
1

Merci à Gabrielle Gauthier Melançon, JDA Labs.

MTH8414

Planning Under Uncertainty
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Agenda

>UNCERTAINTY

>APPROACHES

>APPLICATION
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Finding	a	Parking	Before	a	Game
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A	Journey	to	conference

Airport
Security

HOME FOCUS
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A	Journey	to	a	conference

WEEK	1 WEEK	2 WEEK	3
DO	YOU	BUY	YOUR	AIRPLANE	TICKET	THIS	WEEK?
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FLIGHT	DELAYED

TRAFFIC BAD	WEATHER

NO	TAXI	AVAILABLE

FLAT	TIRE

TRAFFIC

Airport
Security

LINE	UPS

OVERBOOKED	FLIGHT

A	Journey	to	a	conference
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Analysis	Framework	for	
Proactive	Risk	Mitigation*

BUSINESS	IMPACT

LIKELIHOOD

Not	likely

Infrequent

Occasional

Likely	at	
some	time

High	likelihood

Low	risk,	proceed	as	normal

Moderate	risk,	manage	outcomes

High	risk,	proactive	management	
modify	/	elimination	strategy	

Unacceptable	risk,	if	mitigation	
not	possible	eliminate	cause
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FLIGHT	DELAYED

TRAFFIC FLIGHT	CANCELLED

NO	TAXI	AVAILABLE

FLAT	TIRE

TRAFFIC

Airport
Security

LINE	UPS

OVERBOOKED	FLIGHT

A	Journey	to	a	conference
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Challenges	of	Uncertainty

B

ROUTE	1

11:2011:00

ROUTE	2

Average	≈	12.4	min
Prob(t	≤	20)	=	80%

Average	≈	12.2	min
Prob(t	≤	20)	=	95%

A
80%
95%

B

ROUTE	1

11:2011:00

ROUTE	2

Prob(t=10)	=	80%
Prob(t=22)	=	20%

Prob(t=10)	=	95%
Prob(t=54)	=	5%

80%

95%

20%

5%

A

Average	≈	12.4	min

Average	≈	12.2	min
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Graphical	Probability	Distribution
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TIME	TO	CLEAR	AIRPORT	SECURITY
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Decision	Stages	under Uncertainty

NOW WEEK	1 WEEK	2 WEEK	3

HERE-AND-NOW MODELS	ASSUMING	POINT	ESTIMATES	

RESOLVE	AGAIN	IF	NEED	BE

WAIT-AND-SEE

MODELS	
ASSUMING	DISTRIBUTION

Before the	realization of	
uncertainty,	we take a	«	here-and-
now »	decision,	by	trying to	guess
the	uncertainty
• Ex:	Use	averages,	min	or	max	

values

Make a	decision after the	
realization of	uncertainty

DECISION

DETERMINE	
POLICY

…

…

…
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Vehicle	Routing	Example

1

2

3

4

5

LANDFILL

GOAL:	MINIMIZE	THE	TOTAL	TRAVEL	DISTANCE

Unlimited	fleet	of	vehicles	of	
maximum	capacity	C

Independent	random	demands	
at	n	customers
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Deterministic	Approaches

1

2

3

4

5

LANDFILL

> Before	the	realization	of	uncertainty,	we	take	a	
«	HERE-AND-NOW »	decision,	by	trying	to	guess	
the	uncertainty.
- Use	the	average	value	(unbiased)
- Use	the	minimum or	maximum value	(optimistic	
or	pessimistic)

> Solve as	a	deterministic model.

8.4

7.6

5.6

5.4

6.2
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Deterministic	Approaches

1

2

3

4

5

LANDFILL

> Before	the	realization	of	uncertainty,	we	take	a	
«	HERE-AND-NOW »	decision,	by	trying	to	guess	
the	uncertainty.
- Use	the	average	value	(unbiased)
- Use	the	minimum or	maximum value	(optimistic	
or	pessimistic)

> Solve	as	a	deterministic	model.

8.4

7.6

5.6

5.4

6.2

+ Pros
+ Easy	and	don’t	increase	the	model	size.
+ Don’t	need	a	lot	of	information	on	the	
uncertainty.

