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Résumé

• Les	problèmes	ne	se	présentent	pas	toujours	sous	une	forme	qui	soit	
naturellement	linéaire.

• Toutefois	comme	la	PL	est	une	technique	très	efficace,	il	est	souvent	
avantageux	de	« reformuler »	un	problème	de	manière	à	ce	qu’il	soit	
linéaire.

• On	présente	donc	ici	quelques	trucs	et	astuces	en	vrac…

• À	noter	que	leur	efficacité	dépend	de	chaque	solveur	et	de	leur	
capacité	à	effectuer	un	prétraitement	sur	les	modèles.

• Cette	section	est	tirée	du	chapitre	6	du	livre	AIMMS-modeling.



Valeur	absolue

• Soit	le	problème	linéaire	suivant	(le	signe	:				signifie	<=	ou	>=)

• La	valeur	absolue	n’étant	pas	une	fonction	linéaire,	il	faut	trouver	une	
manière	de	s’en	débarrasser…
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Chapter 6

Linear Programming Tricks

This chapterThis chapter explains several tricks that help to transform some models with
special, for instance nonlinear, features into conventional linear programming
models. Since the fastest and most powerful solution methods are those for
linear programming models, it is often advisable to use this format instead of
solving a nonlinear or integer programming model where possible.

ReferencesThe linear programming tricks in this chapter are not discussed in any partic-
ular reference, but are scattered throughout the literature. Several tricks can
be found in [Wi90]. Other tricks are referenced directly.

Statement of a
linear program

Throughout this chapter the following general statement of a linear program-
ming model is used:

Minimize:
∑

j∈J
cjxj

Subject to: ∑

j∈J
aijxj ≷ bi ∀i ∈ I

xj ≥ 0 ∀j ∈ J

In this statement, the cj ’s are referred to as cost coefficients, the aij ’s are re-
ferred to as constraint coefficients, and the bi’s are referred to as requirements.
The symbol “≷” denotes any of “≤” , “=”, or “≥” constraints. A maximiza-
tion model can always be written as a minimization model by multiplying the
objective by (−1) and minimizing it.

6.1 Absolute values

The modelConsider the following model statement:

Minimize:
∑

j∈J
cj|xj| cj > 0

Subject to: ∑

j∈J
aijxj ≷ bi ∀i ∈ I

xj free
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6.2 A minimax objective

The modelConsider the model

Minimize: max
k∈K

∑

j∈J
ckjxj

Subject to: ∑

j∈J
aijxj ≷ bi ∀i ∈ I

xj ≥ 0 ∀j ∈ J

Such an objective, which requires a maximum to be minimized, is known as a
minimax objective. For example, when K = {1,2,3} and J = {1,2}, then the
objective is:

Minimize: max{c11x1 + c12x2 c21x1 + c22x2 c31x1 + c32x2}

An example of such a problem is in least maximum deviation regression, ex-
plained in the previous section.

Transforming a
minimax
objective

The minimax objective can be transformed by including an additional decision
variable z, which represents the maximum costs:

z = max
k∈K

∑

j∈J
ckjxj

In order to establish this relationship, the following extra constraints must be
imposed: ∑

j∈J
ckjxj ≤ z ∀k ∈ K

Now when z is minimized, these constraints ensure that z will be greater than,
or equal to,

∑
j∈J ckjxj for all k. At the same time, the optimal value of z

will be no greater than the maximum of all
∑
j∈J ckjxj because z has been

minimized. Therefore the optimal value of z will be both as small as possible
and exactly equal to the maximum cost over K.

The equivalent
linear program

Minimize: z
Subject to: ∑

j∈J
aijxj ≷ bi ∀i ∈ I

∑

j∈J
ckjxj ≤ z ∀k ∈ K

xj ≥ 0 ∀j ∈ J

The problem of maximizing a minimum (a maximin objective) can be trans-
formed in a similar fashion.



Valeur	absolue

• Pour	ce	faire	on	va	remplacer	chaque	variable	xj par	deux	autres	
variables	xj+ et	xj- qui	représente	les	parties	positives	et	négatives	de	
chaque	variable.

• Pour	ce	faire	on	applique	la	substitution	suivante:

• Ce	qui	nous	donne	le	modèle	suivant:
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Instead of the standard cost function, a weighted sum of the absolute values
of the variables is to be minimized. To begin with, a method to remove these
absolute values is explained, and then an application of such a model is given.

Handling
absolute
values . . .

The presence of absolute values in the objective function means it is not possi-
ble to directly apply linear programming. The absolute values can be avoided
by replacing each xj and |xj| as follows.

xj = x+j − x−j
|xj| = x+j + x−jx+j , x

−
j ≥ 0

The linear program of the previous paragraph can then be rewritten as follows.

