MTH8414 Planning Under Uncertainty

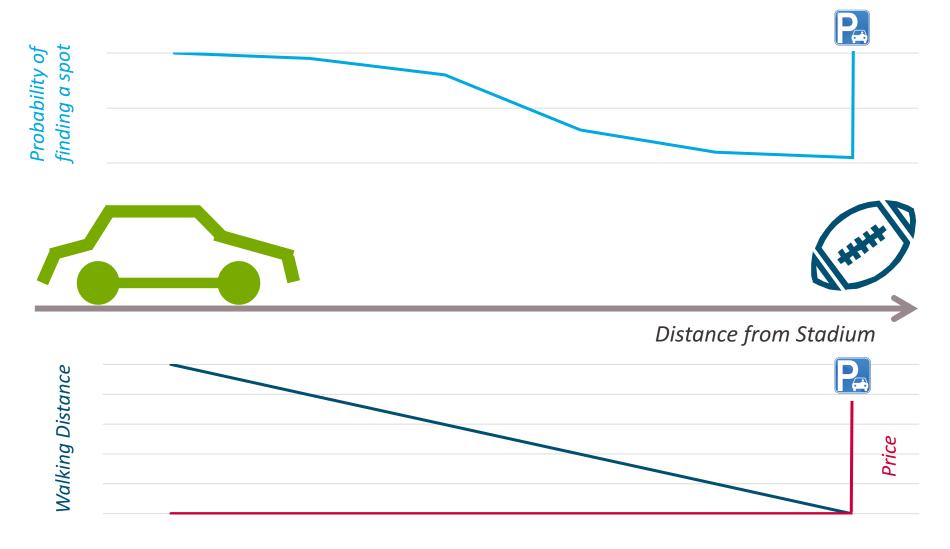
Merci à Gabrielle Gauthier Melançon, JDA Labs.