- Cons
-May	over	simplify	the	uncertainty.
- The	plan	may	be	infeasible	if	the	uncertainty	is	
not	as	you	planned.
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Stochastic Approaches

>CHANCE	CONSTRAINED	OPTIMIZATION
>STOCHASTIC	OPTIMIZATION
>ROBUST	OPTIMIZATION
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Uncertainty Impact	on	Plan?

MAXIMUM	CAPACITY	Q

GOAL:	MINIMIZE	THE	TOTAL	TRAVEL	DISTANCE

CONSTRAINT	IMPACTED	BY	UNCERTAINTY:

Probability (exceed Q)	=				0%1

2 Probability (exceed Q)	=		25%

3

4

5

1

2

3

4

5

LANDFILL

3 Probability (exceed Q)	=		45%

4 Probability (exceed Q)	=		80%

5 Probability (exceed Q)	=	100%
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Chance	Constrained	Optimization

> Change	Constrained	Optimization	enables	to	
produce	a	plan	that	will	be	feasible	with	a	certain	
probability.	
- In	this	case,	we	could	aim	for	routes	that	will	not	
exceed	the	capacity	of	the	truck	in	at	least	75%	of	
uncertainty	scenarios.	(Maximum	25%	of	failure)

> Failure	probability	evaluated	analytically	or	through	
simulation

> Known	as	Value-at-Risk	in	finance	(VaR)

+ Pros
+ You	can	specify	your	level	of	risk.

- Cons
-Neither	says	what	to	do	in	case	of	failure	nor	
quantify	the	magnitude	of	the	impact

1

2

3

4

5

LANDFILL

B

ROUTE	1

11:2011:00

ROUTE	2

80%

95%

20%
5%A
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Chance	Constrained Optimization

MAXIMUM	CAPACITY	Q

Probability (exceed Q)	=				0%1

2 Probability (exceed Q)	=		25%
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5

LANDFILL

3 Probability (exceed Q)	=		45%

4 Probability (exceed Q)	=		80%

5 Probability(exceed Q)	=	100%

THRESHOLD	
HIGHER	THAN	

25%

TRIP	BACK

GOAL:	MINIMIZE	THE	TOTAL	TRAVEL	DISTANCE

CONSTRAINT	IMPACTED	BY	UNCERTAINTY:
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Chance	Constrained	Optimization

1

2

3

4

5

MAXIMUM	CAPACITY	Q

Probability (exceed Q)	=				0%1

2 Probability (exceed Q)	=	 25%

3 Probability (exceed Q)	=				0%

4 Probability (exceed Q)	=				8%

5 Probability(exceed Q)	=			24%

LANDFILL

TRIP	BACK

TRIP	BACK

GOAL:	MINIMIZE	THE	TOTAL	TRAVEL	DISTANCE

CONSTRAINT	IMPACTED	BY	UNCERTAINTY:
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Chance	Constrained	Optimization
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But	What	Happens	When the	Plan	Fails?

1

2

3

4

5

LANDFILL

> A	recourse action	is a	wait-and-see decision you
can take when you observe	the	uncertainty.	
- In	this case,	a	trip	back	and	forth to	the	landfill	can	
be	an	option	if	the	uncertainty	scenario	exceeds	
the	capacity.

- In	other	cases,	recourse	actions	can	be	to	pay	
extra	hours,	short	the	demand,	etc.

> In	Chance	Constrained Optimization,	the	recourse
plan	is not	minimized.	The	plan	doesn’t tell	you
what to	do	and	how	much it will cost in	case	of	
failure.
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How	to	Model	Uncertainty?

$0M

$20M

$40M

$60M

$80M

$100M

$120M

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

COST	OF	PLAN

COST	OF	RECOURSE	
DUE	TO	UNCERTAINTY

Probability	of	satisfying	all	constraints	while	handling	uncertainty		
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CHANCE	
CONSTRAINED	
OPTIMIZATION

Minimize	plan	cost,	
while	satisfying	a	

chosen	% of	scenarios
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Stochastic Programming
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MAXIMUM	CAPACITY	Q

Probability (exceed Q)	=				0%1

2 Probability (exceed Q)	=	 25%

3 Probability (exceed Q)	=			45%

4 Probability (exceed Q)	=			80%

5 Probability(exceed Q)	=			100%

LANDFILL IF	FAILURE:	
RECOURSE	
46km

IF	FAILURE:	
RECOURSE	
12km
IF	FAILURE:	
RECOURSE	
8km

IF	FAILURE:	
RECOURSE	
30km

GOAL:	MINIMIZE	THE	TOTAL	TRAVEL	DISTANCE

CONSTRAINT	IMPACTED	BY	UNCERTAINTY:
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Stochastic Programming

1

2

3

4

5

LANDFILL

> Optimize	the	plan	cost	and	the	recourse	cost	at	
the	same	time

> Often	relies	on	scenarios	generation	(sampling)	
and	aims	to	optimize	the	expected	costs

> Received	much	attention	since	1990s
> Some	variants,	e.g.	Markov	decision	processes	

(MDPs),	binary	scenario	tree,	etc.

