
Outils de	Recherche
opérationnelle en	Génie   MTH	
8414

Programmation	en	nombre	entier:	
Méthode	de	résolution	et	astuces	de	modélisation

Types	de	problème	d’optimisation

• Programme	Linéaire	en	Nombre	Entier	(PLNE	ou	IP)	:
• Programme	Linéaire	en	Nombre	Entier	Mix	(MIP)	:

• Ces	problèmes	sont	théoriquement	très	difficiles,	mais	en	
pratique	ils	peuvent	(souvent)	être	résolus	très	rapidement.

3

Formulation	PLNE

X
on	obtient	un	PL	nommé
“Relaxation	Linéaire”

• Résolu	par	séparation	et	évaluation	progressive
– on	branche	sur	les	variables	de	décision
– la	relaxation	linéaire	nous	donne	des	bornes	inférieures.

Méthodes de	résolution pour	PL

• Algorithme	du	simplex
– Une	solution	optimale	se	trouve	nécessairement	sur	un	point	extrême.
– Donc	on	peut	la	trouver	en	parcourant	les	arêtes	du	polyèdre.

cT

x1

x2

Méthodes de	résolution pour	PL

• Méthode	par	Points	Intérieurs
–Méthode	dites	“Barrières”
– Formulation	“Primal-Dual”
– Pas	de	Newton

• Avantages
– Permet	de	résoudre	de	très	gros	problèmes
– Preuve	d’optimalité	(comme	le	simplex)

-cT

x1

x2

Méthodes de	résolution pour	PLNE

• Énumération	(Recherche	Arborescente,	Programmation	
Dynamique)

• Garantie	de	trouver	une	solution	réalisable	entière.

• Mais	le	temps	de	calcul	croît	exponentiellement	avec	la	
taille.

x1=0

X2=0 X2=2X2=1

x1=1 x1=2

X2=0 X2=2X2=1X2=0 X2=2X2=1

Méthodes de	résolution pour	PLNE

• Résoudre un	PL	puis arrondir ?

-cT

x1

x2

Solution du PL

Solution entière

Méthodes de	résolution pour	PLNE

• Le	PL	fournit une borne	inf (ou sup	si on	maximise)	sur la	valeur
du	PLNE.

• Mais en	arrondissant,	on	peut être très loin	d’une solution	
entière…

-cT

x1

x2

Approche combinée pour	PLNE.

• On	peut	combiner	les	deux	approches
– Résoudre	le	PL	pour	obtenir	une	solution.
– Créer	deux	sous-problèmes	en	ajoutant	des	
contraintes.

-cT

x1

x2

-cT

x1

x2

x1≤1

x1≥2

10

Séparation	et	évaluation	progressive

• Principe
–Chercher systématiquement toutes les	combinaisons
variables-valeurs possibles.
–Utiliser une heuristique pour	déterminer sur quelle
variable	brancher.
–Utiliser les	bornes inférieures pour	limiter	la	recherche.

• Construire un	arbre de	recherche.

11

SEP:	le	branchement
• Imaginez	un	problème	avec	3	variables

– a,	b,	c	є	{0,	1}

a = 0 a = 1

b = 0 b = 1

c = 0 c = 1 c = 0 c = 1 c = 0 c = 1c = 0 c = 1

b = 0 b = 1

100 90 110 115 80 90 100 110

Branchement

12

SEP:	utilisation	des	bornes	inférieures
• Si	nous	pouvions	calculer	une	borne	sur	le	coût	minimal	d’un	noeud.

a = 0 a = 1

b = 0 b = 1

c = 0 c = 1 c = 0

b = 0

100 90 80

50

70

85 95

80

80

13

Séparation	et	évaluation	progressive

• Mieux connu sous	le	nom	anglais “branch	and	bound”
• Branch:	assigne heuristiquement une valeur à une variable

–Crée deux sous	problèmes

• Bound:	comparer	la	borne	inférieure à la	meilleure solution	
connue
–Ça ne	vaut pas	la	peine d’explorer	le	sous-arbre si

• Minimisation:	si BorneInf >=	MeilleureSolution,
• Maximisation:	si BorneSup <=	MeilleureSolution,

14

SÉP	pour	résoudre	des	PLNE

• Généralement	la	borne	inférieure	=	la	relaxation	linéaire.
– On	l’obtient	en	« relaxant »	les	contraintes	d’intégrité.

• On	choisit	une	variable	non	entière	et	on	la	force	soit	à :
– être	plus	grande	ou	égale	à	l’entier	supérieur	ou
– être	plus	petite	ou	égale	à	l’entier	inférieur.

Branch and	Bound:	un	exemple

15

entiers ,
0 ,
8
142
52

s.c.
5010 max

21

21

1

21

21

21

xx
xx

x
xx
xx

xxz

³
£
£+
£+-

+=

Relaxation linéaire (ou continue)

Branch	and	Bound:	un	exemple

16

P0 : z0 = 282,5

x1 = 4,5
x2 = 4,75

Premier noeud
(solution optimale de la relaxation linéaire)

Valeur optimale
Variables non nulles

Branch	and	Bound

17

P1 : z1 = 265

x1 = 4
x2 = 4,5

P2 : z2 = 275

x1 = 5
x2 = 4,5

P0 noeud-père

noeuds-fils

x1 ³ 5x1 £ 4

Branch	and	Bound:	un	exemple

18

P1 : z1 = 265

x1 = 4
x2 = 4,5

P3 : z3 = 260

x1 = 6
x2 = 4

P0

x1 ³ 5x1 £ 4

P2

x2 ³ 5x2 £ 4

P4

Aucune solution
admissible

Branch	and	Bound

• Au	final…

19

P5 : z5 = 240
x1 = 4
x2 = 4

P3 : z3 = 260
x1 = 6
x2 = 4

P0

x1 ³ 5x1 £ 4

P2

x2 ³ 5x2 £ 4

P4

Aucune solution
admissible

P1

P6

Aucune solution
admissible

x2 ³ 5x2 £ 4

Calculs incrémentaux

• En	règle	générale,	pour	calculer	une	solution	optimale	d’un	nœud-fils,	
il	sera	plus	rapide	de	modifier	le	tableau	optimal	du	nœud	père	plutôt	
que	de	reprendre	les	calculs	de	l’algorithme	du	simplexe	à	partir	de	
leur	début.

20

P0

P2P1

P3 P4 P5 P6

Reprendre le tableau P0

Reprendre
le tableau P2

Algorithme (problème de	minimisation)	

21

Les	notations	suivantes	sont	utilisées	:	

L :	 ensemble	des	sous-problèmes	actifs;

zU : la	borne	supérieure	sur	la	valeur	optimale	de	MIP	;

ziLP : la	valeur	optimale	du	problème	linéaire	i	;

zjLP : la	borne	inférieure	sur	la	valeur	optimale	du	sous-problème	j	;

X* : La	meilleure	solution	réalisable.

L'algorithme comprend 6	étapes :
– Étape 1 : Initialisation

L = {relaxation initiale}, zU = ¥.
– Étape 2 : Test d'optimalité

Si L =Æ , x* est la solution optimale.
– Étape 3

Choisir	un	sous-problème		i	et	l'éliminer	de	la	liste	L.
– Étape 4

Résoudre	la	relaxation	linéaire	de	i.		Si	elle	n'est	pas	réalisable,	allez	à	l'étape 3	
Sinon,	poser	ziLP et		xi la	valeur	et	la	solution	optimales	obtenues.

– Étape 5
Si	ziLP ³ zU ,	aller	à	l'étape 2.		Si	xi n'est	pas	entière,	aller	à	l'étape 6.		
Sinon	zU =	ziLP,	x*	=	xi.		
Éliminer	de	L	tous	les	sous-problèmes		j	tels	que	zjLP ³ zU et	aller	à	l'étape 2.

– Étape 6
Choisir	une	variable	binaire	ayant	une	valeur	fractionnaire	dans	la	solution	xi et	
subdiviser	le	problème	i à	partir	de	cette	variable.	Ajouter	les	nouveaux	
problèmes	à	L.