>UNCERTAINTY

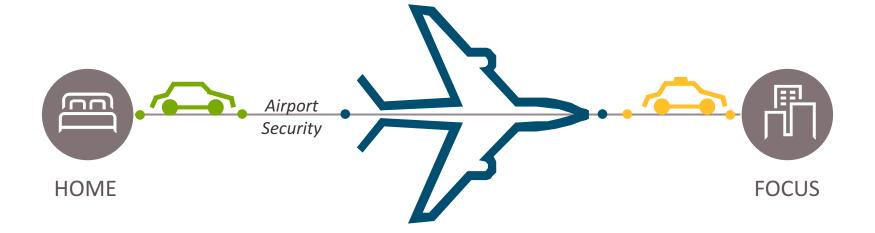
>APPROACHES

> APPLICATION

Finding a Parking Before a Game

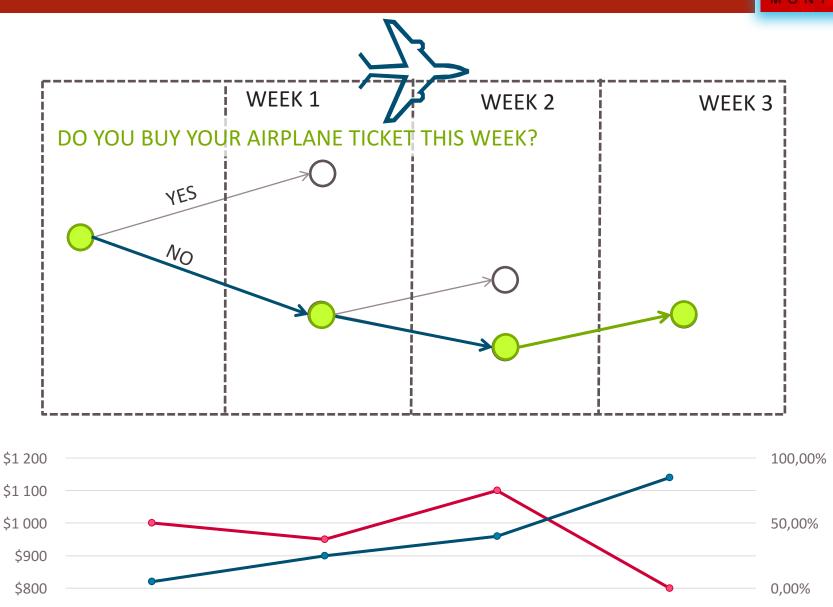


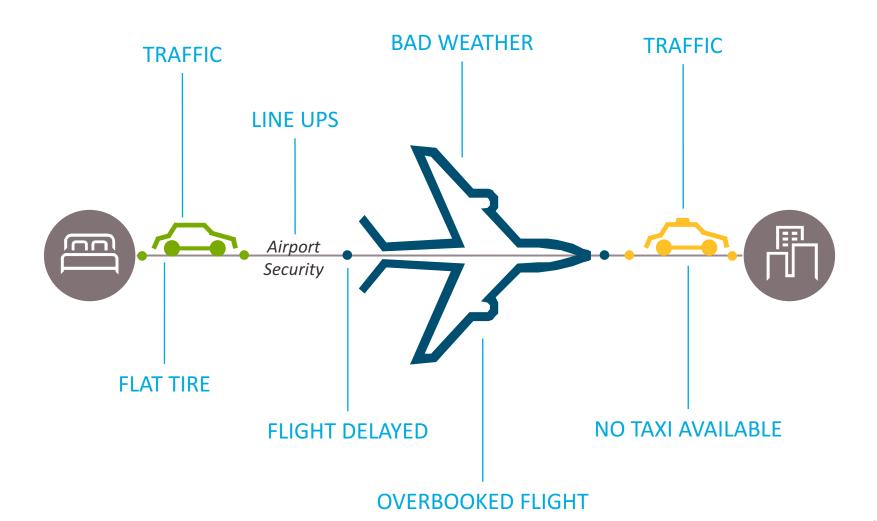
A Journey to conference



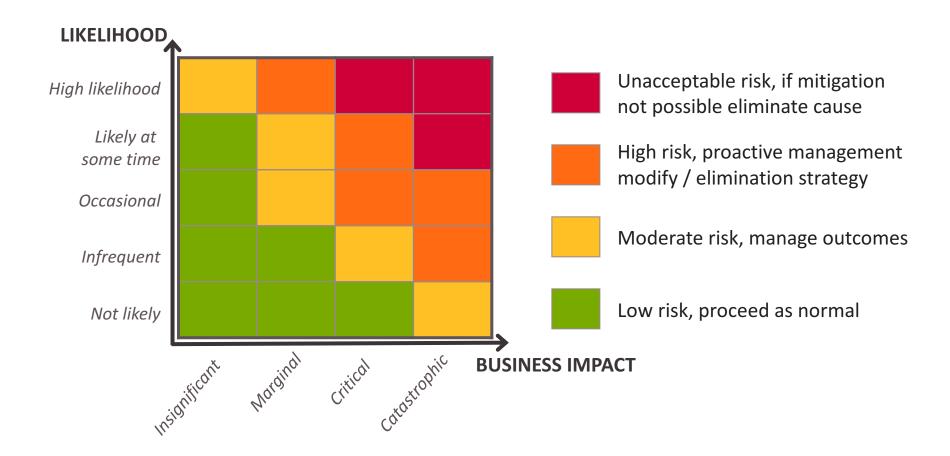
A Journey to a conference

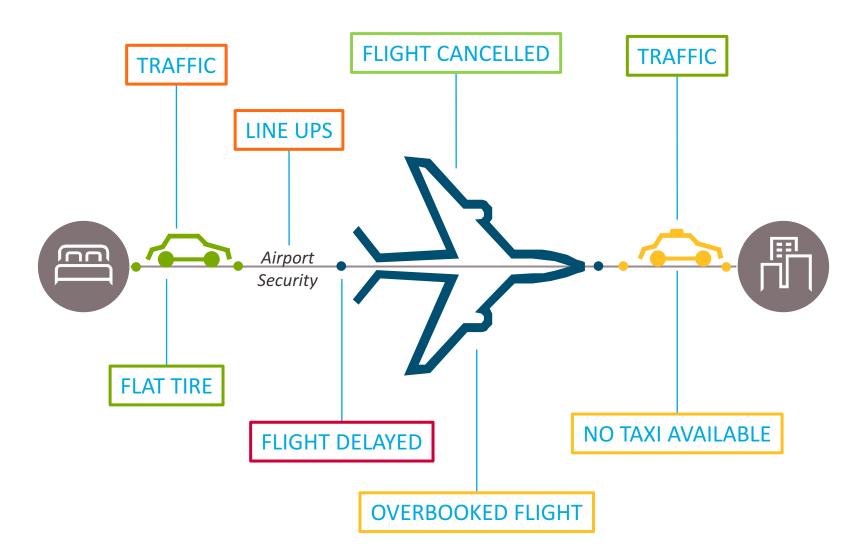
PRICE



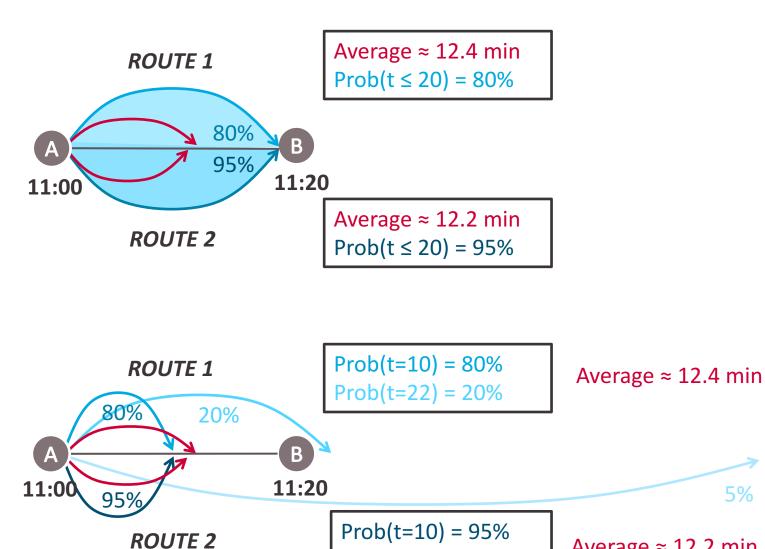


Analysis Framework for Proactive Risk Mitigation*





Challenges of Uncertainty

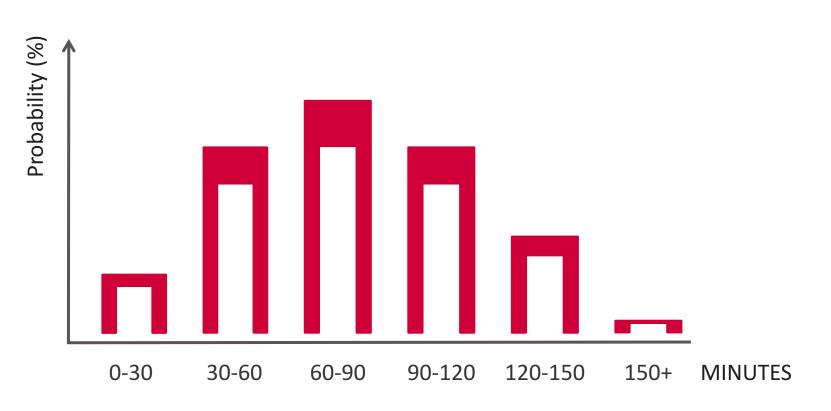


Prob(t=54) = 5%

Average \approx 12.2 min

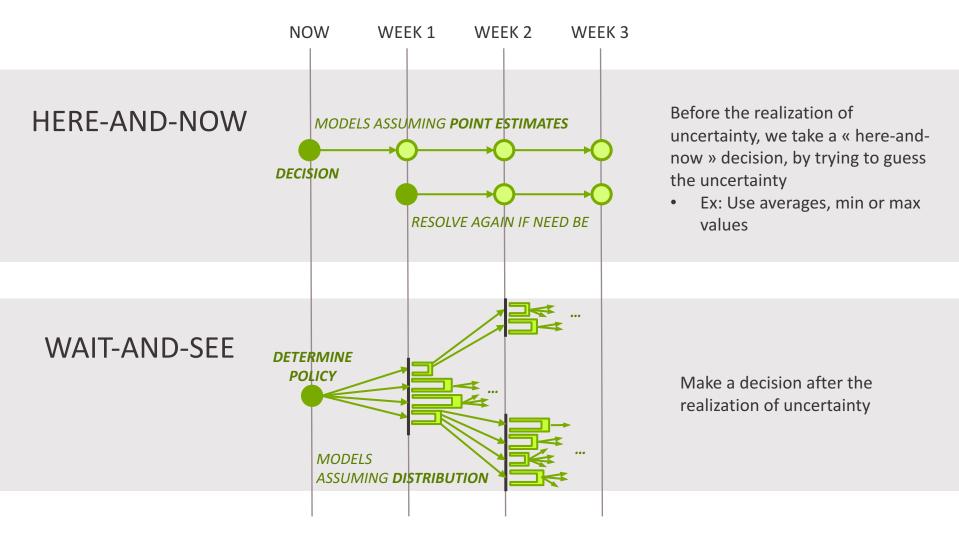
5%

Graphical Probability Distribution

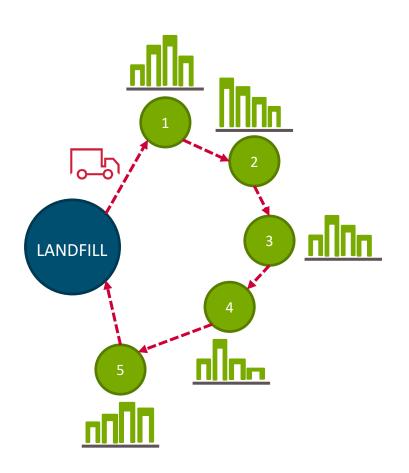


TIME TO CLEAR AIRPORT SECURITY

Decision Stages under Uncertainty



Vehicle Routing Example

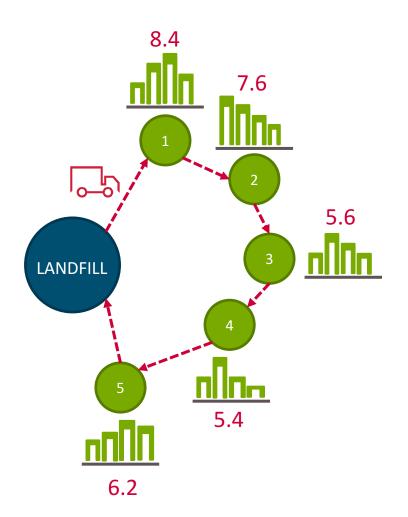


GOAL: MINIMIZE THE TOTAL TRAVEL DISTANCE

Unlimited fleet of vehicles of maximum capacity C

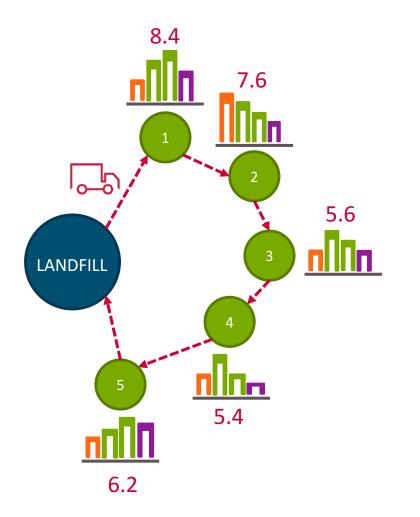
Independent random demands at n customers

Deterministic Approaches



- > Before the realization of uncertainty, we take a « HERE-AND-NOW » decision, by trying to guess the uncertainty.
 - Use the average value (unbiased)
 - Use the minimum or maximum value (optimistic or pessimistic)
- > Solve as a deterministic model.

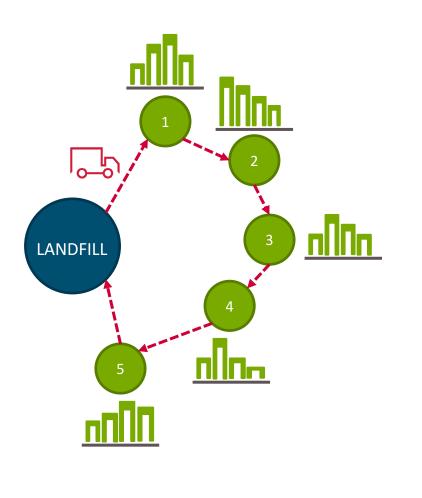
Deterministic Approaches



- > Before the realization of uncertainty, we take a « HERE-AND-NOW » decision, by trying to guess the uncertainty.
 - Use the average value (unbiased)
 - Use the minimum or maximum value (optimistic or pessimistic)
- > Solve as a deterministic model.
- + Pros
 - + Easy and don't increase the model size.
 - + Don't need a lot of information on the uncertainty.
- Cons
 - May over simplify the uncertainty.
 - The plan may be infeasible if the uncertainty is not as you planned.

CHANCE CONSTRAINED OPTIMIZATION STOCHASTIC OPTIMIZATION ROBUST OPTIMIZATION

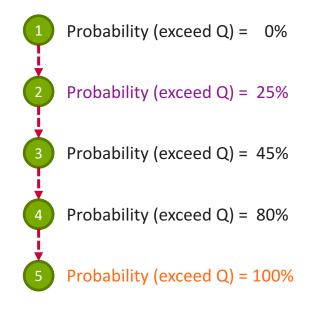
Uncertainty Impact on Plan?



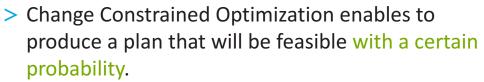
GOAL: MINIMIZE THE TOTAL TRAVEL DISTANCE

CONSTRAINT IMPACTED BY UNCERTAINTY:

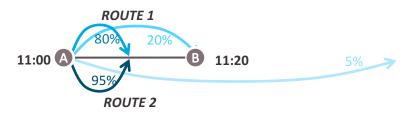
MAXIMUM CAPACITY Q

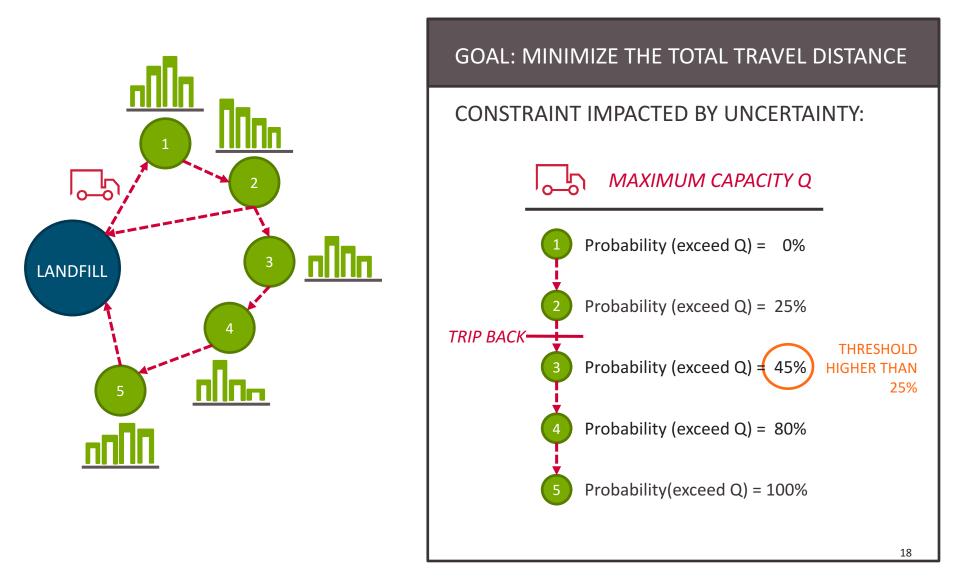


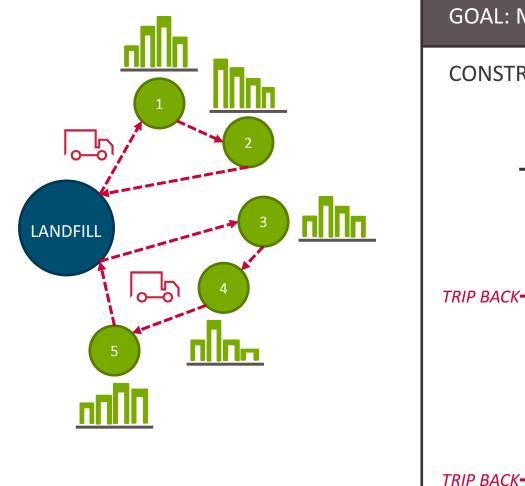
LANDFILL



- In this case, we could aim for routes that will not exceed the capacity of the truck in at least 75% of uncertainty scenarios. (Maximum 25% of failure)
- > Failure probability evaluated analytically or through simulation
- > Known as Value-at-Risk in finance (VaR)
- + Pros
 - + You can specify your level of risk.
- Cons
 - Neither says what to do in case of failure nor quantify the magnitude of the impact







GOAL: MINIMIZE THE TOTAL TRAVEL DISTANCE

CONSTRAINT IMPACTED BY UNCERTAINTY:

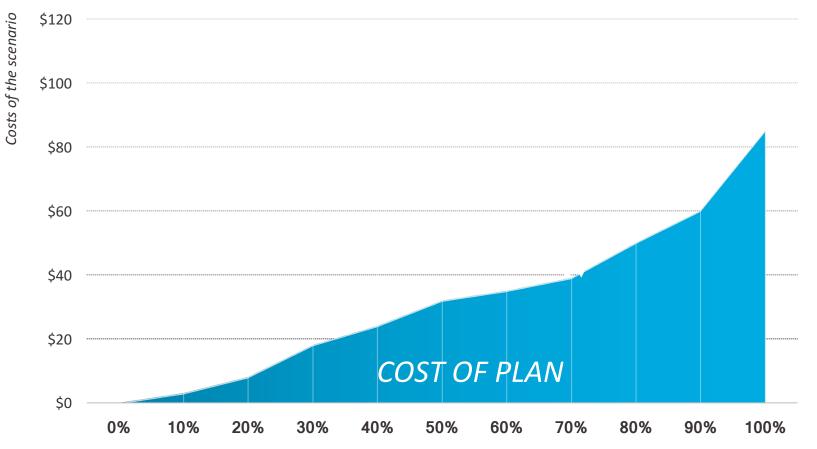
MAXIMUM CAPACITY Q

Probability (exceed Q) = 0%
Probability (exceed Q) = 25%

Probability (exceed Q) = 0%

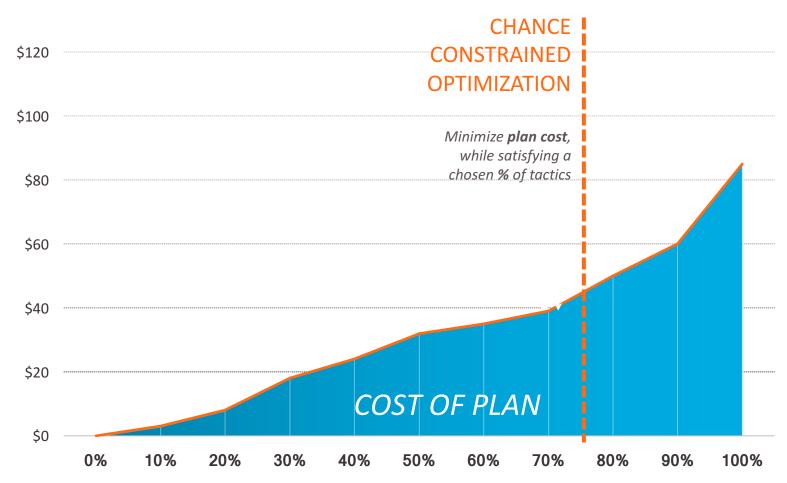
Probability (exceed Q) = 8%

Probability(exceed Q) = 24%



Probability of satisfying all constraints while handling uncertainty

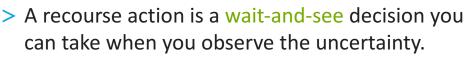
Costs of the scenario



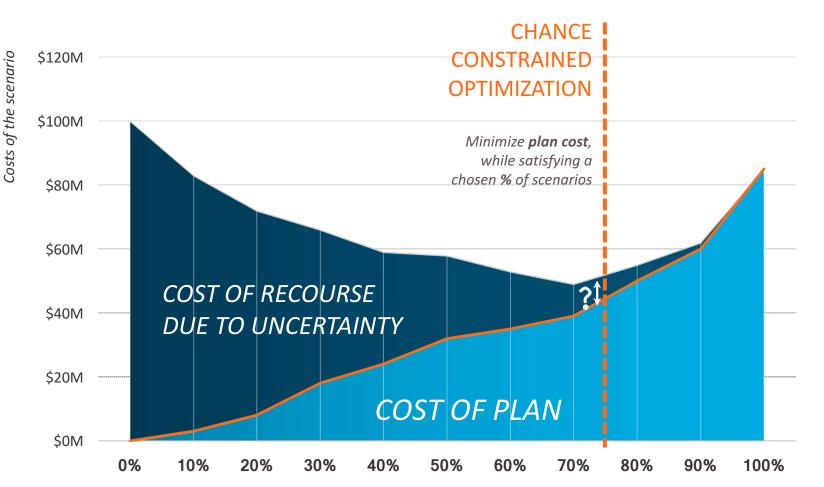
Probability of satisfying all constraints while handling uncertainty

But What Happens When the Plan Fails?

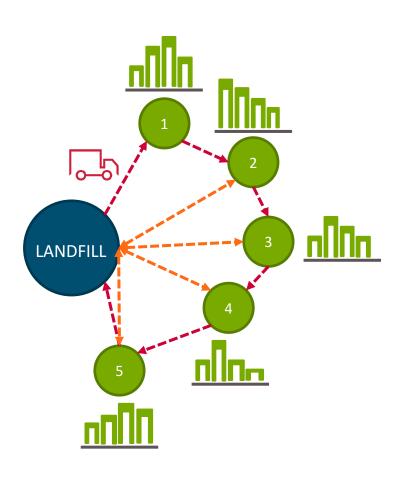
LANDFILL



- In this case, a trip back and forth to the landfill can be an option if the uncertainty scenario exceeds the capacity.
- In other cases, recourse actions can be to pay extra hours, short the demand, etc.
- In Chance Constrained Optimization, the recourse plan is not minimized. The plan doesn't tell you what to do and how much it will cost in case of failure.



Probability of satisfying all constraints while handling uncertainty



GOAL: MINIMIZE THE TOTAL TRAVEL DISTANCE

CONSTRAINT IMPACTED BY UNCERTAINTY:

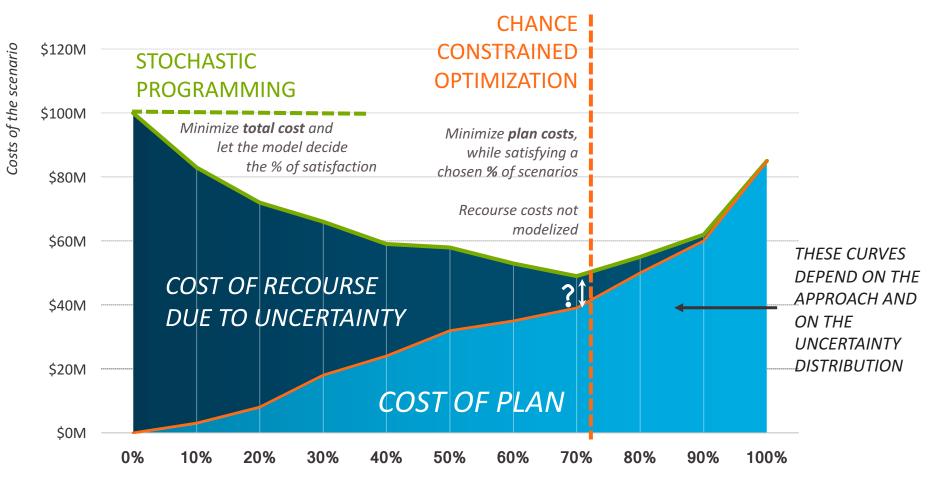
MAXIMUM CAPACITY Q

Stochastic Programming

LANDFILL

- > Optimize the plan cost and the recourse cost at the same time
- > Often relies on scenarios generation (sampling) and aims to optimize the expected costs
- > Received much attention since 1990s
- > Some variants, e.g. Markov decision processes (MDPs), binary scenario tree, etc.
- + Pros
 - + The recourse plan cost is handled
- Cons
 - Tricky to compute the recourse cost in some cases

How to Model Uncertainty?



Probability of satisfying all constraints while handling uncertainty

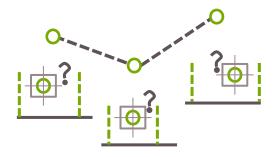
What Do We Know About Uncertainty?

UNCERTAINTY

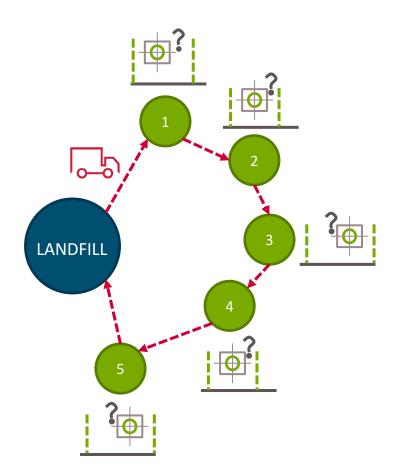
> Definition: The probabilistic model is known, but the realizations of the random variables are unknown (Ellsberg, 1961)

AMBIGUITY (UNCERTAIN UNCERTAINTY)

> Definition: The probability model itself is unknown

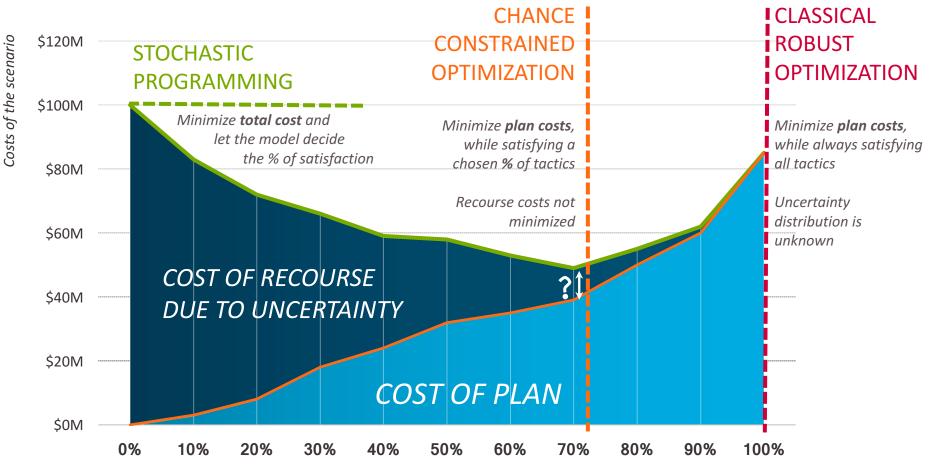


Robust Optimization



- > When the uncertainty distribution is unknown, robust optimization will ensure that the model can still produce feasible plans.
- Classical robust optimization aims to ensure worst possible outcome
- + Pros
 - + Doesn't need a lot of information on uncertainty
 - + Scalability
- Cons
 - Could still be conservative in some case
 - Works when plan adaptation involves only quantities (like fulfillment quantities).

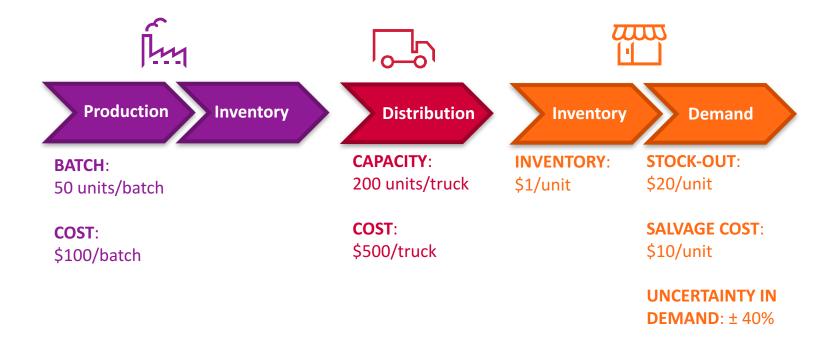
How to Model Uncertainty?



Probability of satisfying all constraints while handling uncertainty

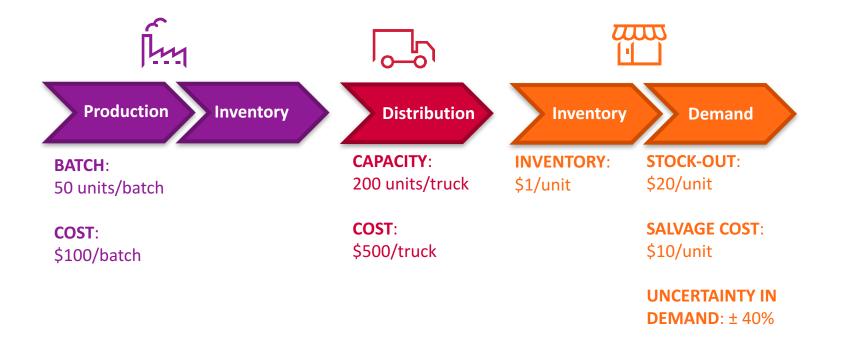
>INTEGRATED PRODUCTION-DISTRIBUTION PLANNING

>VEHICLE ROUTING WITH STOCHASTIC DEMAND



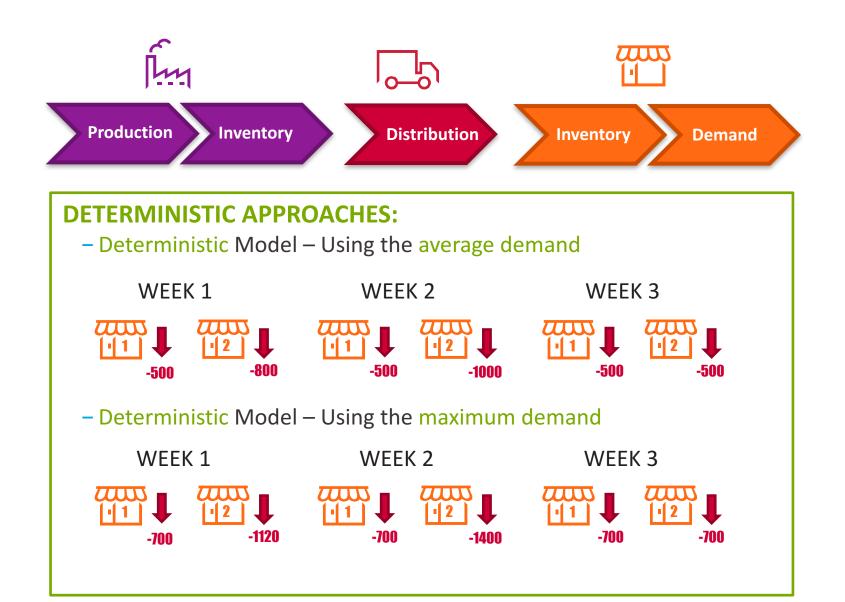
DECISIONS:

- ✓ Nb of production batches each week
- ✓ Nb of committed trucks each week for each customer
- ✓ Replenishment quantity each week for each customer



TESTED APPROACHES:

- Deterministic Model Using the average demand
- Deterministic Model Using the maximum demand
- Stochastic Optimization



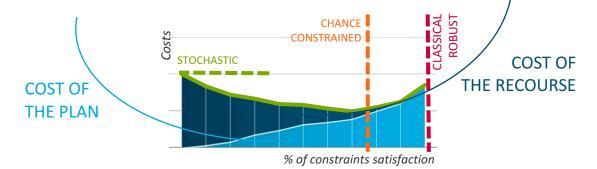
STOCHASTIC APPROACH DECISIONS:

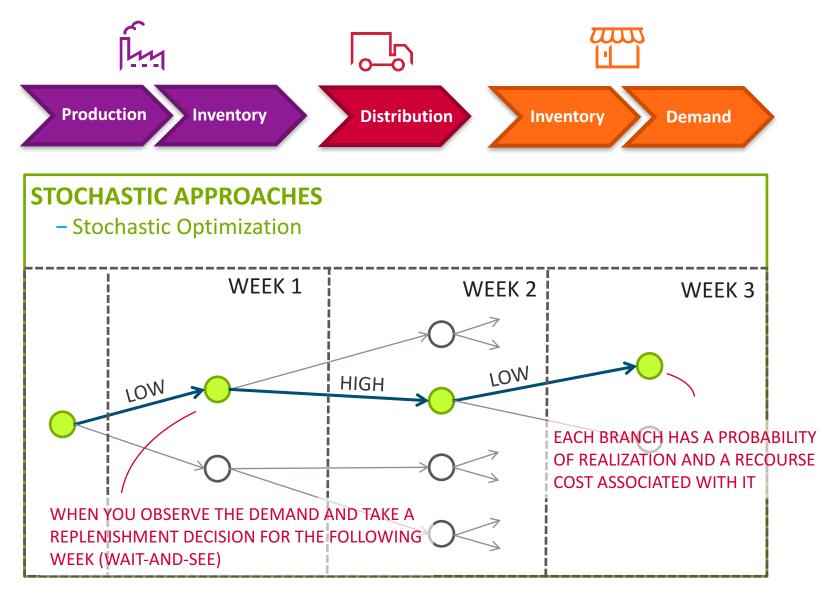
HERE-AND-NOW

- Nb of production batches each week
- Nb of committed trucks each week for each customer

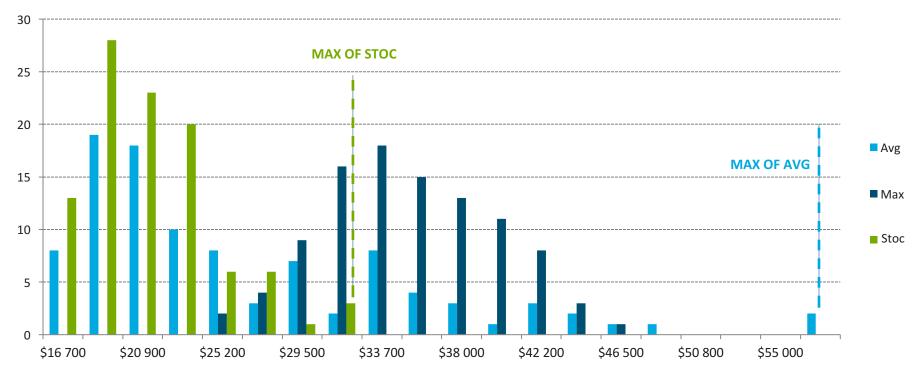
WAIT-AND-SEE (Recourse action)

 Replenishment quantity each week for each customer





100 SIMULATIONS BASED ON THE GIVEN UNCERTAINTY ±40%

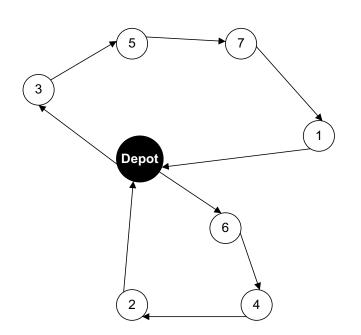


	AVG	MAX	STOC
Total cost (Avg)	\$26,364	\$35,301	\$21,255
Total cost (Max)	\$58,120	\$46,503	\$31,388
Standard Dev	\$9,130	\$4,635	\$3,304
%Diff (Avg)	24%	65%	
%Diff (Max)	85%	48%	

Agenda

- >The vehicle routing problem with stochastic demands and duration constraints (VRPSDDC)
 - Chance constraint programming formulation
 - Stochastic programming with recourse formulation
- >GRASP + HC
 - General structure
 - Components
- >Computational experiments
 - VRPSD
 - VRPSDDC
- > Conclusions and perspectives

Definition: classical setting



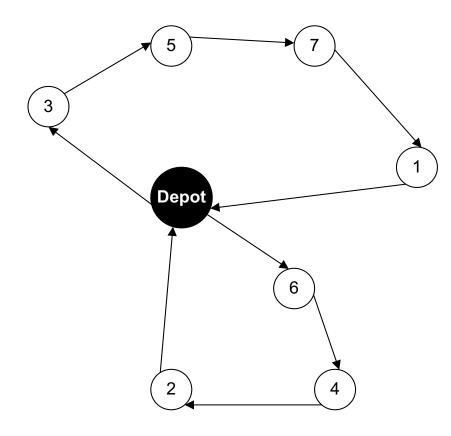
- *n* customers {1, ..., *v*, ..., *n*}
- Independent random demands ξ_v ($\overline{\xi}_v \leq Q$)
- Unlimited fleet of vehicles with fixed and limited capacity *Q*
- Maximum expected load for each vehicle (i.e., $\sum_{v \in r} E[\xi_v] \le Q$, where *r* is the route)
- Select a minimal-duration set of routes to service the demands of every customer

Laporte et al. (2002), Chrystiansen and Lysgaard (2007), Gendreau and Rei (2010), Goodson (2012)

ÉCOLE POLYTECHNIQUI M O N T R É A

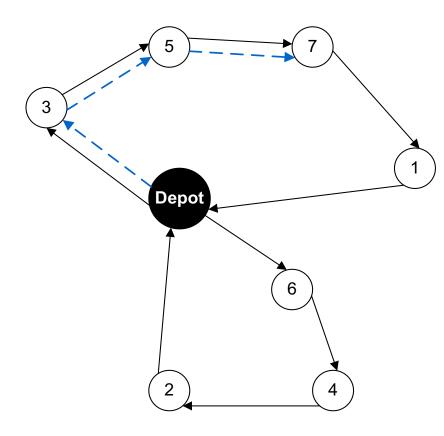
The VRPSD

Modeling: two-stage stochastic programming



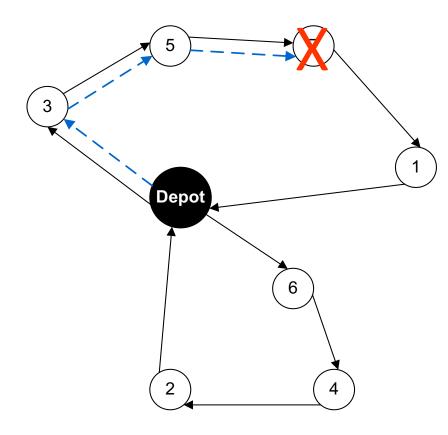
• Stage I: plan a set of routes ${\mathcal R}$

The VRPSD



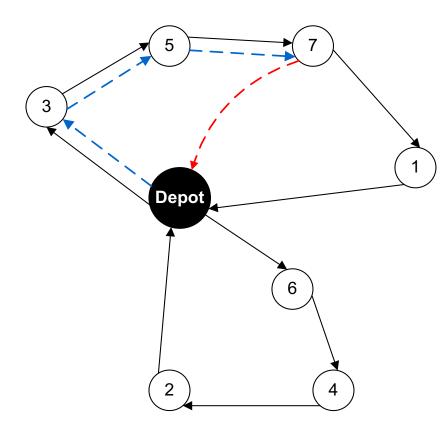
- Stage I: plan a set of routes ${\mathcal R}$
- Stage II: execute the planned routes

The VRPSD



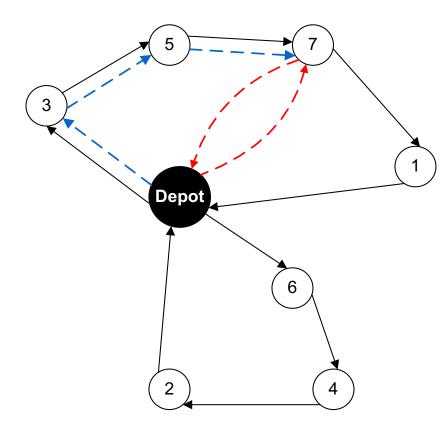
- Stage I: plan a set of routes ${\mathcal R}$
- Stage II: execute the planned routes
 - Route failure: the load exceeds Q

The VRPSD



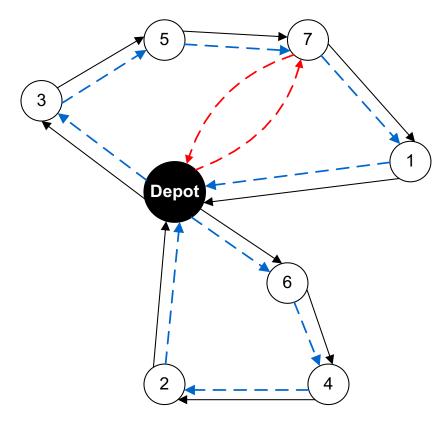
- Stage I: plan a set of routes ${\mathcal R}$
- Stage II: execute the planned routes
 - Route failure: the load exceeds Q
 - Recourse action: trip back to the depot

The VRPSD



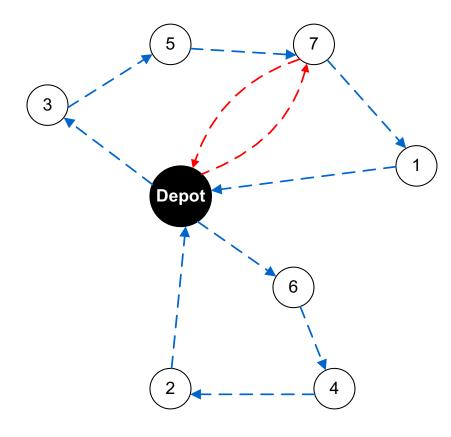
- Stage I: plan a set of routes ${\mathcal R}$
- Stage II: execute the planned routes
 - Route failure: the load exceeds Q
 - Recourse action: trip back to the depot

The VRPSD



- Stage I: plan a set of routes ${\mathcal R}$
- Stage II: execute the planned routes
 - Route failure: the load exceeds Q
 - Recourse action: trip back to the depot
 - Resume route as planned