+ Pros
+ The	recourse	plan	cost	is	handled

- Cons
- Tricky	to	compute	the	recourse	cost	in	some	
cases
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COST	OF	PLAN

How	to	Model	Uncertainty?

CHANCE	
CONSTRAINED	
OPTIMIZATION

Minimize	plan	costs,	
while	satisfying	a	

chosen	% of	scenarios

Recourse	costs	not	
modelized

STOCHASTIC	
PROGRAMMING

Minimize	total cost	and	
let	the	model	decide	

the	% of	satisfaction

Probability	of	satisfying	all	constraints	while	handling	uncertainty		
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THESE	CURVES	
DEPEND	ON	THE	
APPROACH	AND	
ON	THE	
UNCERTAINTY	
DISTRIBUTION

COST	OF	RECOURSE	
DUE	TO	UNCERTAINTY
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What	Do	We	Know	About	Uncertainty?

UNCERTAINTY

> Definition:	The	probabilistic	model	
is	known,	but	the	realizations	of	
the	random	variables	are	unknown	
(Ellsberg,	1961)

AMBIGUITY	(UNCERTAIN	UNCERTAINTY)

> Definition:	The	probability	model	
itself	is	unknown



28

Robust	Optimization

>When	the	uncertainty	distribution	is	unknown,	
robust	optimization	will	ensure	that	the	model	can	
still	produce	feasible	plans.

> Classical	robust	optimization	aims	to	ensure	worst	
possible	outcome

+ Pros
+ Doesn’t	need	a	lot	of	information	on	uncertainty
+ Scalability

- Cons
- Could	still	be	conservative	in	some	case
-Works	when	plan	adaptation	involves	only	quantities	
(like	fulfillment	quantities).

1

2

3

4

5

LANDFILL
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0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

COST	OF	PLAN

How	to	Model	Uncertainty?

CLASSICAL
ROBUST	
OPTIMIZATION

Minimize	plan	costs,	
while	always	satisfying	
all	tactics

Uncertainty	
distribution	is	
unknown

CHANCE	
CONSTRAINED	
OPTIMIZATION

Minimize	plan	costs,	
while	satisfying	a	

chosen	% of	tactics

Recourse	costs	not	
minimized

Probability	of	satisfying	all	constraints	while	handling	uncertainty		
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io STOCHASTIC	

PROGRAMMING
Minimize	total cost	and	

let	the	model	decide	
the	% of	satisfaction

COST	OF	RECOURSE	
DUE	TO	UNCERTAINTY



30

Application

>INTEGRATED	PRODUCTION-DISTRIBUTION	PLANNING

>VEHICLE	ROUTING	WITH	STOCHASTIC	DEMAND
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Integrated	Production Distribution	Planning

Data Production Inventory Inventory DemandDistribution

BATCH:	
50	units/batch

COST:	
$100/batch

CAPACITY:	
200	units/truck

COST:	
$500/truck

INVENTORY:	
$1/unit

STOCK-OUT:	
$20/unit

SALVAGE	COST:	
$10/unit

UNCERTAINTY	IN	
DEMAND:	± 40%

DECISIONS:

ü Nb	of	production	batches each week
ü Nb	of	committed trucks	each week for	each customer
ü Replenishment quantity each week for	each customer
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Data Production Inventory Inventory DemandDistribution

BATCH:	
50	units/batch

COST:	
$100/batch

CAPACITY:	
200	units/truck

COST:	
$500/truck

INVENTORY:	
$1/unit

STOCK-OUT:	
$20/unit

SALVAGE	COST:	
$10/unit

UNCERTAINTY	IN	
DEMAND:	± 40%

TESTED	APPROACHES:
-Deterministic	Model	– Using	the	average	demand
-Deterministic Model	– Using	the	maximum	demand
- Stochastic	Optimization

