonnes)
 Illustration sur un problème de tournée de véhicule



C’est le problème le plus connu en recherche opérationnelle, celui qui a reçu le plus d’attention et probablement le plus prestigieux;
Étant donné un nombre de points (villes) à visiter et une matrice donnant la distance entre chacune d’elles, donner la tournée qui visite toutes les villes en parcourant la plus petite distance.
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Le problème du voyageur de commerce



Le problème du voyageur de commerce (ou Traveling Salesman Problem) est un problème combinatoire NP-difficile
– C'est-à-dire qu’il n’existe pas de solution dont le temps de calcul est une fonction polynomiale du nombre de points à visiter.

Le TSP combine deux structures qui elles sont «faciles».
– Le problème d’affectation (le degré de chaque noeud = 2)
– Le problème d’arbre de recouvrement minimum (connectivité)
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TSP: la structure



Soit:
– xij une variable binaire qui indique si la route passe directement du point i au point j

( 1 si oui, 0 sinon )
– Cij le coût d’aller directement de i à j. 
– S un sous-ensemble non vide des points à visiter.

Les deux modèles suivants sont corrects et équivalents.

Contraintes de connectivité

Contraintes de degré
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TSP: Modèle mathématique



Le problème avec les formulations précédentes est le nombre de contraintes de connectivité.
– Il y en a une pour chaque sous-ensemble possible des points à visiter... 
– donc environ 2|N|

Par contre, celles-ci ne sont peut-être pas toutes utiles. On peut donc les ignorer pour commencer et les ajouter par la suite.

C’est ce qu’on appelle une approche par plans coupants (Cutting Plane Method)
1.On résout d’abord le problème sans ces contraintes
2.On vérifie la solution

• si celle-ci satisfait toutes les contraintes ignorées, alors elle est optimale. ON ARRÊTE.
• sinon, on ajoute les contraintes qui sont violées (c’est ce qu’on appelle la séparation) 

– ON RETOURNE à 1
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TSP: les difficultés



An exampleVehicle routing problem



Customers
• Demand constraints

Vehicles
• Capacity constraints
• Flow conservation constraints

Objective:
• Find routes that minimize total distance

Vehicle routing problem

CustomerDepot
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Standard mip formulation:
• Scaling issues
• Symmetry
• More complex constraints add even more complexity
• Some constraints can lead to bad linear relaxations.

Enumerate all possible routes
• Much simpler formulation
• Vehicle constraints are implicitly considered in route enumeration
• Better Linear Relaxation

Vehicle routing problem
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Enumerate all possible routes
Vehicle routing problem
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Enumerate all possible routes
Vehicle routing problem
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A very small number of routes are interesting



CustomerDepot

An example (max 2 clients)

Vehicle routing problem

Min ଵ ଶ ଷ ସ ହ ଺ ଻
A : ଵ ହ = 1
B : ଶ ହ ଻ = 1
C : ଷ ଺ ଻ = 1
D : ସ ଺ = 1

A
B C

D10 10
1010

10

15
10



An intuitive view of 
Column Generation



Solve linear programs with a lot of variables
Column Generation
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Solve linear programs with a lot of variables
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When to use column generation?
Column Generation
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When to use column generation?
Column Generation

Assemble routes
=

Route for vehicle 1 Route for vehicle 2 Route for vehicle 3



When to use column generation?
Works well generally on:

• Vehicle routing
• Airline Scheduling
• Shift Scheduling
• Jobshop Scheduling
• …

Worked the best when part of the problem has an underlying structure: Network, Hypergraph, knapsack, etc…

Column Generation

=



Column Generation

Solve Restricted master problem

Solve subproblem

Negative reducedcost columns?
Yes Optimality!No

Add columns to RMP

௜

Initial set of columns
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Master Probelm for theVehicle routing problem
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An example (max 2 clients)
Vehicle routing problem
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CustomerDepot