Modeling: two-stage stochastic programming

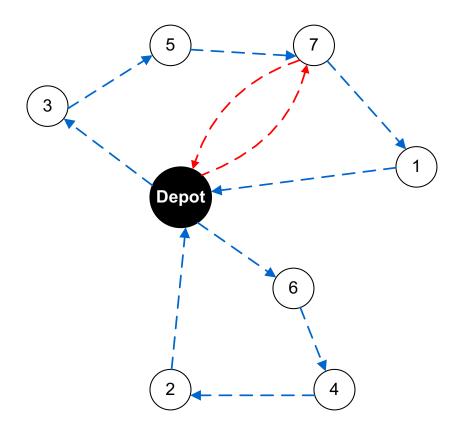


Total traveled distance of the transportation plan:

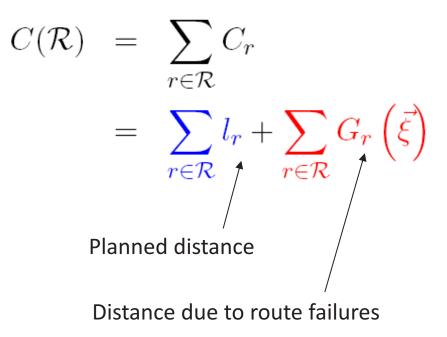
$$C(\mathcal{R}) = \sum_{r \in \mathcal{R}} C_r$$

Total distance of route γ

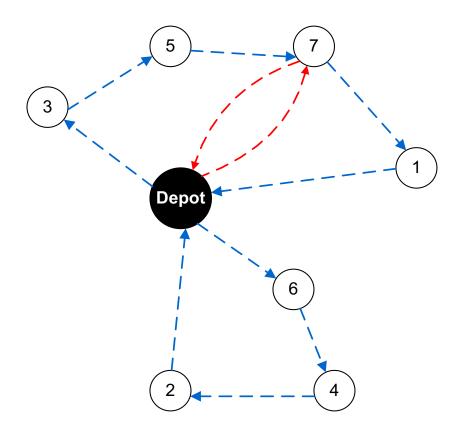
Modeling: two-stage stochastic programming



Total traveled distance of the transportation plan:



Modeling: two-stage stochastic programming



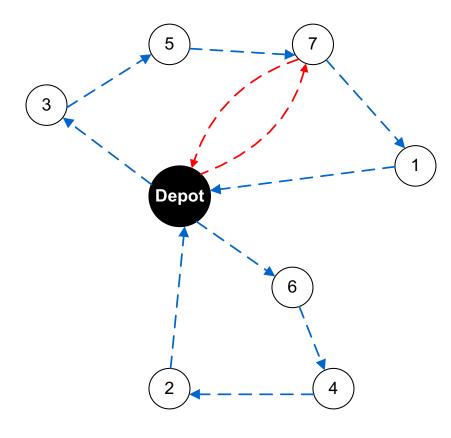
Total traveled distance of the transportation plan:

$$C(\mathcal{R}) = \sum_{r \in \mathcal{R}} C_r$$
$$= \sum_{r \in \mathcal{R}} l_r + \sum_{r \in \mathcal{R}} G_r\left(\vec{\xi}\right)$$

Random variable

- Mean: $\mu_{\mathcal{C}(\mathcal{R})}$
- Standard deviation: $\sigma_{\mathcal{C}(\mathcal{R})}$

Modeling: two-stage stochastic programming

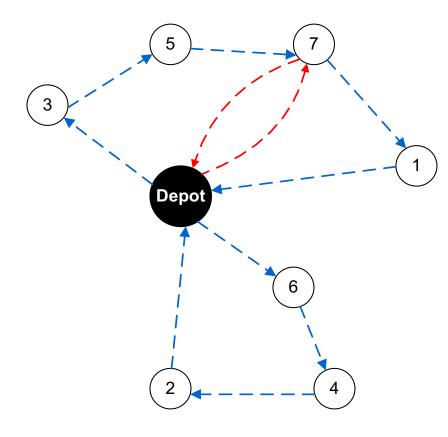


Objective: minimize

$$E\left[C(\mathcal{R})\right] = \sum_{r \in \mathcal{R}} l_r + \sum_{r \in \mathcal{R}} E\left[G_r\left(\vec{\xi}\right)\right]$$
$$E\left[G_r(\vec{\xi})\right] = \sum_{i \in r} 2 \times d_{v_i,0} \times Pr(v_i)$$
$$Probability that a route failure occurs while visiting node (Dror et al. 1989, Laporte et al. 2002)$$

The VRPSD

Modeling: two-stage stochastic programming



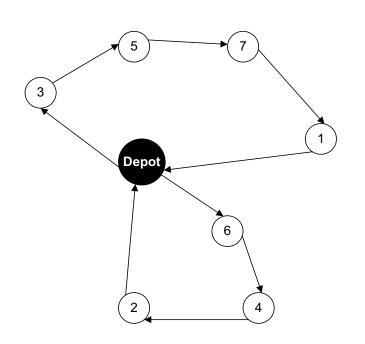
Objective: minimize

$$E\left[C(\mathcal{R})\right] = \sum_{r \in \mathcal{R}} l_r + \sum_{r \in \mathcal{R}} E\left[G_r\left(\vec{\xi}\right)\right]$$

Subject to:

$$\sum_{i \in r} E\left[\xi_i\right] \le Q \quad \forall \ r \ \in \mathcal{R}$$

Definition



- *n* customers {1, ..., *v*, ..., *n*}
- Independent random demands ξ_{v} ($\overline{\xi}_{v} \leq Q$)
- Unlimited fleet of vehicles with fixed and limited capacity Q
- Maximum expected load for each vehicle (i.e., $\sum_{v \in r} E[\xi_v] \le Q$, where *r* is the route)
- Select a minimal-duration set of routes to service the demands of every customer
- Maximum route duration L

>Challenge: the duration of a route is a random variable which value is only known when the vehicle returns to the depot

>Challenge: the duration of a route is a random variable which value is only known when the vehicle returns to the depot

>What is in the literature:

- Set a duration constraint over the expected duration of a route (Yang et al. 2000, Mendoza et al. 2010, 2011)
- Penalize duration excess on a second objective function (Tan et al. 2007)
- Set a hard constraint on the maximum duration of each route (Erera et al. 2012)

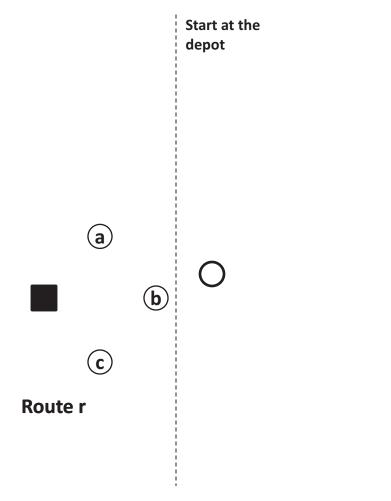
>Challenge: the duration of a route is a random variable which value is only known when the vehicle returns to the depot

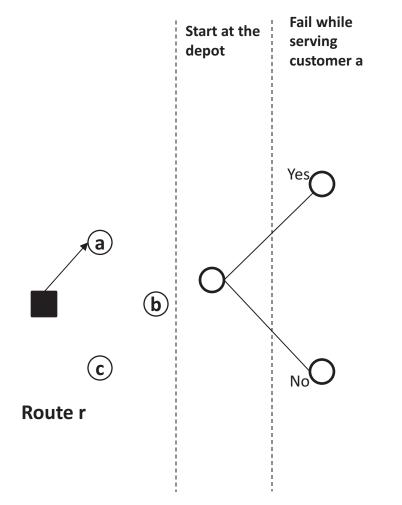
>What is in the literature:

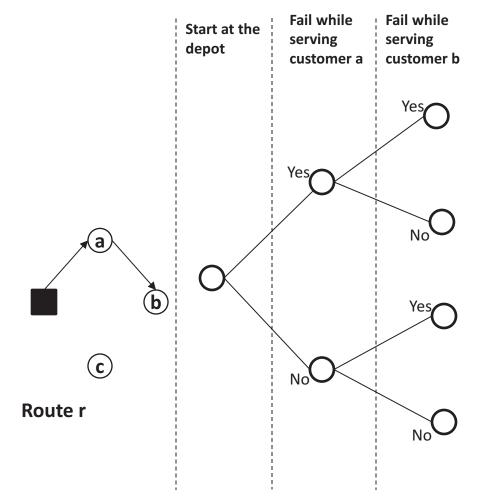
- Set a duration constraint over the expected duration of a route (Yang et al. 2000, Mendoza et al. 2010, 2011)
- Penalize duration excess on a second objective function (Tan et al. 2007)
- Set a hard constraint on the maximum duration of each route (Erera et al. 2012)

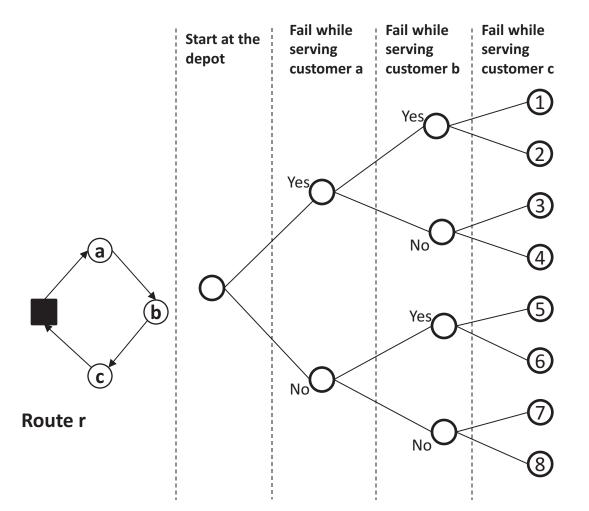
>Two alternative approaches:

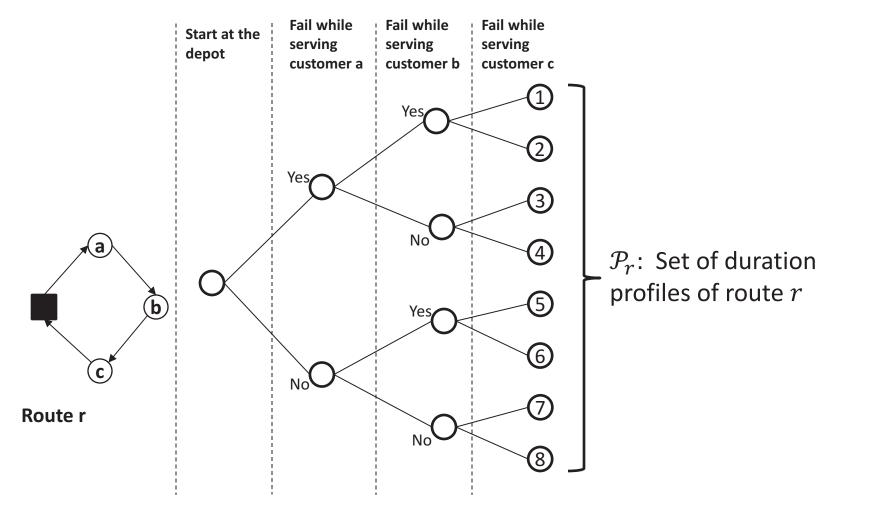
- Chance constraint (CC)
- Stochastic programming with recourse (DR)

