Outils de Recherche Opérationnelle en Génie

MTH 8414

Astuce de modélisation en Programmation Linéaire

Résumé

- Les problèmes ne se présentent pas toujours sous une forme qui soit naturellement linéaire.
- Toutefois comme la PL est une technique très efficace, il est souvent avantageux de « reformuler » un problème de manière à ce qu'il soit linéaire.

- On présente donc ici quelques trucs et astuces en vrac...
- À noter que leur efficacité dépend de chaque solveur et de leur capacité à effectuer un prétraitement sur les modèles.
- Cette section est tirée du chapitre 6 du livre AIMMS-modeling.

Valeur absolue

Soit le problème linéaire suivant (le signe : ≥ signifie <= ou >=)

Minimize:
$$\sum_{j \in J} c_j |x_j| \qquad c_j > 0$$
 Subject to:
$$\sum_{j \in J} a_{ij} x_j \gtrless b_i \qquad \forall i \in I$$
 $x_j \quad free$

• La valeur absolue n'étant pas une fonction linéaire, il faut trouver une manière de s'en débarrasser...

Valeur absolue

- Pour ce faire on va remplacer chaque variable x_j par deux autres variables x_j⁺ et x_j⁻ qui représente les parties positives et négatives de chaque variable.
- Pour ce faire on applique la substitution suivante:

$$x_{j} = x_{j}^{+} - x_{j}^{-}$$
 $|x_{j}| = x_{j}^{+} + x_{j}^{-}$
 $x_{j}^{+}, x_{j}^{-} \ge 0$

Ce qui nous donne le modèle suivant:

Minimize:
$$\sum_{j \in J} c_j (x_j^+ + x_j^-) \qquad c_j > 0$$
 Subject to:
$$\sum_{j \in J} a_{ij} (x_j^+ - x_j^-) \gtrless b_i \qquad \forall i \in I$$

$$x_i^+, x_i^- \ge 0 \qquad \forall j \in J$$

Valeur absolue

- La valeur optimale de ces deux modèles si pour chaque *j* au moins une des deux valeurs de x_i⁺ et x_i⁻ est 0.
- Dans ce cas $x_j^+ = x_j$ si $x_j >= 0$ et $-x_j^- = x_j$ si $x_j <= 0$
- Dans le cas ou x_i^+ et $x_i^- > 0$ pour un certain j,
 - définissions $d = \min(x_i^+, x_i^-)$, d est donc > 0
 - Soustrayons d de x_i^+ et de x_i^-
 - Ceci ne change en rien la valeur de $x_i = x_i^+ x_i^-$
 - Mais la valeur de $|x_i| = x_i^+ + x_i^-$ est réduite de 2d
 - Ce qui contredit le fait que la solution était optimale, puisqu'il est possible de la réduire de 2d.
- Sous quelle condition la technique précédente est-elle valide ?

Valeur absolue: un exemple

- La valeur absolue représente souvent une déviation (un écart positif ou négatif) par rapport à une cible souhaitée.
- Prenons l'exemple d'une régression linéaire:
 - On veut déterminer la droite qui permet le mieux possible d'expliquer un ensemble de points (v_i, w_i) .
 - Les coefficients de la droite sont donnés par a et b de sorte que w = av + b (a est la pente de la droite et b est l'ordonnée à l'origine).
 - Le problème de la régression linéaire est posé comme suit:

Minimize:
$$f(z)$$

Subject to:

$$w_j = av_j + b - z_j \qquad \forall j \in J$$

Valeur absolue: un exemple

 Dans ce modèle z_j représente la différence entre av_j+b (la prédiction de la droite) et w_j (l'observation réelle). C'est en quelque sorte l'erreur d'approximation par une droite.