An example (max 2 clients)
Vehicle routing problem

Min ଵ ଶ ଷ ସA : ଵ = 1
B : ଶ = 1
C : ଷ = 1
D : ସ = 1

A

B C

D10 10

1010

10

15

10



CustomerDepot

An example (max 2 clients)
Vehicle routing problem

ଵ ଶ ଷ ସMin 20
A : 1 = 1
B : 1 = 1
C : 1 = 1
D : 1 = 1

A
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CustomerDepot

An example (max 2 clients)
Vehicle routing problem

A

B C

D10 10

1010

10

15

10ଵ ଶ ଷ ସĉ 0 ௜A : 1 = 1 20
B : 1 = 1 20
C : 1 = 1 20
D : 1 = 1 20

1 1 1 1 80



CustomerDepot

Vehicle routing problem
An example (max 2 clients)
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Vehicle routing problem
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CustomerDepot

An example (max 2 clients)
Vehicle routing problem
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CustomerDepot

An example (max 2 clients)
Vehicle routing problem
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CustomerDepot

An example (max 2 clients)
Vehicle routing problem
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CustomerDepot

An example (max 2 clients)
Vehicle routing problem

ଵ ଶ ଷ ସ ହĉ 0 -10 ௜A : 1 1 = 1 20
B : 1 1 = 1 20
C : 1 = 1 20
D : 1 = 1 20
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CustomerDepot

An example (max 2 clients)
Vehicle routing problem

ଵ ଶ ଷ ସ ହĉ 1 0 0 ௜A : 1 1 = 1 10
B : 1 1 = 1 20
C : 1 = 1 20
D : 1 = 1 20

0 1 1 1 70

A

B C

D10 10

1010

10

15

10
஺=10ߨ

஻=20ߨ ஼=20ߨ

஽=20ߨ

Can I find a route such that:
ܿ െ ෍ ௜ߨ

 

 
൏ : ௜ߨ0 Marginal price of visiting customer I



Sub Probelm for theVehicle routing problem



Implicit representation of all variables
• Every possible solution to the subproblem is a variable

Optimization objective: 

 find variable with (the most) negative reduced cost

General Subproblem

Min ࢏ࢇ = ቊ૚,૙, ࢊࢋ࢚࢏࢙࢏࢜ ࢙࢏ ࢏ ࢘ࢋ࢓࢕࢚࢙࢛ࢉ ࢌ࢏  
ࢋ࢙࢏࢝࢘ࢋࢎ࢚࢕
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Implicit representation of all variables
• Every possible solution to the subproblem is a variable

Optimization objective: 

 find variable with (the most) negative reduced cost

General Subproblem
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Implicit representation of all variables
• Every possible solution to the subproblem is a variable

Optimization objective: 
 find variable with (the most) negative reduced cost

Subproblem

Min ࢏ࢇ = ቊ૚,૙, ࢊࢋ࢚࢏࢙࢏࢜ ࢙࢏ ࢏ ࢘ࢋ࢓࢕࢚࢙࢛ࢉ ࢌ࢏  
ࢋ࢙࢏࢝࢘ࢋࢎ࢚࢕

Subject to: Capacity constraints
Flow conservation constraints

Shortest-path problem with resource constraints:Dynamic programming



Resource r = 1,…,R
Resource consumption trij > 0 on each arc. 
Resources window[ari,bri] at each node

• Resources level cannot go above bri when node vi is reached
• If trij is below ari when node path reaches vi then is it set to ari

Resources Constraint SPP

46



Dynamic Programming Algorithm
• Li : list of labels associated with node vi

• label  l = (c,T1,…, TR) where 
• a label represents a partial path from v0 to vi• c is the cost of the label or
• Tr is the consumption level of resource r
• v(l) is the node which to which l is associated

Resources Constraint SPP - DP
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Extending a label l = (c,T1i,…, TRi) from vi to vj

• Create a label (c + cij, T1+t1ij,…, TR +tRij) • Making sure we respect [a1j,b1j],…, [aRj,bRj] 
• Insert the label in the list of labels associated with vj

• Apply Dominance Rules
• Without such rules, the algorithm would enumerates all possible paths