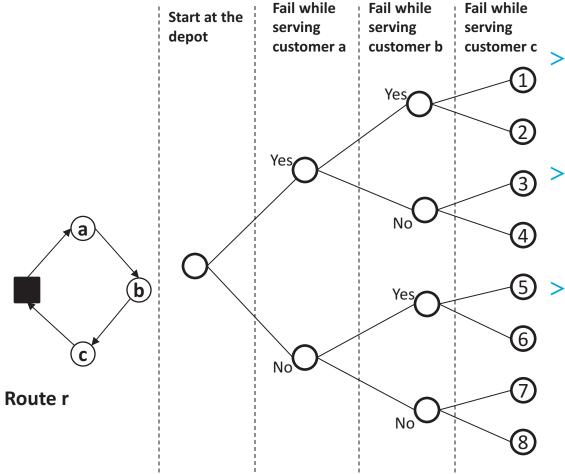






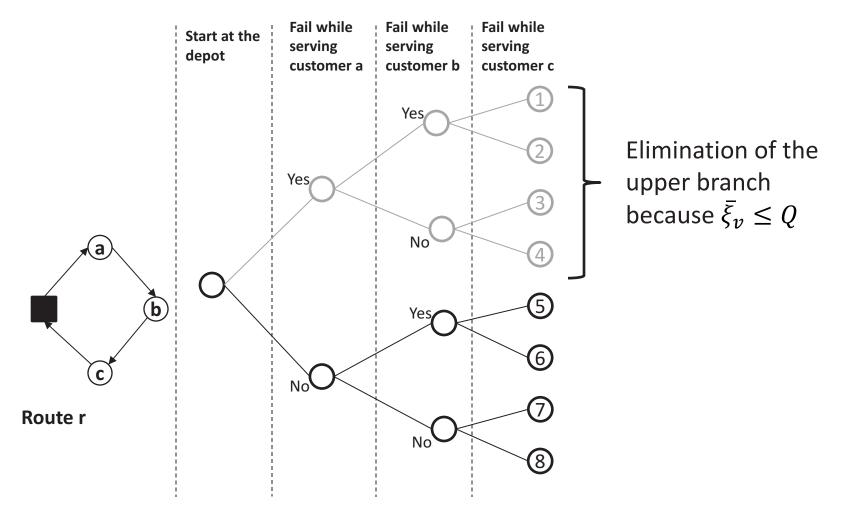




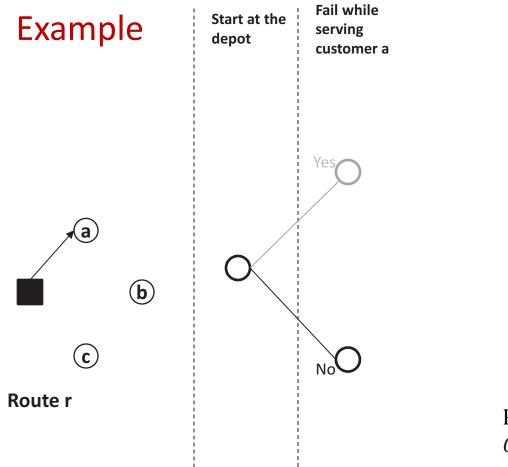


> Each node in the last level of the tree represents a possible output for the duration of route r (duration profile)

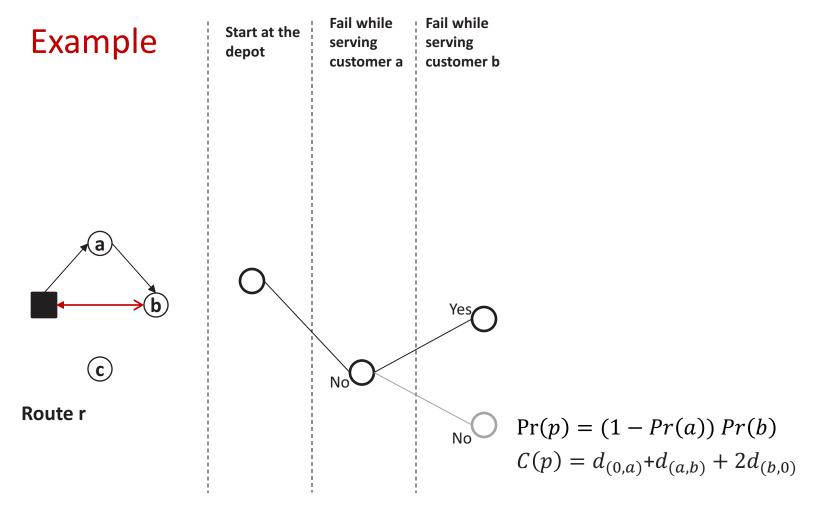
- > Let \mathcal{P}_r denote the set of all possible length profiles of r and let $C(p) | p \in \mathcal{P}_r$ be the length of profile p.
- > Knowing the probability of having a failure, due to the capacity constraint, while servicing customer in position *i* of the route (i.e., Pr(i)) we can easily compute the probability of observing a given profile (i.e., $Pr(p) | p \in \mathcal{P}_r$)

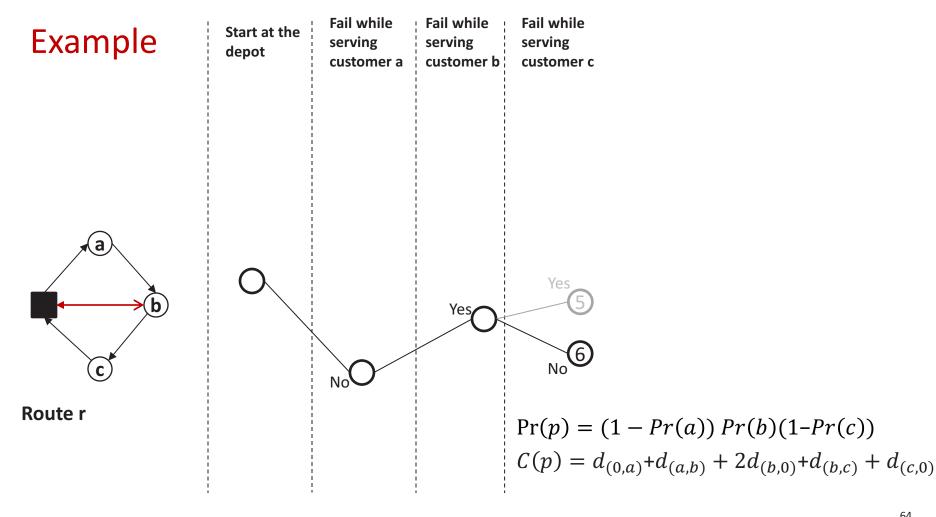


Route duration profile

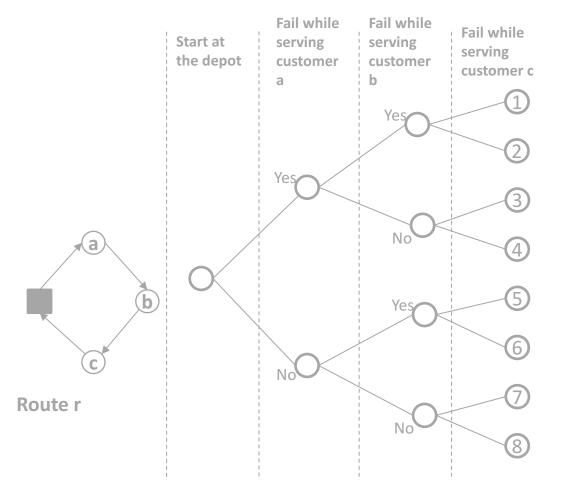


$$Pr(p) = 1 - Pr(a)$$
$$C(p) = d_{(0,a)}$$





Chance constrained (CC)

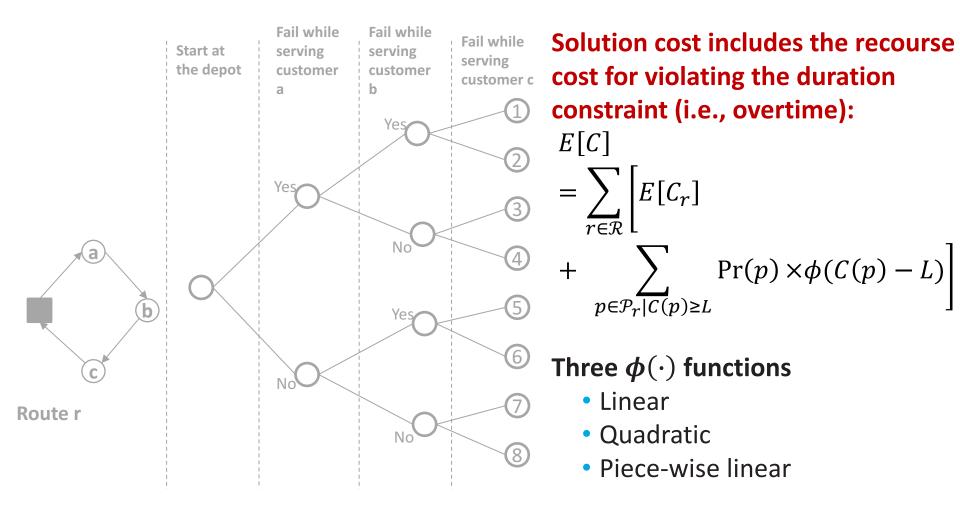


Probabilistic constraint:

 $\Pr(\mathcal{C}_r \leq L) \geq 1 - \beta, \forall r \in \mathcal{R}$ Calculated using the set \mathcal{P}_r

$$\Pr(C_r \le L) = \sum_{p \in \mathcal{P}_r | C(p) \le L} \Pr(p)$$

Stochastic programming with recourse

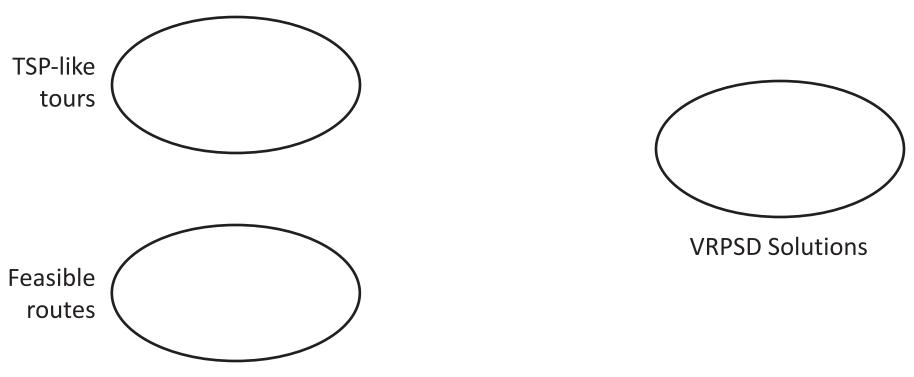


- >The vehicle routing problem with stochastic demands and duration constraints (VRPSDDC)
 - Chance constraint programming formulation
 - Stochastic programming with recourse formulation

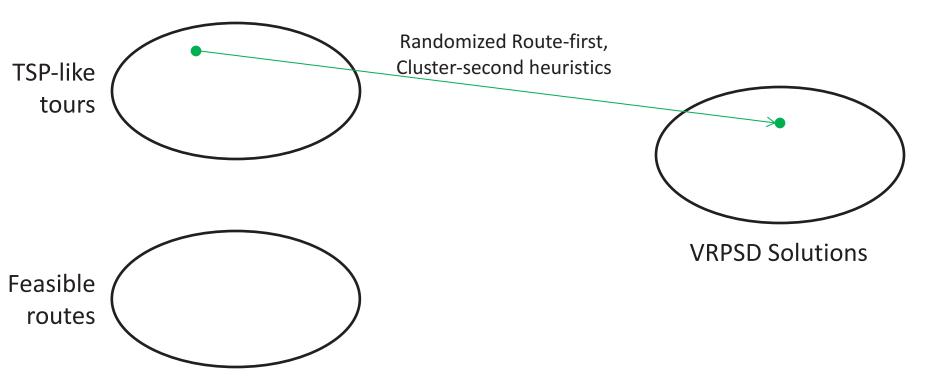
>GRASP + HC

- General structure
- Components
- >Computational experiments
 - VRPSD
 - VRPSDDC
- > Conclusions and perspectives