Integrated	Production Distribution	Planning
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DETERMINISTIC	APPROACHES:
-Deterministic	Model	– Using	the	average	demand

-Deterministic	Model	– Using	the	maximum	demand

-500 
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-800
2

-500
1

-1000
2

-500
1

-500
2

Data Production Inventory Inventory DemandDistribution

WEEK	1 WEEK	2 WEEK	3

-700 
1

-1120
2

-700
1

-1400
2

-700
1

-700
2

WEEK	1 WEEK	2 WEEK	3

Integrated	Production Distribution	Planning
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STOCHASTIC	APPROACH

Data Production Inventory Inventory DemandDistribution

DECISIONS:
HERE-AND-NOW WAIT-AND-SEE	(Recourse action)

ü Nb	of	production	batches
each week

ü Nb	of	committed trucks	each
week for	each customer

ü Replenishment quantity
each week for	each
customer

CL
AS

SI
CA

L	
RO

BU
STCHANCE	

CONSTRAINED

STOCHASTIC

%	of	constraints	satisfaction	

Co
st
s	

COST	OF	
THE	PLAN

COST	OF	
THE	RECOURSE

Integrated	Production Distribution	Planning
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STOCHASTIC	APPROACHES
- Stochastic	Optimization

Data Production Inventory Inventory DemandDistribution

WEEK	1 WEEK	2 WEEK	3

WHEN	YOU	OBSERVE	THE	DEMAND	AND	TAKE	A	
REPLENISHMENT	DECISION	FOR	THE	FOLLOWING	
WEEK	(WAIT-AND-SEE)

EACH	BRANCH	HAS	A	PROBABILITY	
OF	REALIZATION	AND	A	RECOURSE	
COST	ASSOCIATED	WITH	IT

Integrated	Production Distribution	Planning
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0

5

10

15

20

25

30

$16 700 $20 900 $25 200 $29 500 $33 700 $38 000 $42 200 $46 500 $50 800 $55 000

Avg

Max

AARO

AVG MAX STOC

Total	cost	(Avg) $26,364 $35,301 $21,255

Total	cost	(Max) $58,120 $46,503 $31,388

Standard Dev $9,130 $4,635 $3,304

%Diff	(Avg) 24% 65%
%Diff	(Max) 85% 48%

MAX	OF	STOC

MAX	OF	AVG

100	SIMULATIONS	BASED	ON	THE	GIVEN	UNCERTAINTY	±40%

Stoc

Integrated	Production Distribution	Planning



37

Agenda
>The	vehicle	routing	problem	with	stochastic	demands	and	duration	
constraints	(VRPSDDC)
• Chance	constraint	programming	formulation
• Stochastic	programming	with	recourse	formulation

>GRASP	+	HC
• General	structure
• Components

>Computational	experiments
• VRPSD
• VRPSDDC

>Conclusions	and	perspectives

VRP	with	Stochastic	Service	Time	and	Duration	
Constraint
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The	VRP	with	stochastic	demands	

• 𝑛 customers	{1, … , 𝑣, … , 𝑛}

• Independent random	demands	𝜉𝒗 (𝜉,̅ ≤ 𝑄)

• Unlimited	fleet	of	vehicles	with	fixed	and	
limited	capacity	𝑄

• Maximum	expected	load	for	each	vehicle	(i.e.,	
∑ 𝐸 𝜉, ≤ 𝑄�
,∈4 ,	where	r is	the	route	)

• Select	a	minimal-duration	set	of	routes	to	
service	the	demands	of	every	customer

Definition:	classical	setting

Depot

3

5 7

1

6

42

Laporte et al.	(2002),	Chrystiansen and	Lysgaard (2007),	Gendreau and	Rei (2010),	Goodson (2012)
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The	VRPSD
Modeling:	two-stage	stochastic	programming

The	VRP	with	stochastic	demands	
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The	VRPSD
Modeling:	two-stage	stochastic	programming

• Stage	I:	plan	a	set	of	routes

Depot

3

5 7

1

6

42

The	VRP	with	stochastic	demands	
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The	VRPSD
Modeling:	two-stage	stochastic	programming

Depot

3

5 7

1

6

42

• Stage	I:	plan	a	set	of	routes

• Stage	II:	execute	the	planned	routes

The	VRP	with	stochastic	demands	
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The	VRPSD
Modeling:	two-stage	stochastic	programming