22

Algorithme (remarque)

• Pour	que	l'algorithme	soit	complètement	défini,	on	doit	fixer:
– à	l'étape 3,	la	sélection	du	sous-problème	à	résoudre et
– à	l'étape 6,	la	règle	de	séparation	du	nœud	courant.	

• Ces	deux	règles	(choix	de	nœuds	et	choix	de	variables)	sont	cruciales	
quant	à	l'efficacité	de	l'approche	de	séparation	et	d'évaluation	
progressive.

23

-cT

x1

x2

Branche x2Branche x1
puis x2

Branche x1

Un	autre exemple

• Soit	le	problème	de	PLNE	suivant:

• Et	la	notation	
24

entières.et 0,,

5

5

5

8736

8763

: àsujet

1333min:)(

321

3

2

1

321

321

321

³

£

£

£

£+-

£++-

---=

xxx

x

x

x

xxx

xxx

xxxzP

321 1333 xxxxcz T ---==

{ }8736,8763: 321321
3 £+-£++-Î= xxxxxxIxX

11-25

Ajout de	plans	coupant (branch	and	cut)

• L’idée	est	d’ajouter	des	coupes	au	PL	pour	
améliorer	la	qualité	de	la	borne.

x1

x2

Coupe ajoutée (bleu)

l Toutes les solutions
entières sont
préservées

l La solution actuelle
du PL devient non
réalisable.

Trucs	et	astuces	de	modélisation

• Comment	modéliser	les	cas	où	l’on	est	en	présence	de:
– variables	ont	des	domaines	discontinus;
– certaines	ressources	qui	ont	des	coûts	fixes;
– disjonctions	de	contraintes;
– contraintes	conditionnelles
– de	SOS	et	des	fonctions	linéaires	par	morceaux
– des	produits	de	variables

27

Variables	avec	domaines	discontinues

• Que	faire	avec	le	cas	où	soit	x	=	0 OU		l	<=	x	<=	u

• On	peut	considérer	ceci	comme	deux	contraintes,	mais	elles	ne	
peuvent	être	vraies	toutes	les	deux	à	la	fois…

• Pouvez-vous	trouver	des	exemples	d’applications	?

• Comment	modéliser	ceci	avec	un	PLNE	?

28

Chapter 7

Integer Linear Programming Tricks

This chapterAs in the previous chapter “Linear Programming Tricks”, the emphasis is on
abstract mathematical modeling techniques but this time the focus is on inte-
ger programming tricks. These are not discussed in any particular reference,
but are scattered throughout the literature. Several tricks can be found in
[Wi90]. Other tricks are referenced directly.

Limitation to
linear integer
programs

Only linear integer programming models are considered because of the avail-
ability of computer codes for this class of problems. It is interesting to note
that several practical problems can be transformed into linear integer pro-
grams. For example, integer variables can be introduced so that a nonlinear
function can be approximated by a “piecewise linear” function. This and other
examples are explained in this chapter.

7.1 A variable taking discontinuous values

A jump in the
bound

This section considers an example of a simple situation that cannot be formu-
lated as a linear programming model. The value of a variable must be either
zero or between particular positive bounds (see Figure 7.1). In algebraic nota-
tion:

x = 0 or l ≤ x ≤ u
This can be interpreted as two constraints that cannot both hold simultane-
ously. In linear programming only simultaneous constraints can be modeled.

0 l u
x

Figure 7.1: A discontinuous variable

ApplicationsThis situation occurs when a supplier of some item requires that if an item
is ordered, then its batch size must be between a particular minimum and
maximum value. Another possibility is that there is a set-up cost associated
with the manufacture of an item.

Variables	avec	domaines	discontinues

• On	utilisera	une	variable	indicatrice:

• Qu’on	liera	avec	la	variable	originale	par	les	contraintes	suivantes:

• Y	=	0	implique	donc	x	=	0	et	y	=	1	implique	que	l	<=	x	<=	u

29

78 Chapter 7. Integer Linear Programming Tricks

Modeling dis-
continuous
variables

To model discontinuous variables, it is helpful to introduce the concept of an
indicator variable. An indicator variable is a binary variable (0 or 1) that indi-
cates a certain state in a model. In the above example, the indicator variable y
is linked to x in the following way:

y =
⎧
⎨
⎩

0 for x = 0

1 for l ≤ x ≤ u

The following set of constraints is used to create the desired properties:

x ≤ uy
x ≥ ly
y binary

It is clear that y = 0 implies x = 0, and that y = 1 implies l ≤ x ≤ u.

7.2 Fixed costs

The model A fixed cost problem is another application where indicator variables are added
so that two mutually exclusive situations can be modeled. An example is
provided using a single-variable. Consider the following linear programming
model (the sign “≷” denotes either “≤”, “=”, or “≥” constraints).

Minimize: C(x)

Subject to:
aix +

∑

j∈J
aijwj ≷ bi ∀i ∈ I

x ≥ 0

wj ≥ 0 ∀j ∈ J

Where: C(x) =
⎧
⎨
⎩

0 for x = 0

k+ cx for x > 0

As soon as x has a positive value, a fixed cost is incurred. This cost function
is not linear and is not continuous. There is a jump at x = 0, as illustrated in
Figure 7.2.

Application In the above formulation, the discontinuous function is the objective, but such
a function might equally well occur in a constraint. An example of such a
fixed-cost problem occurs in the manufacturing industry when set-up costs
are charged for new machinery.

78 Chapter 7. Integer Linear Programming Tricks

Modeling dis-
continuous
variables

To model discontinuous variables, it is helpful to introduce the concept of an
indicator variable. An indicator variable is a binary variable (0 or 1) that indi-
cates a certain state in a model. In the above example, the indicator variable y
is linked to x in the following way:

y =
⎧
⎨
⎩

0 for x = 0

1 for l ≤ x ≤ u

The following set of constraints is used to create the desired properties:

x ≤ uy
x ≥ ly
y binary

It is clear that y = 0 implies x = 0, and that y = 1 implies l ≤ x ≤ u.

7.2 Fixed costs

The model A fixed cost problem is another application where indicator variables are added
so that two mutually exclusive situations can be modeled. An example is
provided using a single-variable. Consider the following linear programming
model (the sign “≷” denotes either “≤”, “=”, or “≥” constraints).

Minimize: C(x)

Subject to:
aix +

∑

j∈J
aijwj ≷ bi ∀i ∈ I

x ≥ 0

wj ≥ 0 ∀j ∈ J

Where: C(x) =
⎧
⎨
⎩

0 for x = 0

k+ cx for x > 0

As soon as x has a positive value, a fixed cost is incurred. This cost function
is not linear and is not continuous. There is a jump at x = 0, as illustrated in
Figure 7.2.

Application In the above formulation, the discontinuous function is the objective, but such
a function might equally well occur in a constraint. An example of such a
fixed-cost problem occurs in the manufacturing industry when set-up costs
are charged for new machinery.

Les	coûts	fixes

• Soit	le	problème	suivant:

• La	fonction	de	coût	n’est	ni	linéaire	ni	continue...
• À	quelle	application	pensez-vous	?
• Comment	résoudre	ce	problème	?

30

78 Chapter 7. Integer Linear Programming Tricks

Modeling dis-
continuous
variables

To model discontinuous variables, it is helpful to introduce the concept of an
indicator variable. An indicator variable is a binary variable (0 or 1) that indi-
cates a certain state in a model. In the above example, the indicator variable y
is linked to x in the following way:

y =
⎧
⎨
⎩

0 for x = 0

1 for l ≤ x ≤ u

The following set of constraints is used to create the desired properties:

x ≤ uy
x ≥ ly
y binary

It is clear that y = 0 implies x = 0, and that y = 1 implies l ≤ x ≤ u.

7.2 Fixed costs

The model A fixed cost problem is another application where indicator variables are added
so that two mutually exclusive situations can be modeled. An example is
provided using a single-variable. Consider the following linear programming
model (the sign “≷” denotes either “≤”, “=”, or “≥” constraints).

Minimize: C(x)

Subject to:
aix +

∑

j∈J
aijwj ≷ bi ∀i ∈ I

x ≥ 0

wj ≥ 0 ∀j ∈ J

Where: C(x) =
⎧
⎨
⎩

0 for x = 0

k+ cx for x > 0

As soon as x has a positive value, a fixed cost is incurred. This cost function
is not linear and is not continuous. There is a jump at x = 0, as illustrated in
Figure 7.2.