• Resources constraints make sure the algorithm terminates

Resources Constraint SPP - DP

48



Dominance Rules: l1 dominates l2 iff :
• c(l1) <= c(l2)
• Every feasible future extensions of l2 will be feasible for l1• Most often we check that  Tr(l1) <= Tr(l2) for all r

Resources Constraint SPP - DP

49



Dominance: an example
label : (c, time, capacity)

(5,2,3)
(3,1,3)

(4,6,3)
(1,2,1)

[3,8]
[0,8] [10,14]

[0,8]

[0,4]
[0,8]

(0,0,0)

(5,3,3)

(1,2,1)(0,0,0)

(8,10,6)(5,3,3)

(5,10,4)
(1,2,1)



”Arc Flow” model
Objectives:• Minimize: ∑i (ReducedCost(i, Si))
Variables:• Si N Successor of node i• Vi {False,True} Node i visited by current path• li [0..Capacity] Truck load after visit of node i
Constraints:• Si = i Vi =False S-V Coherence constraints• AllDiff(S) Conservation of flow• Circuit(S) SubTour elimination constraint• Si= j  li + Dj = lj Capacity constraints 
+ Redundant Constraints from work on TSP(TW)

Subproblem – Constraint Programming



”Position” model
Objectives:

• Minimize: ∑k (ReducedCost(Pk, Pk+1))
Variables:

• Pk N Node visited a position k
• Lk [0..Capacity] Truck load after visiting position k

Constraints:
• AllDiff(P) Elementarity of the path
• Lk+1 = Lk + DPk Capacity constraints 
• Pk = depot  Pk+1 = depot Padding at the end of path

Subproblem – Constraint Programming



Can you compare these models?
”Position” model
Objectives:

• Minimize: ∑k (ReducedCost(Pk, Pk+1))
Variables:

• Pk N
• Lk [0..Capacity]

Constraints:
• AllDiff(P)
• Lk+1 = Lk + DPk• Pk = depot  Pk+1 = depot

”Arc Flow” model
Objectives:

• Minimize: ∑i (ReducedCost(i, Si))
Variables:

• Si N
• Vi {False,True}
• li [0..Capacity]

Constraints:
• Si = i Vi =False
• AllDiff(S)
• Circuit(S)
• Si= j  li + Dj = lj



Column generation
In Practice



DIY in Excell + CP Solver
• Solve the following VRP problem using ColGen, knowing that

• A route can visit at most 4 customers

1

3

2

5

5 10

15
10

5

6

5

5 10
15

45

510

5



Branch-and-priceObtaining integer solutions



Column generation + MIP : Branch-and-price
• How to obtain integer solutions?

• Branch-and-bound -> solve LP relaxation at each node
• Branch-and-price -> column generation to solve LP relaxation at each node

Branch-and-price



Vehicle routing problem
• Max 2 customers
• Cost of all arc : 1

Branch-and-price

A

B

C
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Vehicle routing problem
• Max 2 customers
• Cost of all arc : 1

Branch-and-price

A

B

C

ଵݔ ଶݔ ଷMinݔ 3 3 3
A : 1 1 = 1
B : 1 1 = 1
C : 1 1 = 1

OptSol: 0.5 0.5 0.5 4.5

A

B

C

ଵݔ ଶݔ ଷMinݔ 3 3 3
A : 1 1 = 1
B : 1 1 = 1
C : 1 1 = 1

0.5

0



Vehicle routing problem
• Max 2 customers
• Cost of all arc : 1

Branch-and-price

A

B

C

ଵݔ ଶݔ ଷMinݔ 3 3 3
A : 1 1 = 1
B : 1 1 = 1
C : 1 1 = 1

OptSol: 0.5 0.5 0.5 4.5

A

B

C

ଵݔ ଶݔ ଷMinݔ 3 3 3
A : 1 1 = 1
B : 1 1 = 1
C : 1 1 = 1

0.5

0

ସ2ݔ
A : 1
B :
C :