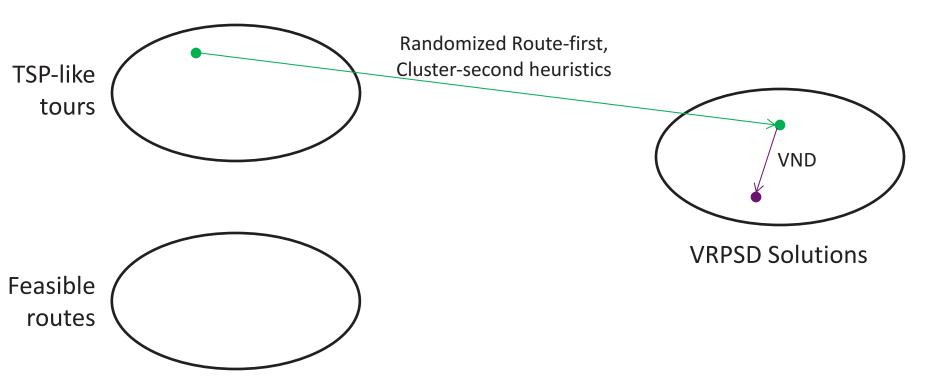
GRASP Iteration: generate start solution + local search



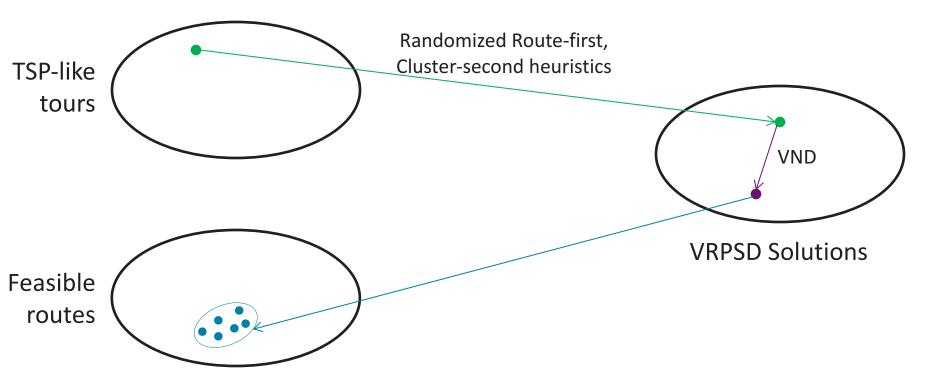
GRASP Iteration: generate start solution + local search



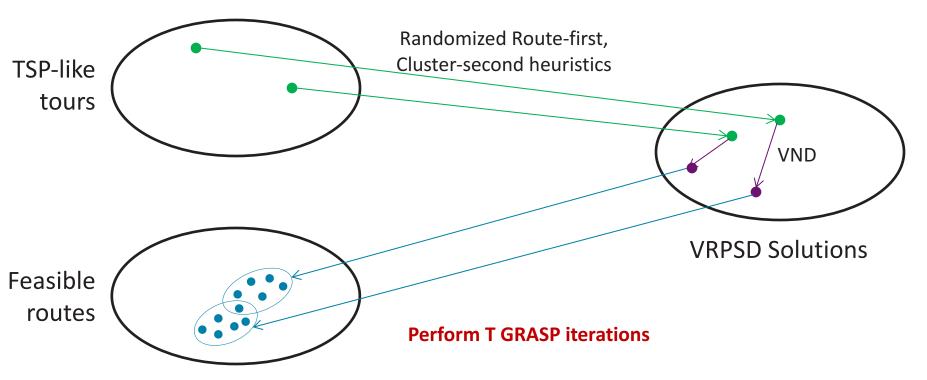
GRASP Iteration: generate start solution + local search



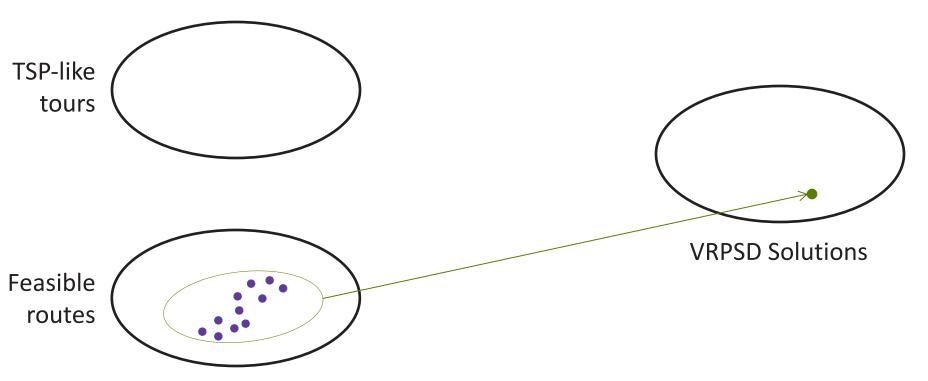
GRASP Iteration: generate start solution + local search + route storing



GRASP Iteration: generate start solution + local search + route storing



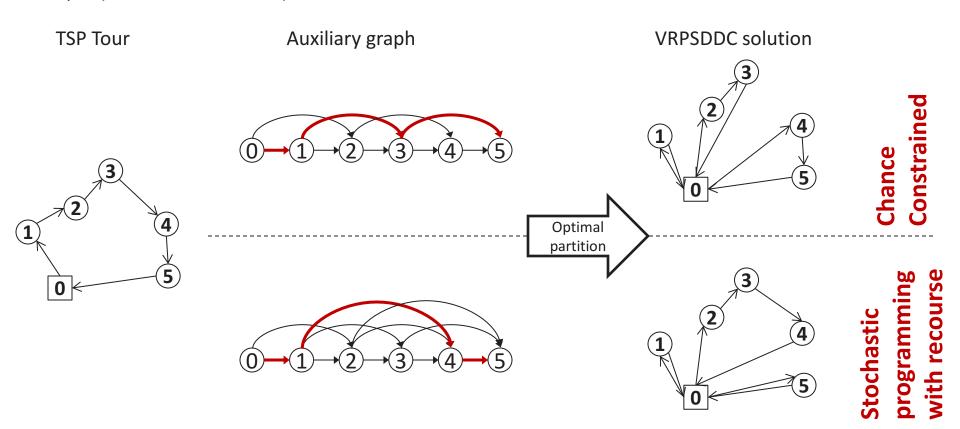
GRASP Iteration: generate start solution + local search + route storing HC: solve a set-partitioning formulation over the set of stored routes Ω

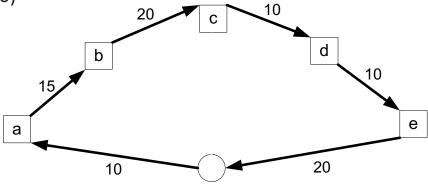


Randomized route first-cluster second heuristics: route-first

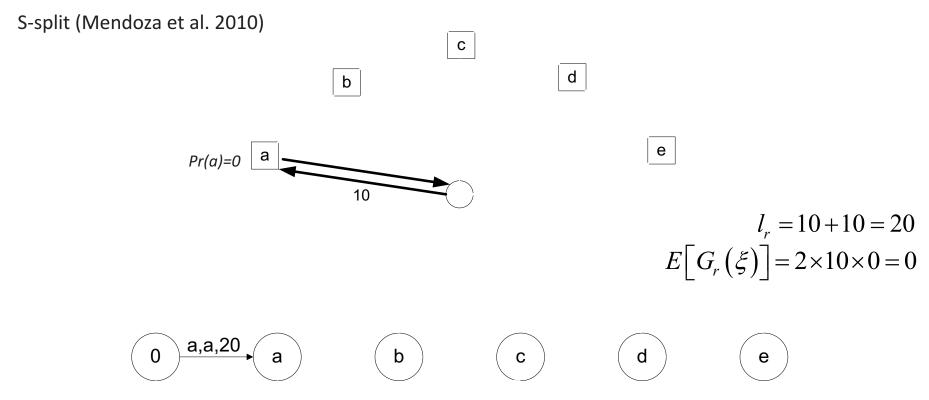
- Randomized Nearest Neighbor (RNN)
- Randomized Nearest Insertion (RNI)
- Randomized Farthest Insertion (RFI)
- Randomized Best Insertion (RBI)

Randomized route first-cluster second heuristics: cluster-second S-split (Mendoza et al. 2010)

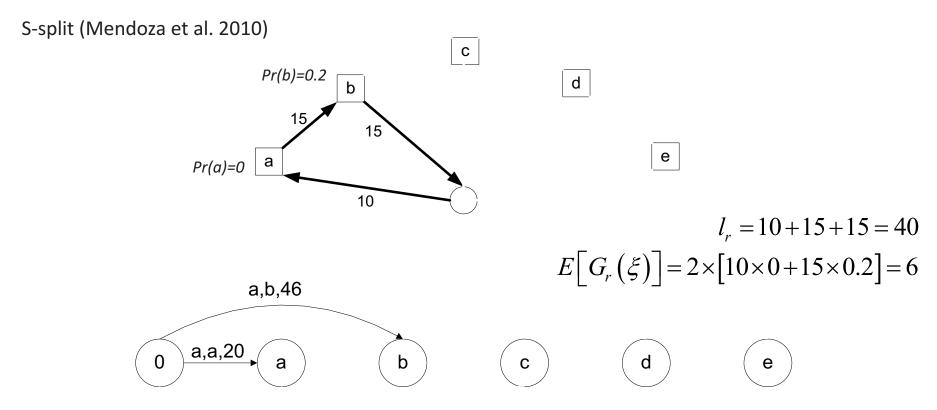




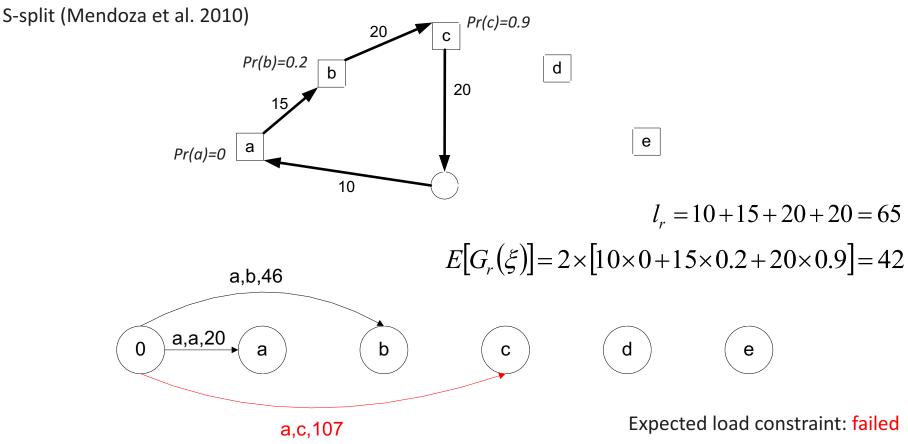
Randomized route first-cluster second heuristics: cluster-second