Depot

3

5 7

1

6

42

• Stage	I:	plan	a	set	of	routes

• Stage	II:	execute	the	planned	routes

• Route	failure:	the	load	exceeds	

X
Q

The	VRP	with	stochastic	demands	
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The	VRPSD
Modeling:	two-stage	stochastic	programming

Depot

3

5 7

1

6

42

• Stage	I:	plan	a	set	of	routes

• Stage	II:	execute	the	planned	routes

• Route	failure:	the	load	exceeds

• Recourse	action:	trip	back	to	the	depot	

Q

The	VRP	with	stochastic	demands	
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The	VRPSD
Modeling:	two-stage	stochastic	programming

Depot

3

5 7

1

6

42

• Stage	I:	plan	a	set	of	routes

• Stage	II:	execute	the	planned	routes

• Route	failure:	the	load	exceeds

• Recourse	action:	trip	back	to	the	depot	

Q

The	VRP	with	stochastic	demands	
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The	VRPSD
Modeling:	two-stage	stochastic	programming

Depot

3

5 7

1

6

42

• Stage	I:	plan	a	set	of	routes

• Stage	II:	execute	the	planned	routes

• Route	failure:	the	load	exceeds

• Recourse	action:	trip	back	to	the	depot

• Resume	route	as	planned	

Q

See	also: alternative	recourse	actions

The	VRP	with	stochastic	demands	
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The	VRPSD
Modeling:	two-stage	stochastic	programming

Depot

3

5 7

1

6

42

Total	traveled	distance	of	the	transportation	
plan:

Total	distance	of	route	 r

The	VRP	with	stochastic	demands	
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The	VRPSD
Modeling:	two-stage	stochastic	programming

Depot

3

5 7

1

6

42

Total	traveled	distance	of	the	transportation	
plan:

Planned	distance

Distance	due	to	route	failures	

The	VRP	with	stochastic	demands	
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The	VRPSD
Modeling:	two-stage	stochastic	programming

Depot

3

5 7

1

6

42

Total	traveled	distance	of	the	transportation	
plan:

Random	variable

• Mean:	𝜇6(ℛ)

• Standard	deviation:	𝜎6(ℛ)

The	VRP	with	stochastic	demands	
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The	VRPSD
Modeling:	two-stage	stochastic	programming

Depot

3

5 7

1

6

42

Objective:	minimize

Probability	that	a	route	failure	
occurs	while	visiting	node											
(Dror et	al.	1989,	Laporte et	al.	2002)

The	VRP	with	stochastic	demands	
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The	VRPSD
Modeling:	two-stage	stochastic	programming

Depot

3

5 7

1

6

42

Objective:	minimize

Subject	to:

The	VRP	with	stochastic	demands	
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The	VRPSD	and	duration	constraints

Definition

Depot

3

5 7

1

6

42

• 𝑛 customers	{1, … , 𝑣, … , 𝑛}

• Independent random	demands	𝜉𝒗 (𝜉,̅ ≤ 𝑄)

• Unlimited	fleet	of	vehicles	with	fixed	and	
limited	capacity	𝑄

• Maximum	expected	load	for	each	vehicle	(i.e.,	
∑ 𝐸 𝜉, ≤ 𝑄�
,∈4 ,	where	r is	the	route	)

• Select	a	minimal-duration	set	of	routes	to	
service	the	demands	of	every	customer

• Maximum	route	duration	L

See	also: other	extensions
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Dealing	with	duration	constraints	on	the	VRPSD

>Challenge:	the	duration	of	a	route	is	a	random	variable	which	value	
is	only	known	when	the	vehicle	returns	to	the	depot
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>Challenge:	the	duration	of	a	route	is	a	random	variable	which	value	
is	only	known	when	the	vehicle	returns	to	the	depot
>What	is	in	the	literature:
• Set	a	duration	constraint	over	the	expected	duration	of	a	route

(Yang	et	al.	2000,	Mendoza	et	al.	2010,	2011)
• Penalize	duration	excess	on	a	second	objective	function	

(Tan	et	al.	2007)
• Set	a	hard	constraint	on	the	maximum	duration	of	each	route	

(Erera et	al.	2012)