Application In the above formulation, the discontinuous function is the objective, but such
a function might equally well occur in a constraint. An example of such a
fixed-cost problem occurs in the manufacturing industry when set-up costs
are charged for new machinery.

7.3. Either-or constraints 79

C(x)

k

0 x

c

Figure 7.2: Discontinuous cost function

Modeling fixed
costs

A sufficiently large upper bound, u, must be specified for x. An indicator
variable, y , is also introduced in a similar fashion:

y =
⎧
⎨
⎩

0 for x = 0

1 for x > 0

Now the cost function can be specified in both x and y :

C∗(x,y) = ky + cx

The minimum of this function reflects the same cost figures as the original
cost function, except for the case when x > 0 and y = 0. Therefore, one
constraint must be added to ensure that x = 0 whenever y = 0:

x ≤ uy

The equivalent
mixed integer
program

Now the model can be stated as a mixed integer programming model. The
formulation given earlier in this section can be transformed as follows.

Minimize: ky + cx
Subject to:

aix +
∑

j∈J
aijwj ≷ bi ∀i ∈ I

x ≤ uy
x ≥ 0

wj ≥ 0 ∀j ∈ J
y binary

7.3 Either-or constraints

The modelConsider the following linear programming model:

Minimize:
∑

j∈J
cjxj

Les	coûts	fixes

• Si	on	connaît	une	borne	u suffisamment	grande	pour	x et	qu’on	
introduit	une	variable	indicatrice	y

• On	relier	x et	y par x	<=	yu
• L’objectif	devient	donc:	
• Et	le	problème	devient:

31

7.3. Either-or constraints 79

C(x)

k

0 x

c

Figure 7.2: Discontinuous cost function

Modeling fixed
costs

A sufficiently large upper bound, u, must be specified for x. An indicator
variable, y , is also introduced in a similar fashion:

y =
⎧
⎨
⎩

0 for x = 0

1 for x > 0

Now the cost function can be specified in both x and y :

C∗(x,y) = ky + cx

The minimum of this function reflects the same cost figures as the original
cost function, except for the case when x > 0 and y = 0. Therefore, one
constraint must be added to ensure that x = 0 whenever y = 0:

x ≤ uy

The equivalent
mixed integer
program

Now the model can be stated as a mixed integer programming model. The
formulation given earlier in this section can be transformed as follows.

Minimize: ky + cx
Subject to:

aix +
∑

j∈J
aijwj ≷ bi ∀i ∈ I

x ≤ uy
x ≥ 0

wj ≥ 0 ∀j ∈ J
y binary

7.3 Either-or constraints

The modelConsider the following linear programming model:

Minimize:
∑

j∈J
cjxj

7.3. Either-or constraints 79

C(x)

k

0 x

c

Figure 7.2: Discontinuous cost function

Modeling fixed
costs

A sufficiently large upper bound, u, must be specified for x. An indicator
variable, y , is also introduced in a similar fashion:

y =
⎧
⎨
⎩

0 for x = 0

1 for x > 0

Now the cost function can be specified in both x and y :

C∗(x,y) = ky + cx

The minimum of this function reflects the same cost figures as the original
cost function, except for the case when x > 0 and y = 0. Therefore, one
constraint must be added to ensure that x = 0 whenever y = 0:

x ≤ uy

The equivalent
mixed integer
program

Now the model can be stated as a mixed integer programming model. The
formulation given earlier in this section can be transformed as follows.

Minimize: ky + cx
Subject to:

aix +
∑

j∈J
aijwj ≷ bi ∀i ∈ I

x ≤ uy
x ≥ 0

wj ≥ 0 ∀j ∈ J
y binary

7.3 Either-or constraints

The modelConsider the following linear programming model:

Minimize:
∑

j∈J
cjxj

7.3. Either-or constraints 79

C(x)

k

0 x

c

Figure 7.2: Discontinuous cost function

Modeling fixed
costs

A sufficiently large upper bound, u, must be specified for x. An indicator
variable, y , is also introduced in a similar fashion:

y =
⎧
⎨
⎩

0 for x = 0

1 for x > 0

Now the cost function can be specified in both x and y :

C∗(x,y) = ky + cx

The minimum of this function reflects the same cost figures as the original
cost function, except for the case when x > 0 and y = 0. Therefore, one
constraint must be added to ensure that x = 0 whenever y = 0:

x ≤ uy

The equivalent
mixed integer
program

Now the model can be stated as a mixed integer programming model. The
formulation given earlier in this section can be transformed as follows.

Minimize: ky + cx
Subject to:

aix +
∑

j∈J
aijwj ≷ bi ∀i ∈ I

x ≤ uy
x ≥ 0

wj ≥ 0 ∀j ∈ J
y binary

7.3 Either-or constraints

The modelConsider the following linear programming model:

Minimize:
∑

j∈J
cjxj

Une	disjonction	de	contrainte

• Soit	le	problème	suivant:

• Où	soit	(1)	ou	(2)	doit	être	respectée
• Des	applications	?
• Comment	faire	?

32

7.3. Either-or constraints 79

C(x)

k

0 x

c

Figure 7.2: Discontinuous cost function

Modeling fixed
costs

A sufficiently large upper bound, u, must be specified for x. An indicator
variable, y , is also introduced in a similar fashion:

y =
⎧
⎨
⎩

0 for x = 0

1 for x > 0

Now the cost function can be specified in both x and y :

C∗(x,y) = ky + cx

The minimum of this function reflects the same cost figures as the original
cost function, except for the case when x > 0 and y = 0. Therefore, one
constraint must be added to ensure that x = 0 whenever y = 0:

x ≤ uy

The equivalent
mixed integer
program

Now the model can be stated as a mixed integer programming model. The
formulation given earlier in this section can be transformed as follows.

Minimize: ky + cx
Subject to:

aix +
∑

j∈J
aijwj ≷ bi ∀i ∈ I

x ≤ uy
x ≥ 0

wj ≥ 0 ∀j ∈ J
y binary

7.3 Either-or constraints

The modelConsider the following linear programming model:

Minimize:
∑

j∈J
cjxj

80 Chapter 7. Integer Linear Programming Tricks

Subject to: ∑

j∈J
a1jxj ≤ b1 (1)

∑

j∈J
a2jxj ≤ b2 (2)

xj ≥ 0 ∀j ∈ J

Where: at least one of the conditions (1) or (2) must hold

The condition that at least one of the constraints must hold cannot be for-
mulated in a linear programming model, because in a linear program all con-
straints must hold. Again, a binary variable can be used to express the prob-
lem. An example of such a situation is a manufacturing process, where two
modes of operation are possible.

Modeling
either-or
constraints

Consider a binary variable y , and sufficiently large upper bounds M1 and M2,
which are upper bounds on the activity of the constraints. The bounds are
chosen such that they are as tight as possible, while still guaranteeing that the
left-hand side of constraint i is always smaller than bi +Mi. The constraints
can be rewritten as follows:

(1)
∑

j∈J
a1jxj ≤ b1 +M1y

(2)
∑

j∈J
a2jxj ≤ b2 +M2(1−y)

When y = 0, constraint (1) is imposed, and constraint (2) is weakened to∑
j∈J a2jxj ≤ b2+M2, which will always be non-binding. Constraint (2) may of

course still be satisfied. When y = 1, the situation is reversed. So in all cases
one of the constraints is imposed, and the other constraint may also hold. The
problem then becomes:

The equivalent
mixed integer
program

Minimize:
∑

j∈J
cjxj

Subject to: ∑

j∈J
a1jxj ≤ b1 +M1y

∑

j∈J
a2jxj ≤ b2 +M2(1−y)

xj ≥ 0 ∀j ∈ J
y binary

Une	disjonction	de	contraintes

• Encore	une	fois	on	introduira	une	variable	supplémentaire	y ainsi	que	
deux	grands	nombres	(M1 et	M2).	

• En	modifiant	(1)	et	(2)	de	la	manière	suivante:

• On	s’assure	qu’une	des	deux	contraintes	devra	être	satisfaite.