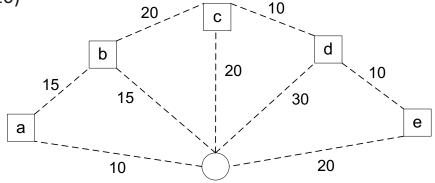


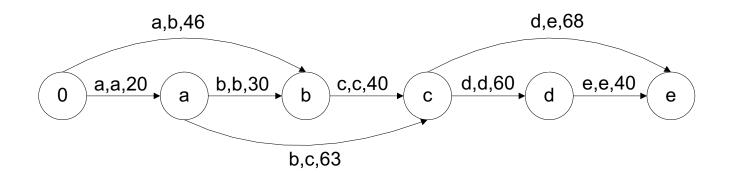
Expected load constraint: checked



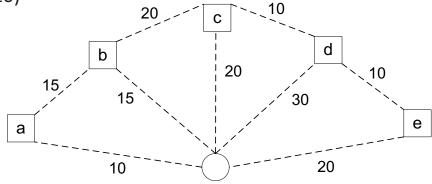
Expected load constraint: checked

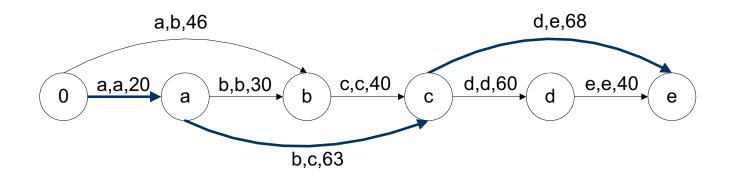






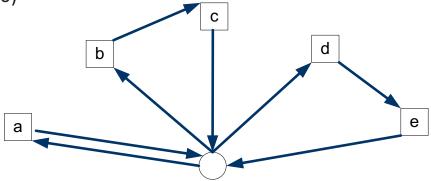
Randomized route first-cluster second heuristics: cluster-second

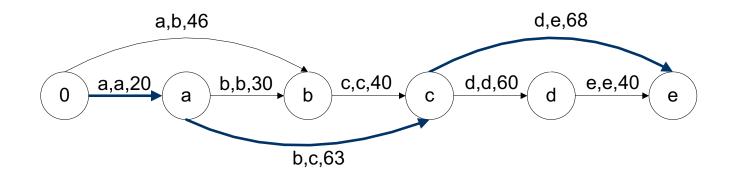


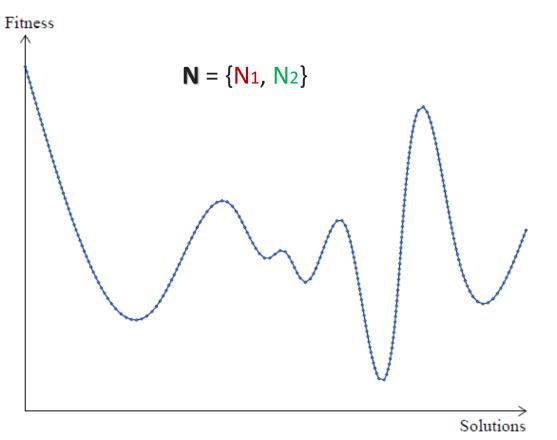


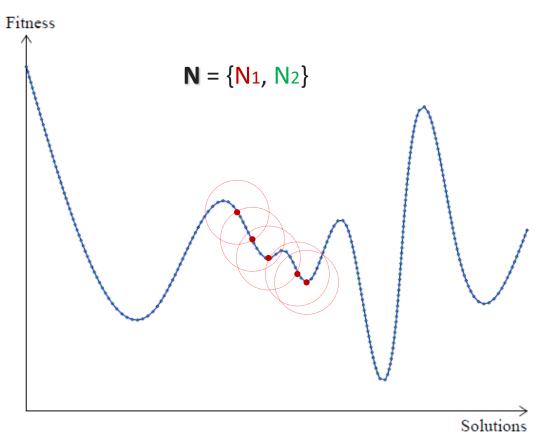
GRASP + HC: building blocs

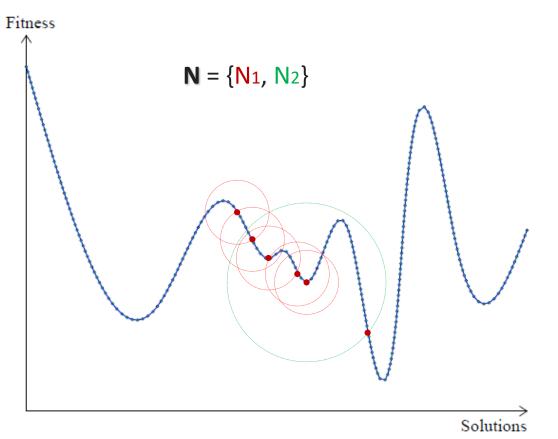
Randomized route first-cluster second heuristics: cluster-second

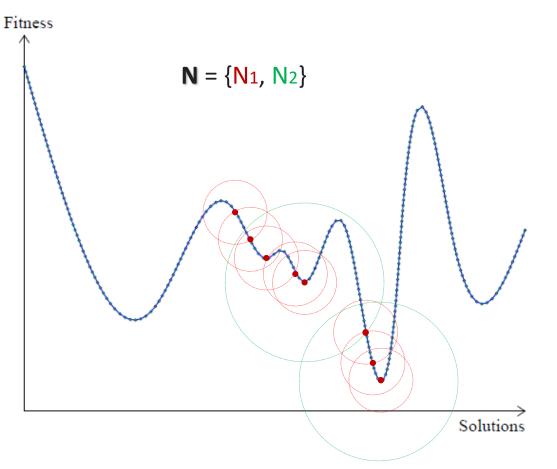


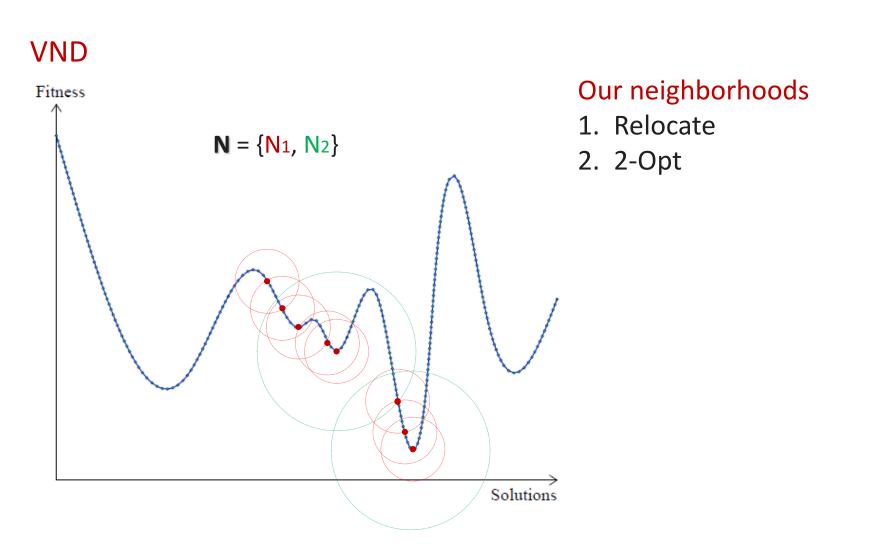


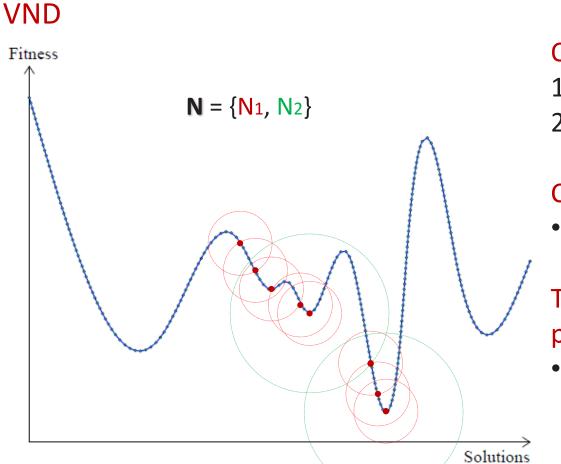












Our neighborhoods

- 1. Relocate
- 2. 2-Opt

Chance constrained

• Move feasibility

Two-stage stochastic programming

Move evaluation

Heuristic Concentration

• Set-partitioning formulation

$$\operatorname{Min} Z = \sum_{r \in \Omega} E[C_r] \times x_r$$

(1) Minimize the total expected cost of the solution

S.T

$$\sum_{r \in \Omega} a_{v,r} \times x_r = 1 \forall v \in \{1, \dots, v, \dots, n\}$$
(2)

) Every customer must be serviced by exactly one route

 $x_r \in \{0,1\} \forall r \in \Omega$

(3) Nature of the decision variables

Agenda

- >The vehicle routing problem with stochastic demands and duration constraints (VRPSDDC)
 - Chance constraint programming formulation
 - Stochastic programming with recourse formulation
- >GRASP + HC
 - General structure
 - Components
- >Computational experiments
 - VRPSD
 - VRPSDDC
- >Conclusions and perspectives

Benchmark instances

- > 39 instances adapted from Christiansen and Lysgaard (2007)
 - Adding a duration constraint (L)
 - GRASP+HC VRPSD solutions verify
 - $E[C_r] \leq L \forall r \in \mathcal{R}$ (Yang et al. 2000, Mendoza et al. 2010, 2011) (**ED approach**)
- >19 to 60 customers
- > Poisson-distributed demands

CC formulation

>Comparison with Best solutions of VRPSD

Metric	Overall	Best run	Worst run
Avg. Gap	2.17%	2.10%	2.34%
Max. Gap	8.44%	8.44%	8.44%
Min. Gap	0.05%	0.00%	0.30%
Std. Dev. Gap	1.90%	1.91%	1.88%

CC formulation

>Average running time

Metric	Overall	Best run	Worst run	Metric	Overall
Avg. Gap	2.17%	2.10%	2.34%	Avg. CPU (s)	233.99
Max. Gap	8.44%	8.44%	8.44%	Max. CPU (s)	1015.05
Min. Gap	0.05%	0.00%	0.30%	Min. CPU (s)	5.98
Std. Dev. Gap	1.90%	1.91%	1.88%	Std. CPU (s)	225.46

• Post-hoc evaluation of the VRPSD (ED) solutoins for $\beta = 0.05$

Metric	% Infeasible			
IVIETIC	routes	Max. Pr	Min. Pr	Avg. Pr
Avg.	34.96%	0.217	0.005	0.067
Max.	100.00%	0.446	0.169	0.299
Min.	0.00%	0.010	0.000	0.003

Only 3/39 VRPSD (ED) solutions are feasible

- $>\phi(\cdot)$ functions
 - Linear
 - Quadratic
 - Piecewise linear
- >GRASP+HC(DR)
 - T=500
- Post-hoc evaluation of VRPSD solutions

- >Comparison with best solutions of VRPSD.
- Increase in the objective function due to the violation of the constraint

Metric	Linear	Piece-wise linear	Quadratic
Avg. Increase Obj. Function	2.12%	3.26%	6.10%
Max. Increase Obj. Function	4.49%	9.57%	15.46%
Min. Increase Obj. Function	0.37%	0.54%	0.80%
Std. Dev. Increase Obj. Function	1.22%	2.02%	3.44%

DR formulation

- Post-hoc evaluation VRPSD (ED) solutions for the three penalizations with respect to best DR solution
- Increase in objective function due to overtime

Metric	Linear	Piece-wise linear	Quadratic
Avg. Gap	1.18%	4.56%	81.33%
Max. Gap	3.69%	11.20%	283.21%
Min. Gap	0.00%	0.00%	2.85%
Std. Dev. Gap	1.01%	3.31%	73.72%
Unchanged BKS	10	2	0

> Running time comparison DR vs CC Formulations

Metric	Linear	Piece-wise linear	Quadratic	CC Formulation
Avg. CPU (s)	326.48	346.43	355.45	233.99
Max. CPU (s)	1389.65	1432.22	1510.69	1015.05
Min. CPU (s)	8.19	8.63	9.42	5.98
Std. CPU (s)	315.66	338.42	347.61	225.46

« UNCERTAINTY IS AN UNCOMFORTABLE POSITION. BUT CERTAINTY IS AN ABSURD ONE. »

-Voltaire