ଵݔ ଶݔ ଷݔ ସMinݔ 3 3 3 2
A : 1 1 1 = 1
B : 1 1 = 1
C : 1 1 = 1

OptSol: 1 1 5

Vehicle routing problem
• Max 2 customers
• Cost of all arc : 1

Branch-and-price
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Vehicle routing problem
• Max 2 customers
• Cost of all arc : 1

Branch-and-price

A

B

C

ଵݔ ଶݔ ଷMinݔ 3 3 3
A : 1 1 = 1
B : 1 1 = 1
C : 1 1 = 1

OptSol: 0.5 0.5 0.5 4.5

A

B

C A

B

C

ଵݔ ଶݔ ଷݔ
Min 3 3 3

A : 1 1 = 1
B : 1 1 = 1
C : 1 1 = 1

0.5

ଵݔ ଶݔ ଷݔ ସMinݔ 3 3 3 2
A : 1 1 1 = 1
B : 1 1 = 1
C : 1 1 = 1

OptSol: 1 1 5

0 1



ଵݔ ଶݔ ଷݔ ହMinݔ 3 3 3 2
A : 1 1 = 1
B : 1 1 = 1
C : 1 1 1 = 1

OptSol: 1 1 5

Vehicle routing problem
• Max 2 customers
• Cost of all arc : 1

Branch-and-price

A

B

C

ଵݔ ଶݔ ଷMinݔ 3 3 3
A : 1 1 = 1
B : 1 1 = 1
C : 1 1 = 1

OptSol: 0.5 0.5 0.5 4.5

A

B

C A

B

C

0.5

ଵݔ ଶݔ ଷݔ ସMinݔ 3 3 3 2
A : 1 1 1 = 1
B : 1 1 = 1
C : 1 1 = 1

OptSol: 1 1 5

0 1

Why branch on arc-flow variables?



Branching possibilities
• Branch on master variables

Branch-and-price

Great! 



Branching possibilities
• Branch on master variables

Branch-and-price

Great! Subproblem regenerates ࢞૚



Branching possibilities
• Branch on master variables… NO!
• Branch on subproblem variables

Branch-and-price

B C

B C B C



Branching possibilities
• Branch on master variables… NO!
• Branch on subproblem variables
• Branch on the master problem constraints

• BUT adding a  constraints c requires its dual value ܿ must be handled in the subproblems
• Example: Branch on the total number of vehicle used

Branch-and-price

෍ ݔ
 

 
≥ 2 ෍ ݔ

 

 
≤ 1

෍ ݔ
 

 
= 1.5

Best branching forshift scheduling problem



Applied column generation
Main Challenges



Evolution of costs
• Long convergence time

Applied column generation



Evolution of costs
• Long convergence time

Speed-up techniques
• Spend more time to generate new columns
• Delete variables in RMP
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Evolution of costs
• Long convergence time

Speed-up techniques
• Spend more time to generate new columns
• Delete variables in RMP

Applied column generation

Balance betweensubproblems and master problem



Stabilization
• Duals are extreme points
• Master problem is degenerated
• Tail-off effect is due to difficulty finding the right dual vector

Applied column generation



A quick look at 
Stabilization issues



ଵݔ ଶݔ ଷݔ ସݔ ହݔ
ĉ 10 0 0 0 0 ௜ߨ

A : 1 1 = 1 10
B : 1 1 = 1 20
C : 1 = 1 20
D : 1 = 1 20

0 1 1 1 70
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Stabilization
Column Generation
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CustomerDepot

Stabilization
Column Generation
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CustomerDepot

Stabilization
Column Generation
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CustomerDepot

Stabilization
Column Generation
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C : 1 1 = 1 20
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ଵݔ ଶݔ ଷݔ ସݔ ହݔ ଺ݔ ଻ݔ
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• What to do?
• Popular technique

• Box penalization
• Interior point stabilization

• Adding a variable to the primal is equivalent to adding a cut to the dual
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Stabilization!
• What to do?
• Popular technique