Dealing	with	duration	constraints	on	the	VRPSD



54

>Challenge:	the	duration	of	a	route	is	a	random	variable	which	value	
is	only	known	when	the	vehicle	returns	to	the	depot
>What	is	in	the	literature:
• Set	a	duration	constraint	over	the	expected	duration	of	a	route	(Yang	et	
al.	2000,	Mendoza	et	al.	2010,	2011)
• Penalize	duration	excess	on	a	second	objective	function	(Tan	et	al.	2007)
• Set	a	hard	constraint	on	the	maximum	duration	of	each	route	(Erera et	
al.	2012)	

>Two	alternative	approaches:
• Chance	constraint	(CC)
• Stochastic	programming	with	recourse	(DR)

Dealing	with	duration	constraints	on	the	VRPSD



55

Definition:	route	duration	profile
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Definition:	route	duration	profile
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Definition:	route	duration	profile
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Definition:	route	duration	profile
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Definition:	route	duration	profile
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𝒫4:		Set	of	duration	
profiles	of	route	𝑟
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Definition:	route	duration	profile

> Each node in the last level of the tree
represents a possible output for the
duration of route 𝑟 (duration profile)

> Let 𝒫4 denote the set of all possible
length profiles of 𝑟 and let 𝐶 𝑝 |	𝑝 ∈
𝒫4	 be the length of profile 𝑝.

> Knowing the probability of having a
failure, due to the capacity
constraint, while servicing customer
in position i of the route (i.e., Pr 𝑖 )
we can easily compute the
probability of observing a given
profile (i.e., Pr 𝑝 |	𝑝 ∈ 𝒫4)
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Definition:	route	duration	profile
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Elimination	of	the	
upper	branch	
because	𝜉,̅ ≤ 𝑄
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Route	duration	profile

Example

a

c

b

Route	r

Start	at	the	
depot

Fail	while	
serving
customer	a

Yes

No

Pr 𝑝 = 1 − 𝑃𝑟 𝑎
𝐶 𝑝 = 𝑑(H,I)
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Route	duration	profile

Example

a

c

b

Route	r

Start	at	the	
depot

Fail	while	
serving
customer	a

Fail	while	
serving	
customer	b

No

Yes

No Pr 𝑝 = (1 − 𝑃𝑟 𝑎 ) 𝑃𝑟 𝑏
𝐶 𝑝 = 𝑑(H,I)+𝑑(I,K) + 2𝑑(K,H)
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Route	duration	profile

Example

a

c

b

Route	r

Start	at	the	
depot

Fail	while	
serving
customer	a

Fail	while	
serving	
customer	b

Fail	while	
serving	
customer	c

No

Yes 5

6

Yes

No

Pr 𝑝 = (1 − 𝑃𝑟 𝑎 ) 𝑃𝑟 𝑏 (1−𝑃𝑟 𝑐 )
𝐶 𝑝 = 𝑑(H,I)+𝑑(I,K) + 2𝑑(K,H)+𝑑(K,O) + 𝑑(O,H)
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Chance	constrained	(CC)

Probabilistic	constraint:

Pr 𝐶4 ≤ 𝐿 ≥ 1 − 𝛽, ∀𝑟 ∈ ℛ
Calculated	using	the	set	𝒫4

Pr 𝐶4 ≤ 𝐿 = T Pr	(𝑝)
�
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Stochastic	programming	with	recourse	

Solution	cost	includes	the	recourse	
cost	for	violating	the	duration	
constraint	(i.e.,	overtime):
𝐸 𝐶

= T Y𝐸 𝐶4

�

4∈ℛ

+ 	 T Pr 𝑝 ×𝜙(𝐶 𝑝 − 𝐿)
�

U∈𝒫V|6 U \X
]	

Three	𝝓 _ functions
• Linear
• Quadratic
• Piece-wise	linear
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Agenda

>The	vehicle	routing	problem	with	stochastic	demands	and	duration	
constraints	(VRPSDDC)
• Chance	constraint	programming	formulation
• Stochastic	programming	with	recourse	formulation

>GRASP	+	HC
• General	structure
• Components

>Computational	experiments
• VRPSD
• VRPSDDC

>Conclusions	and	perspectives
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TSP-like
tours

VRPSD	Solutions
Feasible	
routes

GRASP	+	HC:	general	structure

GRASP	Iteration:	generate	start	solution +	local	search
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TSP-like
tours