33

80 Chapter 7. Integer Linear Programming Tricks

Subject to: ∑

j∈J
a1jxj ≤ b1 (1)

∑

j∈J
a2jxj ≤ b2 (2)

xj ≥ 0 ∀j ∈ J

Where: at least one of the conditions (1) or (2) must hold

The condition that at least one of the constraints must hold cannot be for-
mulated in a linear programming model, because in a linear program all con-
straints must hold. Again, a binary variable can be used to express the prob-
lem. An example of such a situation is a manufacturing process, where two
modes of operation are possible.

Modeling
either-or
constraints

Consider a binary variable y , and sufficiently large upper bounds M1 and M2,
which are upper bounds on the activity of the constraints. The bounds are
chosen such that they are as tight as possible, while still guaranteeing that the
left-hand side of constraint i is always smaller than bi +Mi. The constraints
can be rewritten as follows:

(1)
∑

j∈J
a1jxj ≤ b1 +M1y

(2)
∑

j∈J
a2jxj ≤ b2 +M2(1−y)

When y = 0, constraint (1) is imposed, and constraint (2) is weakened to∑
j∈J a2jxj ≤ b2+M2, which will always be non-binding. Constraint (2) may of

course still be satisfied. When y = 1, the situation is reversed. So in all cases
one of the constraints is imposed, and the other constraint may also hold. The
problem then becomes:

The equivalent
mixed integer
program

Minimize:
∑

j∈J
cjxj

Subject to: ∑

j∈J
a1jxj ≤ b1 +M1y

∑

j∈J
a2jxj ≤ b2 +M2(1−y)

xj ≥ 0 ∀j ∈ J
y binary

80 Chapter 7. Integer Linear Programming Tricks

Subject to: ∑

j∈J
a1jxj ≤ b1 (1)

∑

j∈J
a2jxj ≤ b2 (2)

xj ≥ 0 ∀j ∈ J

Where: at least one of the conditions (1) or (2) must hold

The condition that at least one of the constraints must hold cannot be for-
mulated in a linear programming model, because in a linear program all con-
straints must hold. Again, a binary variable can be used to express the prob-
lem. An example of such a situation is a manufacturing process, where two
modes of operation are possible.

Modeling
either-or
constraints

Consider a binary variable y , and sufficiently large upper bounds M1 and M2,
which are upper bounds on the activity of the constraints. The bounds are
chosen such that they are as tight as possible, while still guaranteeing that the
left-hand side of constraint i is always smaller than bi +Mi. The constraints
can be rewritten as follows:

(1)
∑

j∈J
a1jxj ≤ b1 +M1y

(2)
∑

j∈J
a2jxj ≤ b2 +M2(1−y)

When y = 0, constraint (1) is imposed, and constraint (2) is weakened to∑
j∈J a2jxj ≤ b2+M2, which will always be non-binding. Constraint (2) may of

course still be satisfied. When y = 1, the situation is reversed. So in all cases
one of the constraints is imposed, and the other constraint may also hold. The
problem then becomes:

The equivalent
mixed integer
program

Minimize:
∑

j∈J
cjxj

Subject to: ∑

j∈J
a1jxj ≤ b1 +M1y

∑

j∈J
a2jxj ≤ b2 +M2(1−y)

xj ≥ 0 ∀j ∈ J
y binary

Contraintes	conditionnelles

• Une	variante	de	ce	problème	survient	lorsque	certaines	contraintes	
sont	conditionnelles:

• Donnez	des	exemples	d’application	?

• Comment	traiter	ce	cas	?

34

7.4. Conditional constraints 81

7.4 Conditional constraints

The modelA problem that can be treated in a similar way to either-or constraints is one
that contains conditional constraints. The mathematical presentation is lim-
ited to a case, involving two constraints, on which the following condition is
imposed.

If (1) (
∑

j∈J
a1jxj ≤ b1) is satisfied,

then (2) (
∑

j∈J
a2jxj ≤ b2) must also be satisfied.

Logical
equivalence

Let A denote the statement that the logical expression “Constraint (1) holds”
is true, and similarly, let B denote the statement that the logical expression
“Constraint (2) holds” is true. The notation ¬A and ¬B represent the case
of the corresponding logical expressions being false. The above conditional
constraint can be restated as: A implies B. This is logically equivalent to writing
(A and ¬B) is false. Using the negation of this expression, it follows that ¬(A
and ¬B) is true. This is equivalent to (¬A or B) is true, using Boolean algebra.
It is this last equivalence that allows one to translate the above conditional
constraint into an either-or constraint.

Modeling
conditional
constraints

One can observe that

If (
∑

j∈J
a1jxj ≤ b1) holds, then (

∑

j∈J
a2jxj ≤ b2) must hold,

is equivalent to

(
∑

j∈J
a1jxj > b1) or (

∑

j∈J
a2jxj ≤ b2) must hold.

Notice that the sign in (1) is reversed. A difficulty to overcome is that the strict
inequality “not (1)” needs to be modeled as an inequality. This can be achieved
by specifying a small tolerance value beyond which the constraint is regarded
as broken, and rewriting the constraint to:

∑

j∈J
a1jxj ≥ b1 + ϵ

This results in:
∑

j∈J
a1jxj ≥ b1 + ϵ, or

∑

j∈J
a2jxj ≤ b2 must hold.

This last expression strongly resembles the either-or constraints in the pre-
vious section. This can be modeled in a similar way by introducing a binary

Contraintes	conditionnelles

• Pour	adresser	ce	cas,	nous	devons	nous	tourner	vers	la	logique

• L’équation	logique	qui	nous	intéresse	est	(A	implique	B)
• Cette	équation	est	équivalente	à	(non-A	OU	B)	
• On	a	donc	une	disjonction	de	contraintes,	qu’on	peut	traiter	comme	
précédemment…

• Devient:

• Sauf	qu’ici	on	a	un	signe	>	qu’on	ne	peut	traiter	en	PL…

35

7.4. Conditional constraints 81

7.4 Conditional constraints

The modelA problem that can be treated in a similar way to either-or constraints is one
that contains conditional constraints. The mathematical presentation is lim-
ited to a case, involving two constraints, on which the following condition is
imposed.

If (1) (
∑

j∈J
a1jxj ≤ b1) is satisfied,

then (2) (
∑

j∈J
a2jxj ≤ b2) must also be satisfied.

Logical
equivalence

Let A denote the statement that the logical expression “Constraint (1) holds”
is true, and similarly, let B denote the statement that the logical expression
“Constraint (2) holds” is true. The notation ¬A and ¬B represent the case
of the corresponding logical expressions being false. The above conditional
constraint can be restated as: A implies B. This is logically equivalent to writing
(A and ¬B) is false. Using the negation of this expression, it follows that ¬(A
and ¬B) is true. This is equivalent to (¬A or B) is true, using Boolean algebra.
It is this last equivalence that allows one to translate the above conditional
constraint into an either-or constraint.

Modeling
conditional
constraints

One can observe that

If (
∑

j∈J
a1jxj ≤ b1) holds, then (

∑

j∈J
a2jxj ≤ b2) must hold,

is equivalent to

(
∑

j∈J
a1jxj > b1) or (

∑

j∈J
a2jxj ≤ b2) must hold.

Notice that the sign in (1) is reversed. A difficulty to overcome is that the strict
inequality “not (1)” needs to be modeled as an inequality. This can be achieved
by specifying a small tolerance value beyond which the constraint is regarded
as broken, and rewriting the constraint to:

∑

j∈J
a1jxj ≥ b1 + ϵ

This results in:
∑

j∈J
a1jxj ≥ b1 + ϵ, or

∑

j∈J
a2jxj ≤ b2 must hold.

This last expression strongly resembles the either-or constraints in the pre-
vious section. This can be modeled in a similar way by introducing a binary

7.4. Conditional constraints 81

7.4 Conditional constraints

The modelA problem that can be treated in a similar way to either-or constraints is one
that contains conditional constraints. The mathematical presentation is lim-
ited to a case, involving two constraints, on which the following condition is
imposed.

If (1) (
∑

j∈J
a1jxj ≤ b1) is satisfied,

then (2) (
∑

j∈J
a2jxj ≤ b2) must also be satisfied.