• Box penalization
• Interior point stabilization

• Find multiple dual optimal extreme points
• Do a linear combination

Column Generation

Optimal dual space

Average time Average nbIterations
Unstabilized 384.4 s 72.6
Box penalization 389.1 s 61.0
IPS 277.9 s 37.1



Stabilization!
• What to do?
• Popular technique

• Box penalization
• Interior point stabilization

• Find multiple dual optimal extreme points
• Do a linear combination

• Simple idea: barrier algorithm without crossover

Column Generation

Optimal dual space



Back to the PrimalFinding good solution fast:An Homecare Application



Problem Definition

• Problem Definition 
• Mathematical Formulation
• Resolution Method
• Computation Results 
• Conclusion



• People want to stay at home as long as possible
• In 2012, approximately 2.2 million people relied on home care services 
• For the same cares, a patient at home costs 90% lessthan a patient at the hospital 
• Homecare services is one of the fastest growing market in the US and Canada

The home care in Canada



The Scheduling Challenge

2,500,000 + Visits / Yearvin avg agency
Client Needs & Preferences

Staff Availability

Travel Routes
Continuity of Care

Union Rules



An example



An example



• This Homcare routing problem (HHCRSP) can be described as mix between an assignment problem

Problem Definition

Hard constraints Soft constraints
• Mandatory requirements : nurse skills, type of care, …
• Forbidden nurses

• Continuity of care
• Optional requirements
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• The HHCRSP can be described as mix between an assignment problem and a multi-attributes VRP

Problem Definition

Hard constraints Soft constraints
• Mandatory requirements : nurse skills, type of care, …
• Forbidden nurses
• Time windows 
• Available days 
• Workdays
• Time-dependent travel time 

• Continuity of care
• Optional requirements
• Travel time 
• Min/Max worktime week
• Min/Max worktime workday
• Number of visits over the week

Objective function = weighted sum



Mathematical Formulation

• Problem Definition 
• Mathematical Formulation
• Resolution Method
• Computation Results 
• Conclusion



• The HHCRSP can be formulated as a set partitioning problem 

• The decision variables correspond to the feasible routes for each nurse for each one of his/her workdays

Formulation



Set partitioning model
Use the route ω P : PatientsN : NursesΩ : Routes



Set partitioning model
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Set partitioning model
Under-used time of the nurse P : PatientsN : NursesΩ : Routes



Set partitioning model
Non-scheduled visits P : PatientsN : NursesΩ : Routes



Set partitioning model

Max 1 visit per day

P : PatientsN : NursesΩ : Routes



Set partitioning model

Max 1 visit per day
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Set partitioning model

Max 1 visit per day

Nb visits per week

Route per day
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Set partitioning model

Max 1 visit per day

Nb visits per week

Route per day

Minimum worktime

Maximum worktime

P : PatientsN : NursesΩ : Routes



Ways to solve the problem
• Find the routes in a reasonable computation time is complex, the possibilities are : 

• Solve a heuritistic Branch-And-Price using a column generation  Does not allow a current primal solution
• Adapt a metaheuristic framework and add it some enhancements to make it the most efficient



Outline

• Problem Definition 
• Mathematical Formulation
• Resolution Method
• Computation Results 
• Conclusion



Methodology

• Our algorithm is based on 2 main components :
• An ALNS-based framework
• A heuristic concentration method



Adaptive Large Neighborhood Search

• ALNS: introduced by Ropke and Pisinger in 2006
• Considers : 

• A large number of visits
• A large set of constraints

• Allows to test differentoperators associated with different strategies
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Heuristic concentration

• The heuristic concentration principle has been proposed by Rosing et al. in 1996 
• The goal is to keep the generated feasible routes during the heuristic or metaheuristic then use these routes in the resolution of a set partitioning



Heuristic concentration

• Our version of the HC is close to the one developed by Subramanian et al. in 2013. They implemented an             ILS-RVND + set part method
• They iteratively call the set partitioning to quickly guide the search to a good solution 

Iterate
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Heuristic concentration

• Our version of the HC is close to the one developed by Subramanian et al. in 2013. They implemented an             ILS-RVND + set part method
• They iteratively call the set partitioning to quickly guide the search to a good solution 

Iterate

PROBLEM : Set partitioning in MIP = Slow ! 
SOLUTION : Relax it !