- On minimise f(z), une fonction de l'erreur qui peut être:
 - La somme des carrés

$$f(z) = \sum_{j \in J} z_j^2$$

La somme des valeurs absolues

$$f(z) = \sum_{j \in J} |z_j|$$

L'erreur maximale

$$f(z) = \max_{j \in J} |z_j|$$

Objectif minimax

Considérer le modèle suivant (le signe : ≥ signifie <= ou >=)

Minimize:
$$\max_{k \in K} \sum_{j \in J} c_{kj} x_j$$
 Subject to:
$$\sum_{j \in J} a_{ij} x_j \gtrless b_i \qquad \forall i \in I$$

$$x_j \geq 0 \qquad \forall j \in J$$

- Si par exemple on a K = {1,2,3} et J = {1,2} alors l'objectif sera
 - Minimiser Max($c_{11}x_1 + c_{12}x_2, c_{21}x_1 + c_{22}x_2, c_{31}x_1 + c_{32}x_2$)
- On retrouve ce type de problème lorsqu'on veut réduire le pire cas, comme l'erreur maximum, la violation maximale, etc.

Objectif minimax

 Encore une fois, on peut linéariser cet objectif en ajoutant une nouvelle variable: la valeur du coût maximum:

$$z = \max_{k \in K} \sum_{j \in J} c_{kj} x_j$$

 Toutefois l'opération max doit disparaitre, on doit donc plutôt introduire cette variable à travers des contraintes liantes nécessaires:

Minimize: zSubject to: $\sum_{j \in J} a_{ij} x_j \ge b_i \qquad \forall i \in I$ $\sum_{j \in J} c_{kj} x_j \le z \qquad \forall k \in K$ $x_j \ge 0 \qquad \forall j \in J$

• En minimisant z, on s'assure de minimiser les |K| objectifs. De plus, on garantit que z est égal au maximum des coûts (pourquoi ?)

Objectif fractionnaire

Considérons le modèle suivant:

Minimize:
$$\left(\sum_{j\in J}c_jx_j+\alpha\right)\bigg/\left(\sum_{j\in J}d_jx_j+\beta\right)$$
 Subject to:
$$\sum_{j\in J}a_{ij}x_j \gtrless b_i \qquad \forall i\in I$$

$$x_j \geq 0 \qquad \forall j\in J$$

- Ici nous avons un ratio de deux termes linéaires, et tout le reste du modèle est linéaire. Il faut donc transformer l'objectif.
- On retrouve ce genre de modèle lorsqu'on traite des données financières par exemple (taux de rendement).

Objectif fractionnaire

- Encore une fois, nous introduirons des variables supplémentaires afin de linéariser le modèle.
 - Supposons sans perte de généralité que le dénominateur soit positif (sinon il faut inverser les inégalités)
 - Nous utiliserons les variables t et y_i défini comme suit: $y_i = tx_i$
- On substitue l'inégalité ci-dessous dans le modèle originel.

Subject to:

$$t = 1/(\sum_{i \in I} d_i x_i + \beta) \longrightarrow$$

$$\sum_{j \in J} c_j x_j t + \alpha t$$

$$\sum_{j \in J} a_{ij} x_j \ge b_i \qquad \forall i \in I$$

$$\sum_{j \in J} d_j x_j t + \beta t = 1$$

$$t > 0$$

$$x_j \ge 0 \qquad \forall j \in J$$

Objectif fractionnaire

• Ensuite on multiplie chaque côté des contraintes originelles par t (t >= 0) et on réécrit le modèle en terme de y_i et de t (où $y_i = tx_i$).

Minimize:
$$\sum_{j \in J} c_j y_j + \alpha t$$
 Subject to:
$$\sum_{j \in J} a_{ij} y_j \gtrless b_i t \qquad \forall i \in I$$

$$\sum_{j \in J} d_j y_j + \beta t = 1$$

$$t > 0$$

$$y_j \ge 0 \qquad \forall j \in J$$

- Finalement on permet à *t* d'être >=0 plutôt que >0 afin d'obtenir un programme linéaire.
- Les valeurs de x_j peuvent être obtenus de la solution optimale en divisant y_i par t