Logical
equivalence

Let A denote the statement that the logical expression “Constraint (1) holds”
is true, and similarly, let B denote the statement that the logical expression
“Constraint (2) holds” is true. The notation ¬A and ¬B represent the case
of the corresponding logical expressions being false. The above conditional
constraint can be restated as: A implies B. This is logically equivalent to writing
(A and ¬B) is false. Using the negation of this expression, it follows that ¬(A
and ¬B) is true. This is equivalent to (¬A or B) is true, using Boolean algebra.
It is this last equivalence that allows one to translate the above conditional
constraint into an either-or constraint.

Modeling
conditional
constraints

One can observe that

If (
∑

j∈J
a1jxj ≤ b1) holds, then (

∑

j∈J
a2jxj ≤ b2) must hold,

is equivalent to

(
∑

j∈J
a1jxj > b1) or (

∑

j∈J
a2jxj ≤ b2) must hold.

Notice that the sign in (1) is reversed. A difficulty to overcome is that the strict
inequality “not (1)” needs to be modeled as an inequality. This can be achieved
by specifying a small tolerance value beyond which the constraint is regarded
as broken, and rewriting the constraint to:

∑

j∈J
a1jxj ≥ b1 + ϵ

This results in:
∑

j∈J
a1jxj ≥ b1 + ϵ, or

∑

j∈J
a2jxj ≤ b2 must hold.

This last expression strongly resembles the either-or constraints in the pre-
vious section. This can be modeled in a similar way by introducing a binary

Contraintes	conditionnelles

• On	introduira	une	petite	valeur	epsilon

• Pour	obtenir:

• Qui	peut	être	réécrit	comme:	

36

7.4. Conditional constraints 81

7.4 Conditional constraints

The modelA problem that can be treated in a similar way to either-or constraints is one
that contains conditional constraints. The mathematical presentation is lim-
ited to a case, involving two constraints, on which the following condition is
imposed.

If (1) (
∑

j∈J
a1jxj ≤ b1) is satisfied,

then (2) (
∑

j∈J
a2jxj ≤ b2) must also be satisfied.

Logical
equivalence

Let A denote the statement that the logical expression “Constraint (1) holds”
is true, and similarly, let B denote the statement that the logical expression
“Constraint (2) holds” is true. The notation ¬A and ¬B represent the case
of the corresponding logical expressions being false. The above conditional
constraint can be restated as: A implies B. This is logically equivalent to writing
(A and ¬B) is false. Using the negation of this expression, it follows that ¬(A
and ¬B) is true. This is equivalent to (¬A or B) is true, using Boolean algebra.
It is this last equivalence that allows one to translate the above conditional
constraint into an either-or constraint.

Modeling
conditional
constraints

One can observe that

If (
∑

j∈J
a1jxj ≤ b1) holds, then (

∑

j∈J
a2jxj ≤ b2) must hold,

is equivalent to

(
∑

j∈J
a1jxj > b1) or (

∑

j∈J
a2jxj ≤ b2) must hold.

Notice that the sign in (1) is reversed. A difficulty to overcome is that the strict
inequality “not (1)” needs to be modeled as an inequality. This can be achieved
by specifying a small tolerance value beyond which the constraint is regarded
as broken, and rewriting the constraint to:

∑

j∈J
a1jxj ≥ b1 + ϵ

This results in:
∑

j∈J
a1jxj ≥ b1 + ϵ, or

∑

j∈J
a2jxj ≤ b2 must hold.

This last expression strongly resembles the either-or constraints in the pre-
vious section. This can be modeled in a similar way by introducing a binary

7.4. Conditional constraints 81

7.4 Conditional constraints

The modelA problem that can be treated in a similar way to either-or constraints is one
that contains conditional constraints. The mathematical presentation is lim-
ited to a case, involving two constraints, on which the following condition is
imposed.

If (1) (
∑

j∈J
a1jxj ≤ b1) is satisfied,

then (2) (
∑

j∈J
a2jxj ≤ b2) must also be satisfied.

Logical
equivalence

Let A denote the statement that the logical expression “Constraint (1) holds”
is true, and similarly, let B denote the statement that the logical expression
“Constraint (2) holds” is true. The notation ¬A and ¬B represent the case
of the corresponding logical expressions being false. The above conditional
constraint can be restated as: A implies B. This is logically equivalent to writing
(A and ¬B) is false. Using the negation of this expression, it follows that ¬(A
and ¬B) is true. This is equivalent to (¬A or B) is true, using Boolean algebra.
It is this last equivalence that allows one to translate the above conditional
constraint into an either-or constraint.

Modeling
conditional
constraints

One can observe that

If (
∑

j∈J
a1jxj ≤ b1) holds, then (

∑

j∈J
a2jxj ≤ b2) must hold,

is equivalent to

(
∑

j∈J
a1jxj > b1) or (

∑

j∈J
a2jxj ≤ b2) must hold.

Notice that the sign in (1) is reversed. A difficulty to overcome is that the strict
inequality “not (1)” needs to be modeled as an inequality. This can be achieved
by specifying a small tolerance value beyond which the constraint is regarded
as broken, and rewriting the constraint to:

∑

j∈J
a1jxj ≥ b1 + ϵ

This results in:
∑

j∈J
a1jxj ≥ b1 + ϵ, or

∑

j∈J
a2jxj ≤ b2 must hold.

This last expression strongly resembles the either-or constraints in the pre-
vious section. This can be modeled in a similar way by introducing a binary

82 Chapter 7. Integer Linear Programming Tricks

variable y , a sufficiently large upper bound M on (2), and a sufficiently lower
bound L on (1). The constraints can be rewritten to get:

∑

j∈J
a1jxj ≥ b1 + ϵ− Ly

∑

j∈J
a2jxj ≤ b2 +M(1−y)

You can verify that these constraints satisfy the original conditional expression
correctly, by applying reasoning similar to that in Section 7.3.

7.5 Special Ordered Sets

This section There are particular types of restrictions in integer programming formulations
that are quite common, and that can be treated in an efficient manner by
solvers. Two of them are treated in this section, and are referred to as Spe-
cial Ordered Sets (SOS) of type 1 and 2. These concepts are due to Beale and
Tomlin ([Be69]).

SOS1
constraints

A common restriction is that out of a set of yes-no decisions, at most one
decision variable can be yes. You can model this as follows. Let yi denote
zero-one variables, then ∑

i
yi ≤ 1

forms an example of a SOS1 constraint. More generally, when considering
variables 0 ≤ xi ≤ ui, then the constraint

∑

i
aixi ≤ b

can also become a SOS1 constraint by adding the requirement that at most
one of the xi can be nonzero. In Aimms there is a constraint attribute named
Property in which you can indicate whether this constraint is a SOS1 constraint.
Note that in the general case, the variables are no longer restricted to be zero-
one variables.

SOS1 and
performance

A general SOS1 constraint can be classified as a logical constraint and as such it
can always be translated into a formulation with binary variables. Under these
conditions the underlying branch and bound process will follow the standard
binary tree search, in which the number of nodes is an exponential function
of the number of binary variables. Alternatively, if the solver recognizes it as
a SOS1 constraint, then the number of nodes to be searched can be reduced.
However, you are advised to only use SOS sets if there exists an natural order
relationship among the variables in the set. If your model contains multiple
SOS sets, you could consider specifying priorities for some of these SOS sets.

Les	SOS	(Special Ordered Sets)
• Considérer	le	cas	particulier	suivant:
– Votre	modèle	comporte	une	série	de	décision	oui/non	ordonnée.
– Seulement	une	décision	« oui »	est	possible
– Entre	deux	décisions	« oui »	on	préfèrera	toujours	celle	qui	est	la	première	dans	la	
série.

• Pour	ce	cela,	on	dispose	généralement	d’une	série	de	variables	booléennes	
yi telles	que	

• On	peut	généraliser	ce	cas	à	:
– Aux	variables	générales	xi tel	que	0	<=	xi <=	u et	sujet	à

• On	peut	aussi	considérer	le	cas	où	deux	décisions	« oui »	sont	permises,	
mais	elles	doivent	être	consécutives.