Overview of the method
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Update the operators’ scores
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Update the operators’ scores

Find an initial solution heuristically

Remove a subset of the visits
Insert the non-scheduled visits

Update the best / current solutions

Apply a heuristic concentration
Apply a local search

Overview of the method
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Relaxed heuristic concentration

We then call a constructive heuristicbased on the LP solution
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Route 1

Heuristic Concentration
Concentration Set

Route 2
Route 3

Iteration : 319

Route 7
Best Solution

Route 12
Route 4
Route 5
Route 6

Route 4

Route 7
Route 8
Route 9

Route 10
Route 11
Route 12



Heuristic Concentration
Concentration Set

Iteration : 1000  Solve the relaxed set partitioning



Heuristic Concentration
Concentration Set

Relaxed set partitioning solution



Heuristic Concentration
Heuristic Concentration Selection
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Heuristic Concentration
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Iteration : 1000
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Heuristic Concentration
Heuristic Concentration Selection

Iteration : 1000

New Solution

Route 75

Route 11
Route 32
Route 45

Route 11
Route 32
Route 45

 And we analyse the new solution



Update the operators’ scores

Find an initial solution heuristically

Remove a subset of the visits
Insert the non-scheduled visits

Update the best / current solutions

Apply a heuristic concentration
Apply a local search

Overview of the method



Classic ALNS operators
Classic Destroy operators :Worst removal  Visits which cost the most
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Classic ALNS operators
Classic Destroy operators :Worst removal  Visits which cost the mostRandom Removal  Randomly select q visitsRelated removal  Randomly select a visit and remove it and the q-1 most related

Classic Repair operators :Greedy heuristic  Scheduled at lowest costRegret-2/Regret-3  Take into account the regret after insertion 



New Operators
New Destroy operators :Random Patient  Randomly select a patient and remove all his visits
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New Operators
New Destroy operators :Random Patient  Randomly select a patient and remove all his visitsFlexible patient  Remove the most flexible : Nb_available / Nb_visits

New Repair operators :Random Patient  Randomly select a patient and schedule all his visits
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New operators

Focus on the highest dual values !



New Operators
New Destroy operators :Random Patient  Randomly select a patient and remove all his visitsFlexible patient  Remove the most flexible : Nb_available / Nb_visitsDual Patient  Remove the patients with the lowest dual value

New Repair operators :Random Patient  Randomly select a patient and schedule all his visitsDual Patient  Prioritize the patient with the highest dual values



Outline

• Problem Definition 
• Mathematical Formulation
• Resolution Method
• Computation Results 
• Conclusion



Instances generation

• We have generated 3 sets of 20 pseudo-instances

• The algorithm is implemented in C++, the set partitioning calls Cplex and each instance runs during 10 minutes / 105 iterations



Experiments: Impact of the new operators



Experiments: Impact of the set partitioning



Experiments: Impact of the dual operators
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Analysis of the operators

Goal : Keep the top-3 destroy and repair operators
Idea : Keep the operators which are the less often rejected at the end of the iteration 
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Experiments: Selection of the best operators



Real instances
We have taken 4 real instances corresponding to 1 week of work



Real instances’ results

Reduction of the travel time by 28,31% in comparaison with the actual solution
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Real instances’ results

Reduction of the travel time by 28,31% in comparaison with the actual solution
Increase of the fidelity by 15,70% in comparaison with the actual solution
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Real instances’ results

Reduction of the travel time by 28,03% in comparaison with the actual solution
Increase of the fidelity by 19,44% in comparaison with the actualsolution
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Actual Solution ALNS' Solution More Avail.
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+ 1 available day for 40% of the patients

Our Method Our Method