VRPSD	Solutions
Feasible	
routes

GRASP	+	HC:	general	structure

GRASP	Iteration:	generate	start	solution +	local	search

Randomized	Route-first,	
Cluster-second	heuristics
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TSP-like
tours
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routes
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TSP-like
tours

VRPSD	Solutions
Feasible	
routes

GRASP	+	HC:	general	structure

GRASP	Iteration:	generate	start	solution +	local	search	+ route	storing

Randomized	Route-first,	
Cluster-second	heuristics

VND



72

TSP-like
tours

VRPSD	Solutions
Feasible	
routes

GRASP	+	HC:	general	structure

GRASP	Iteration:	generate	start	solution +	local	search	+ route	storing

Randomized	Route-first,	
Cluster-second	heuristics

VND

Perform	T	GRASP	iterations
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TSP-like
tours

VRPSD	Solutions
Feasible	
routes

GRASP	+	HC:	general	structure

GRASP	Iteration:	generate	start	solution +	local	search	+ route	storing
HC:	solve	a	set-partitioning	formulation	over	the	set	of	stored	routes	Ω
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• Randomized	Nearest	Neighbor	(RNN)
• Randomized Nearest	Insertion	(RNI)
• Randomized	Farthest	Insertion	(RFI)
• Randomized	Best	Insertion	(RBI)

Randomized	route	first-cluster	second	heuristics:	route-first

GRASP	+	HC:	building	blocs
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Randomized	route	first-cluster	second	heuristics:	cluster-second
S-split (Mendoza	et	al.	2010)

GRASP	+	HC:	building	blocs

0

1
2

3

4

5

TSP	Tour

0 1 2 3 4 5

Auxiliary graph VRPSDDC	solution

0

1
2

3

4

5

Optimal	
partition

Ch
an

ce
	

Co
ns
tr
ai
ne

d

0 1 2 3 4 5

St
oc
ha

st
ic
	

pr
og
ra
m
m
in
g	

w
ith

	re
co
ur
se
	

0

1
2

3

4

5



76

a e

c

db

10

15
25

20 10

10

20

30

40

b d ea,a,40 b,b,50 c,c,60 d,d,80 e,e,70

a,b,55 c,d,95 d,e,90

0 a c

b,c,85
a,c,90
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GRASP	+	HC:	building	blocs



77

a e

c

db

10

10
25

25

15

35

30

40

b d ea,a,20 b,b,50 c,c,60 d,d,80 e,e,70

a,b,55 c,d,95 d,e,90

0 a c

b,c,85
a,c,90

10 10 20rl = + =
( ) 2 10 0 0rE G xé ù = ´ ´ =ë û

Pr(a)=0

Randomized	route	first-cluster	second	heuristics:	cluster-second
S-split (Mendoza	et	al.	2010)

Expected	load	constraint:	checked

GRASP	+	HC:	building	blocs
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GRASP	+	HC:	building	blocs
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Expected	load	constraint:	failed

GRASP	+	HC:	building	blocs
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N	= {N1,	N2}

GRASP	+	HC:	building	blocs

VND:	recall
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N	= {N1,	N2}

GRASP	+	HC:	building	blocs
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N	= {N1,	N2}

GRASP	+	HC:	building	blocs

VND:	recall
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N	= {N1,	N2}

GRASP	+	HC:	building	blocs

VND:	recall
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N	= {N1,	N2}

GRASP	+	HC:	building	blocs

VND
Our	neighborhoods
1. Relocate
2. 2-Opt
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N	= {N1,	N2}

GRASP	+	HC:	building	blocs

VND
Our	neighborhoods
1. Relocate
2. 2-Opt

Chance	constrained
• Move	feasibility

Two-stage	stochastic	
programming
• Move	evaluation

See	also: speed-up strategies
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• Set-partitioning formulation

[ ] r
r

r xCE ´=å
WÎ

ZMin

S.T

{ }nvvxa r
r

rv ,...,...11, Î"=´å
WÎ

WÎ"Î rxr }1,0{

(1)

(2)

(3)

Minimize	the	total	expected cost	of	the	
solution

Every	customer	must	be	serviced by	exactly	
one	route

Nature	of	the	decision	variables

Heuristic	Concentration

GRASP	+	HC:	building	blocs
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Agenda
>The	vehicle	routing	problem	with	stochastic	demands	and	duration	
constraints	(VRPSDDC)
• Chance	constraint	programming	formulation
• Stochastic	programming	with	recourse	formulation