• Les	solveurs	ont	des	objets	de	modélisation	SOS1	et	SOS2	qui	implémentent	
ces	conditions	de	manières	plus	efficaces	lors	du	branch and	bound.

37

82 Chapter 7. Integer Linear Programming Tricks

variable y , a sufficiently large upper bound M on (2), and a sufficiently lower
bound L on (1). The constraints can be rewritten to get:

∑

j∈J
a1jxj ≥ b1 + ϵ− Ly

∑

j∈J
a2jxj ≤ b2 +M(1−y)

You can verify that these constraints satisfy the original conditional expression
correctly, by applying reasoning similar to that in Section 7.3.

7.5 Special Ordered Sets

This section There are particular types of restrictions in integer programming formulations
that are quite common, and that can be treated in an efficient manner by
solvers. Two of them are treated in this section, and are referred to as Spe-
cial Ordered Sets (SOS) of type 1 and 2. These concepts are due to Beale and
Tomlin ([Be69]).

SOS1
constraints

A common restriction is that out of a set of yes-no decisions, at most one
decision variable can be yes. You can model this as follows. Let yi denote
zero-one variables, then ∑

i
yi ≤ 1

forms an example of a SOS1 constraint. More generally, when considering
variables 0 ≤ xi ≤ ui, then the constraint

∑

i
aixi ≤ b

can also become a SOS1 constraint by adding the requirement that at most
one of the xi can be nonzero. In Aimms there is a constraint attribute named
Property in which you can indicate whether this constraint is a SOS1 constraint.
Note that in the general case, the variables are no longer restricted to be zero-
one variables.

SOS1 and
performance

A general SOS1 constraint can be classified as a logical constraint and as such it
can always be translated into a formulation with binary variables. Under these
conditions the underlying branch and bound process will follow the standard
binary tree search, in which the number of nodes is an exponential function
of the number of binary variables. Alternatively, if the solver recognizes it as
a SOS1 constraint, then the number of nodes to be searched can be reduced.
However, you are advised to only use SOS sets if there exists an natural order
relationship among the variables in the set. If your model contains multiple
SOS sets, you could consider specifying priorities for some of these SOS sets.

82 Chapter 7. Integer Linear Programming Tricks

variable y , a sufficiently large upper bound M on (2), and a sufficiently lower
bound L on (1). The constraints can be rewritten to get:

∑

j∈J
a1jxj ≥ b1 + ϵ− Ly

∑

j∈J
a2jxj ≤ b2 +M(1−y)

You can verify that these constraints satisfy the original conditional expression
correctly, by applying reasoning similar to that in Section 7.3.

7.5 Special Ordered Sets

This section There are particular types of restrictions in integer programming formulations
that are quite common, and that can be treated in an efficient manner by
solvers. Two of them are treated in this section, and are referred to as Spe-
cial Ordered Sets (SOS) of type 1 and 2. These concepts are due to Beale and
Tomlin ([Be69]).

SOS1
constraints

A common restriction is that out of a set of yes-no decisions, at most one
decision variable can be yes. You can model this as follows. Let yi denote
zero-one variables, then ∑

i
yi ≤ 1

forms an example of a SOS1 constraint. More generally, when considering
variables 0 ≤ xi ≤ ui, then the constraint

∑

i
aixi ≤ b

can also become a SOS1 constraint by adding the requirement that at most
one of the xi can be nonzero. In Aimms there is a constraint attribute named
Property in which you can indicate whether this constraint is a SOS1 constraint.
Note that in the general case, the variables are no longer restricted to be zero-
one variables.

SOS1 and
performance

A general SOS1 constraint can be classified as a logical constraint and as such it
can always be translated into a formulation with binary variables. Under these
conditions the underlying branch and bound process will follow the standard
binary tree search, in which the number of nodes is an exponential function
of the number of binary variables. Alternatively, if the solver recognizes it as
a SOS1 constraint, then the number of nodes to be searched can be reduced.
However, you are advised to only use SOS sets if there exists an natural order
relationship among the variables in the set. If your model contains multiple
SOS sets, you could consider specifying priorities for some of these SOS sets.

Fonctions	linéaires	par	morceaux

• Soit	le	problème	suivant:

• Ici	on	remarque	que	l’objective,	bien	que	non	linéaire,	est	séparable.
• C’est-à-dire	que	l’objectif	est	une	somme	de	fonctions	définies	sur	
une	variable	à	la	fois.

Séparable	 Non	séparable

38

7.6. Piecewise linear formulations 83

SOS1 branchingTo illustrate how the SOS order information is used to create new nodes during
the branch and bound process, consider a model in which a decision has to
be made about the size of a warehouse. The size of the warehouse should
be either 10000, 20000, 40000, or 50000 square feet. To model this, four
binary variables x1, x2, x3 and x4 are introduced that together make up a
SOS1 set. The order among these variables is naturally specified through the
sizes. During the branch and bound process, the split point in the SOS1 set
is determined by the weighted average of the solution of the relaxed problem.
For example, if the solution of the relaxed problem is given by x1 = 0.1 and
x4 = 0.9, then the corresponding weighted average is 0.1·10000+0.9·50000 =
46000. This computation results in the SOS set being split up between variable
x3 and x4. The corresponding new nodes in the search tree are specified by
(1) the nonzero element is the set {x1, x2, x3} (i.e. x4 = 0) and (2) x4 = 1 (and
x1 = x2 = x3 = 0).

SOS2
constraints

Another common restriction, is that out of a set of nonnegative variables, at
most two variables can be nonzero. In addition, the two variables must be
adjacent to each other in a fixed order list. This class of constraint is referred
to as a type SOS2 in Aimms. A typical application occurs when a non-linear
function is approximated by a piecewise linear function. Such an example is
given in the next section.

7.6 Piecewise linear formulations

The modelConsider the following model with a separable objective function:

Minimize:
∑

j∈J
fj(xj)

Subject to: ∑

j∈J
aijxj ≷ bi ∀i ∈ I

xj ≥ 0 ∀j ∈ J

Separable
function

In the above general model statement, the objective is a separable function,
which is defined as the sum of functions of scalar variables. Such a func-
tion has the advantage that nonlinear terms can be approximated by piecewise
linear ones. Using this technique, it may be possible to generate an integer pro-
gramming model, or sometimes even a linear programming model (see [Wi90]).
This possibility also exists when a constraint is separable.

Examples of
separable
functions

Some examples of separable functions are:

x2
1 + 1/x2 − 2x3 = f1(x1)+ f2(x2)+ f3(x3)
x2

1 + 5x1 − x2 = g1(x1)+ g2(x2)

7.6. Piecewise linear formulations 83

SOS1 branchingTo illustrate how the SOS order information is used to create new nodes during
the branch and bound process, consider a model in which a decision has to
be made about the size of a warehouse. The size of the warehouse should
be either 10000, 20000, 40000, or 50000 square feet. To model this, four
binary variables x1, x2, x3 and x4 are introduced that together make up a
SOS1 set. The order among these variables is naturally specified through the
sizes. During the branch and bound process, the split point in the SOS1 set
is determined by the weighted average of the solution of the relaxed problem.
For example, if the solution of the relaxed problem is given by x1 = 0.1 and
x4 = 0.9, then the corresponding weighted average is 0.1·10000+0.9·50000 =
46000. This computation results in the SOS set being split up between variable
x3 and x4. The corresponding new nodes in the search tree are specified by
(1) the nonzero element is the set {x1, x2, x3} (i.e. x4 = 0) and (2) x4 = 1 (and
x1 = x2 = x3 = 0).

SOS2
constraints

Another common restriction, is that out of a set of nonnegative variables, at
most two variables can be nonzero. In addition, the two variables must be
adjacent to each other in a fixed order list. This class of constraint is referred
to as a type SOS2 in Aimms. A typical application occurs when a non-linear
function is approximated by a piecewise linear function. Such an example is
given in the next section.

7.6 Piecewise linear formulations

The modelConsider the following model with a separable objective function:

Minimize:
∑

j∈J
fj(xj)

Subject to: ∑

j∈J
aijxj ≷ bi ∀i ∈ I

xj ≥ 0 ∀j ∈ J

Separable
function

In the above general model statement, the objective is a separable function,
which is defined as the sum of functions of scalar variables. Such a func-
tion has the advantage that nonlinear terms can be approximated by piecewise
linear ones. Using this technique, it may be possible to generate an integer pro-
gramming model, or sometimes even a linear programming model (see [Wi90]).
This possibility also exists when a constraint is separable.