>GRASP	+	HC
• General	structure
• Components

>Computational	experiments
• VRPSD
• VRPSDDC

>Conclusions	and	perspectives
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Computational	experiments:	VRPSDDC

>39	instances	adapted	from	Christiansen	and	Lysgaard (2007)
• Adding	a	duration	constraint	(L)
• GRASP+HC	VRPSD	solutions	verify

• 𝐸 𝐶4 ≤ 𝐿	∀	𝑟 ∈ ℛ (Yang	et	al.	2000,	Mendoza	et	al.	2010,	2011)	– (ED	approach)
>19	to	60	customers
>Poisson-distributed	demands

Benchmark	instances
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Computational	experiments:	VRPSDDC

>Comparison	with	Best	solutions	of	VRPSD
CC	formulation

Metric Overall Best	run Worst	run
Avg.	Gap 2.17% 2.10% 2.34%
Max.	Gap 8.44% 8.44% 8.44%
Min.	Gap 0.05% 0.00% 0.30%
Std.	Dev.	Gap 1.90% 1.91% 1.88%
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Computational	experiments:	VRPSDDC

>Average	running	time
CC	formulation

Metric Overall Best	run Worst	run Metric Overall
Avg.	Gap 2.17% 2.10% 2.34% Avg.	CPU	(s) 233.99
Max.	Gap 8.44% 8.44% 8.44% Max.	CPU	(s) 1015.05
Min.	Gap 0.05% 0.00% 0.30% Min.	CPU	(s) 5.98
Std.	Dev.	Gap 1.90% 1.91% 1.88% Std.	CPU	(s) 225.46
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Computational	experiments:	VRPSDDC

• Post-hoc	evaluation	of	the	VRPSD	(ED)	solutoins for	β =	0.05
CC	formulation

Metric %	Infeasible	
routes Max.	Pr Min.	Pr Avg.	Pr

Avg.	 34.96% 0.217 0.005 0.067
Max.	 100.00% 0.446 0.169 0.299
Min.	 0.00% 0.010 0.000 0.003

Only	3/39	VRPSD	(ED)	solutions	are	feasible	
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Computational	experiments:	VRPSDDC

>f(·) functions
• Linear
• Quadratic
• Piecewise	linear

>GRASP+HC(DR)
• T=500

• Post-hoc	evaluation	of	VRPSD	solutions

DR	formulation:	experiment	configuration
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Computational	experiments:	VRPSDDC

>Comparison	with	best	solutions	of	VRPSD.	
>Increase	in	the	objective	function	due	to	the	violation	of	the	
constraint

DR	formulation

Metric Linear Piece-wise
linear Quadratic

Avg.	Increase	Obj.	Function 2.12% 3.26% 6.10%
Max.	Increase	Obj.	Function 4.49% 9.57% 15.46%
Min.	Increase	Obj.	Function 0.37% 0.54% 0.80%
Std.	Dev.	Increase	Obj.	Function 1.22% 2.02% 3.44%
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Computational	experiments:	VRPSDDC

• Post-hoc	evaluation	VRPSD	(ED)	solutions	for	the	three	
penalizations	with	respect	to	best	DR	solution

• Increase	in	objective	function	due	to	overtime

DR	formulation

Metric Linear Piece-wise
linear Quadratic

Avg.	Gap	 1.18% 4.56% 81.33%
Max.	Gap 3.69% 11.20% 283.21%
Min.	Gap 0.00% 0.00% 2.85%
Std.		Dev.	Gap 1.01% 3.31% 73.72%
Unchanged	BKS 10 2 0
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Computational	experiments:	VRPSDDC

>Running	time	comparison	DR	vs CC	Formulations
DR	formulation

Metric Linear Piece-wise
linear Quadratic CC	

Formulation
Avg.	CPU	(s) 326.48 346.43 355.45 233.99
Max.	CPU	(s) 1389.65 1432.22 1510.69 1015.05
Min.	CPU	(s) 8.19 8.63 9.42 5.98
Std.	CPU	(s) 315.66 338.42 347.61 225.46
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« UNCERTAINTY	IS	AN	
UNCOMFORTABLE	POSITION.	BUT	
CERTAINTY	IS	AN	ABSURD	ONE. »

-Voltaire