Examples of
separable
functions

Some examples of separable functions are:

x2
1 + 1/x2 − 2x3 = f1(x1)+ f2(x2)+ f3(x3)
x2

1 + 5x1 − x2 = g1(x1)+ g2(x2)

84 Chapter 7. Integer Linear Programming Tricks

The following examples are not:

x1x2 + 3x2 + x2
2 = f1(x1, x2)+ f2(x2)

1/(x1 + x2)+ x3 = g1(x1, x2)+ g2(x3)

Approximation
of a nonlinear
function

Consider a simple example with only one nonlinear term to be approximated,
namely f(x) = 1

2x
2. Figure 7.3, shows the curve divided into three pieces that

are approximated by straight lines. This approximation is known as piecewise
linear. The points where the slope of the piecewise linear function changes (or
its domain ends) are referred to as breakpoints. This approximation can be ex-
pressed mathematically in several ways. A method known as the λ-formulation
is described below.

x

f̃ (x)

0
x1

1
x2

2
x3

4
x4

1
2

2

8

Figure 7.3: Piecewise linear approximation of f(x) = 1
2x

2

Weighted sums Let x1, x2, x3 and x4 denote the four breakpoints along the x-axis in Figure 7.3,
and let f(x1), f (x2), f (x3) and f(x4) denote the corresponding function val-
ues. The breakpoints are 0, 1, 2 and 4, and the corresponding function values
are 0, 1

2 , 2 and 8. Any point in between two breakpoints is a weighted sum of
these two breakpoints. For instance, x = 3 = 1

2 · 2 + 1
2 · 4. The corresponding

approximated function value f̃ (3) = 5 = 1
2 · 2+ 1

2 · 8.

λ-Formulation Let λ1,λ2,λ3,λ4 denote four nonnegative weights such that their sum is 1.
Then the piecewise linear approximation of f(x) in Figure 7.3 can be written
as:

λ1f(x1)+ λ2f(x2)+ λ3f(x3)+ λ4f(x4) = f̃ (x)
λ1x1 + λ2x2 + λ3x3 + λ4x4 = x

λ1 + λ2 + λ3 + λ4 = 1

with the added requirement that at most two adjacent λ’s are greater than
zero. This requirement together with the last constraint form the SOS2 con-

Fonctions	linéaires	par	morceaux

• Soit	la	fonction

• Soit	x1,	x2,	x3,	x4	des	points	de	« cassure »	(breakpoints)	auquel	on	
évalue	la	fonction	f(x)	(soit	0,1,2,4)

• On	approxime	donc	linéairement	tout	point	situé	entre	deux	
cassures,	par	exemple	f(3)	=	½*f(2)	+	½*f(4)	=	½*1	+	½*8	=	5.

39

84 Chapter 7. Integer Linear Programming Tricks

The following examples are not:

x1x2 + 3x2 + x2
2 = f1(x1, x2)+ f2(x2)

1/(x1 + x2)+ x3 = g1(x1, x2)+ g2(x3)

Approximation
of a nonlinear
function

Consider a simple example with only one nonlinear term to be approximated,
namely f(x) = 1

2x
2. Figure 7.3, shows the curve divided into three pieces that

are approximated by straight lines. This approximation is known as piecewise
linear. The points where the slope of the piecewise linear function changes (or
its domain ends) are referred to as breakpoints. This approximation can be ex-
pressed mathematically in several ways. A method known as the λ-formulation
is described below.

x

f̃ (x)

0
x1

1
x2

2
x3

4
x4

1
2

2

8

Figure 7.3: Piecewise linear approximation of f(x) = 1
2x

2

Weighted sums Let x1, x2, x3 and x4 denote the four breakpoints along the x-axis in Figure 7.3,
and let f(x1), f (x2), f (x3) and f(x4) denote the corresponding function val-
ues. The breakpoints are 0, 1, 2 and 4, and the corresponding function values
are 0, 1

2 , 2 and 8. Any point in between two breakpoints is a weighted sum of
these two breakpoints. For instance, x = 3 = 1

2 · 2 + 1
2 · 4. The corresponding

approximated function value f̃ (3) = 5 = 1
2 · 2+ 1

2 · 8.

λ-Formulation Let λ1,λ2,λ3,λ4 denote four nonnegative weights such that their sum is 1.
Then the piecewise linear approximation of f(x) in Figure 7.3 can be written
as:

λ1f(x1)+ λ2f(x2)+ λ3f(x3)+ λ4f(x4) = f̃ (x)
λ1x1 + λ2x2 + λ3x3 + λ4x4 = x

λ1 + λ2 + λ3 + λ4 = 1

with the added requirement that at most two adjacent λ’s are greater than
zero. This requirement together with the last constraint form the SOS2 con-

84 Chapter 7. Integer Linear Programming Tricks

The following examples are not:

x1x2 + 3x2 + x2
2 = f1(x1, x2)+ f2(x2)

1/(x1 + x2)+ x3 = g1(x1, x2)+ g2(x3)

Approximation
of a nonlinear
function

Consider a simple example with only one nonlinear term to be approximated,
namely f(x) = 1

2x
2. Figure 7.3, shows the curve divided into three pieces that

are approximated by straight lines. This approximation is known as piecewise
linear. The points where the slope of the piecewise linear function changes (or
its domain ends) are referred to as breakpoints. This approximation can be ex-
pressed mathematically in several ways. A method known as the λ-formulation
is described below.

x

f̃ (x)

0
x1

1
x2

2
x3

4
x4

1
2

2

8

Figure 7.3: Piecewise linear approximation of f(x) = 1
2x

2

Weighted sums Let x1, x2, x3 and x4 denote the four breakpoints along the x-axis in Figure 7.3,
and let f(x1), f (x2), f (x3) and f(x4) denote the corresponding function val-
ues. The breakpoints are 0, 1, 2 and 4, and the corresponding function values
are 0, 1

2 , 2 and 8. Any point in between two breakpoints is a weighted sum of
these two breakpoints. For instance, x = 3 = 1

2 · 2 + 1
2 · 4. The corresponding

approximated function value f̃ (3) = 5 = 1
2 · 2+ 1

2 · 8.

λ-Formulation Let λ1,λ2,λ3,λ4 denote four nonnegative weights such that their sum is 1.
Then the piecewise linear approximation of f(x) in Figure 7.3 can be written
as:

λ1f(x1)+ λ2f(x2)+ λ3f(x3)+ λ4f(x4) = f̃ (x)
λ1x1 + λ2x2 + λ3x3 + λ4x4 = x

λ1 + λ2 + λ3 + λ4 = 1

with the added requirement that at most two adjacent λ’s are greater than
zero. This requirement together with the last constraint form the SOS2 con-

Fonctions	linéaires	par	morceaux

• Une	des	manières	de	traiter	ces	fonctions	est	d’utiliser	la	λ-
formulation.

• Soit	λ1,	λ2,	λ3,	λ4,	4	poids	non	négatifs	dont	la	somme	=	1,	alors	la	
fonction	linéaire	par	morceaux	précédente	peut-être	exprimée	par:

• Comme	au	plus	deux	λ peuvent	être	non	négatifs,	et	que	ceux-ci	
doivent	en	plus	être	consécutifs,	on	peut	ajouter	une	contrainte	
SOS2(λ).

• La	majorité	des	solveurs	ont	un	objet	« Piecewise Linear »	que	vous	
pouvez	utiliser	directement.

40

84 Chapter 7. Integer Linear Programming Tricks

The following examples are not:

x1x2 + 3x2 + x2
2 = f1(x1, x2)+ f2(x2)

1/(x1 + x2)+ x3 = g1(x1, x2)+ g2(x3)

Approximation
of a nonlinear
function

Consider a simple example with only one nonlinear term to be approximated,
namely f(x) = 1

2x
2. Figure 7.3, shows the curve divided into three pieces that

are approximated by straight lines. This approximation is known as piecewise
linear. The points where the slope of the piecewise linear function changes (or
its domain ends) are referred to as breakpoints. This approximation can be ex-
pressed mathematically in several ways. A method known as the λ-formulation
is described below.

x

f̃ (x)

0
x1

1
x2

2
x3

4
x4

1
2

2

8

Figure 7.3: Piecewise linear approximation of f(x) = 1
2x

2

Weighted sums Let x1, x2, x3 and x4 denote the four breakpoints along the x-axis in Figure 7.3,
and let f(x1), f (x2), f (x3) and f(x4) denote the corresponding function val-
ues. The breakpoints are 0, 1, 2 and 4, and the corresponding function values
are 0, 1

2 , 2 and 8. Any point in between two breakpoints is a weighted sum of
these two breakpoints. For instance, x = 3 = 1

2 · 2 + 1
2 · 4. The corresponding

approximated function value f̃ (3) = 5 = 1
2 · 2+ 1

2 · 8.

λ-Formulation Let λ1,λ2,λ3,λ4 denote four nonnegative weights such that their sum is 1.
Then the piecewise linear approximation of f(x) in Figure 7.3 can be written
as:

λ1f(x1)+ λ2f(x2)+ λ3f(x3)+ λ4f(x4) = f̃ (x)
λ1x1 + λ2x2 + λ3x3 + λ4x4 = x

λ1 + λ2 + λ3 + λ4 = 1

with the added requirement that at most two adjacent λ’s are greater than
zero. This requirement together with the last constraint form the SOS2 con-

Éliminer	les	produits	de	variables

• Que	faire	des	problèmes	où	des	termes	contiennent	le	produit	de	
deux	variables	booléennes	x1x2

• On	peut	faire	disparaître	ce	produit	en	introduisant	une	nouvelle	
variable	booléenne	y	qui	doit	être	égale	au	produit	x1x2.

• Pour	ce	faire	il	faut	ajouter	les	contraintes	suivantes:

41

86 Chapter 7. Integer Linear Programming Tricks

Replacing
product term

In general, a product of two variables can be replaced by one new variable, on
which a number of constraints is imposed. The extension to products of more
than two variables is straightforward. Three cases are distinguished. In the
third case, a separable function results (instead of a linear one) that can then
be approximated by using the methods described in the previous section.

Two binary
variables

Firstly, consider the binary variables x1 and x2. Their product, x1x2, can be
replaced by an additional binary variable y . The following constraints force y
to take the value of x1x2:

y ≤ x1

y ≤ x2

y ≥ x1 + x2 − 1

y binary

One binary and
one continuous
variable

Secondly, let x1 be a binary variable, and x2 be a continuous variable for which
0 ≤ x2 ≤ u holds. Now a continuous variable, y , is introduced to replace the
product y = x1x2. The following constraints must be added to force y to take
the value of x1x2:

y ≤ ux1

y ≤ x2

y ≥ x2 −u(1− x1)
y ≥ 0

The validity of these constraints can be checked by examining Table 7.1 in
which all possible situations are listed.

x1 x2 x1x2 constraints imply
0 w : 0 ≤ w ≤ u 0 y ≤ 0 y = 0

y ≤ w
y ≥ w −u
y ≥ 0

1 w : 0 ≤ w ≤ u w y ≤ u y = w
y ≤ w
y ≥ w
y ≥ 0

Table 7.1: All possible products y = x1x2

Éliminer	les	produits	de	variables

• Que	faire	maintenant	si	doit	traiter	un	produit	x1x2 où	x1 est	une	
variable	binaire	et	x2 est	une	variable	continue	tel	que	0	<=	x2 <=	u	?

• On	introduit	une	variable	continue	y	définie	comme	y	=	x1x2	en	
ajoutant	les	contraintes	ci-dessous	imposant	le	comportement:

42

86 Chapter 7. Integer Linear Programming Tricks

Replacing
product term

In general, a product of two variables can be replaced by one new variable, on
which a number of constraints is imposed. The extension to products of more
than two variables is straightforward. Three cases are distinguished. In the
third case, a separable function results (instead of a linear one) that can then
be approximated by using the methods described in the previous section.

Two binary
variables

Firstly, consider the binary variables x1 and x2. Their product, x1x2, can be
replaced by an additional binary variable y . The following constraints force y
to take the value of x1x2:

y ≤ x1

y ≤ x2

y ≥ x1 + x2 − 1

y binary

One binary and
one continuous
variable

Secondly, let x1 be a binary variable, and x2 be a continuous variable for which
0 ≤ x2 ≤ u holds. Now a continuous variable, y , is introduced to replace the
product y = x1x2. The following constraints must be added to force y to take
the value of x1x2:

y ≤ ux1

y ≤ x2

y ≥ x2 −u(1− x1)
y ≥ 0

The validity of these constraints can be checked by examining Table 7.1 in
which all possible situations are listed.

x1 x2 x1x2 constraints imply
0 w : 0 ≤ w ≤ u 0 y ≤ 0 y = 0

y ≤ w
y ≥ w −u
y ≥ 0

1 w : 0 ≤ w ≤ u w y ≤ u y = w
y ≤ w
y ≥ w
y ≥ 0

Table 7.1: All possible products y = x1x2

86 Chapter 7. Integer Linear Programming Tricks

Replacing
product term

In general, a product of two variables can be replaced by one new variable, on
which a number of constraints is imposed. The extension to products of more
than two variables is straightforward. Three cases are distinguished. In the
third case, a separable function results (instead of a linear one) that can then
be approximated by using the methods described in the previous section.

Two binary
variables

Firstly, consider the binary variables x1 and x2. Their product, x1x2, can be
replaced by an additional binary variable y . The following constraints force y
to take the value of x1x2:

y ≤ x1

y ≤ x2

y ≥ x1 + x2 − 1

y binary

One binary and
one continuous
variable

Secondly, let x1 be a binary variable, and x2 be a continuous variable for which
0 ≤ x2 ≤ u holds. Now a continuous variable, y , is introduced to replace the
product y = x1x2. The following constraints must be added to force y to take
the value of x1x2:

y ≤ ux1

y ≤ x2

y ≥ x2 −u(1− x1)
y ≥ 0

The validity of these constraints can be checked by examining Table 7.1 in
which all possible situations are listed.

x1 x2 x1x2 constraints imply
0 w : 0 ≤ w ≤ u 0 y ≤ 0 y = 0

y ≤ w
y ≥ w −u
y ≥ 0

1 w : 0 ≤ w ≤ u w y ≤ u y = w
y ≤ w
y ≥ w
y ≥ 0

Table 7.1: All possible products y = x1x2

Excercise de	modélisation
• On	veut	assembler	l’horaire	hebdomadaire	de	travail	d’une	unité	d’infirmières	
sachant	que:
– On	a	trois	quarts	de	8h	de	travail	à	couvrir	(J,S,N)
– Le	nombre	d’infirmières	requises	de	dq où	q	est	un	quart	de	travail	(J,S,N)
– Une	infirmière	doit	avoir	16h	de	repos	entre	deux	quarts.

• Les	contraintes	suivantes	doivent	être	respectées
– Si	on	emploie	une	infirmière	pendant	la	semaine,	elle	doit	travailler	au	moins	3	quarts.
– Une	infirmière	doit	avoir	congé	soit	

• a)	toutes	les	nuits	de	la	semaine	
• b)	toute	la	fin	de	semaine.

– Si	une	infirmière	travaille	4	quarts	de	travaille,	elle	doit	avoir	congé	la	fin	de	semaine.
– Chaque	infirmière	donne	une	liste	de	jours	de	congé	souhaitée	(et	ordonnées),	on	doit	lui	
donner	au	moins	un	de	ces	choix.

• Il	faut	minimiser	les	coûts	sachant	que:
1. Si	on	emploie	une	infirmière	il	faut	payer	l’agence	un	montant	fixe	de	F$	+	G$	par	quart	

travaillé.
2. En	plus,	il	est	permis	de	ne	pas	avoir	le	bon	nombre	d’infirmières,	mais	il	faut	payer	une	

pénalité	de	P(k)	$	ou	k	est	la	différence	entre	le	nombre	souhaité	le	nombre	d’infirmières	
assignées

43