Minimize:
∑

j∈J
cj(x+j + x−j ) cj > 0

Subject to: ∑

j∈J
aij(x+j − x−j ) ≷ bi ∀i ∈ I

x+j , x
−
j ≥ 0 ∀j ∈ J

. . . correctlyThe optimal solutions of both linear programs are the same if, for each j, at
least one of the values x+j and x−j is zero. In that case, xj = x+j when xj ≥ 0,
and xj = −x−j when xj ≤ 0. Assume for a moment that the optimal values
of x+j and x−j are both positive for a particular j, and let δ = min{x+j , x−j }.
Subtracting δ > 0 from both x+j and x−j leaves the value of xj = x+j − x−j
unchanged, but reduces the value of |xj| = x+j +x−j by 2δ. This contradicts the
optimality assumption, because the objective function value can be reduced by
2δcj .

Application:
curve fitting

Sometimes xj represents a deviation between the left- and the right-hand side
of a constraint, such as in regression. Regression is a well-known statistical
method of fitting a curve through observed data. One speaks of linear regres-
sion when a straight line is fitted.

ExampleConsider fitting a straight line through the points (vj,wj) in Figure 6.1. The
coefficients a and b of the straight line w = av + b are to be determined.
The coefficient a is the slope of the line, and b is the intercept with the w-axis.
In general, these coefficients can be determined using a model of the following
form:

Minimize: f(z)
Subject to:

wj =avj + b − zj ∀j ∈ J
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Valeur	absolue

• La	valeur	optimale	de	ces	deux	modèles	si	pour	chaque	j	 au	moins	
une	des	deux	valeurs	de	xj+ et	xj- est	0.	

• Dans	ce	cas	xj+ =	xj si	xj >=	0	et	-xj- =	xj si	xj <=	0

• Dans	le	cas	ou	xj+ et	xj- >	0	pour	un	certain	j,	
– définissions	d =	min(xj+,xj-),	d est	donc	>	0
– Soustrayons		d de	xj+ et	de	xj-

– Ceci	ne	change	en	rien	la	valeur	de	xj = xj+ - xj-

–Mais	la	valeur	de	|xj| = xj+ +	xj- est	réduite	de	2d
– Ce	qui	contredit	le	fait	que	la	solution	était	optimale,	puisqu’il	est	possible	de	la	
réduire	de	2d.

• Sous	quelle	condition	la	technique	précédente	est-elle	valide	?
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Valeur	absolue:	un	exemple

• La	valeur	absolue	représente	souvent	une	déviation (un	écart	positif	
ou	négatif)	par	rapport	à	une	cible	souhaitée.

• Prenons	l’exemple	d’une	régression	linéaire:
– On	veut	déterminer	la	droite	qui	permet	le	mieux	possible	d’expliquer	un	
ensemble	de	points	(vj,wj).

– Les	coefficients	de	la	droite	sont	donnés	par	a et	b de	sorte	que	w	=	av+b (a	est	
la	pente	de	la	droite	et	b	est	l’ordonnée	à	l’origine).

– Le	problème	de	la	régression	linéaire	est	posé	comme	suit:
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Valeur	absolue:	un	exemple

• Dans	ce	modèle	zj représente	la	différence	entre	avj+b (la	prédiction	
de	la	droite)	et	wj (l’observation	réelle).	C’est	en	quelque	sorte	
l’erreur	d’approximation	par	une	droite.

• On	minimise	f(z),	une	fonction	de	l’erreur	qui	peut	être:
– La	somme	des	carrés

– La	somme	des	valeurs	absolues	

– L’erreur	maximale 7
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v

w

(0, b)

(0, 0)

slope is a

Figure 6.1: Linear regression

In this model zj denotes the difference between the value of avj +b proposed
by the linear expression and the observed value, wj. In other words, zj is the
error or deviation in the w direction. Note that in this case a, b, and zj are the
decision variables, whereas vj and wj are data. A function f(z) of the error
variables must be minimized. There are different options for the objective
function f(z).

Different
objectives in
curve fitting

Least-squares estimation is an often used technique that fits a line such that
the sum of the squared errors is minimized. The formula for the objective
function is:

f(z) =
∑

j∈J
z2
j

It is apparent that quadratic programming must be used for least squares es-
timation since the objective is quadratic.

Least absolute deviations estimation is an alternative technique that minimizes
the sum of the absolute errors. The objective function takes the form:

f(z) =
∑

j∈J
|zj|

When the data contains a few extreme observations, wj , this objective is ap-
propriate, because it is less influenced by extreme outliers than is least-squares
estimation.

Least maximum deviation estimation is a third technique that minimizes the
maximum error. This has an objective of the form:

f(z) = max
j∈J

|zj|

This form can also be translated into a linear programming model, as ex-
plained in the next section.
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Objectif	minimax

• Considérer	le	modèle	suivant	(le	signe	:				signifie	<=	ou	>=)

• Si	par	exemple	on	a	K	=	{1,2,3}	et	J	=	{1,2}	alors	l’objectif	sera
–Minimiser	 Max(	c11x1 +	c12x2,	c21x1 +	c22x2,	c31x1 +	c32x2)	

• On	retrouve	ce	type	de	problème	lorsqu’on	veut	réduire	le	pire	cas,	
comme	l’erreur	maximum,	la	violation	maximale,	etc.
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6.2 A minimax objective

The modelConsider the model

Minimize: max
k∈K

∑

j∈J
ckjxj

Subject to: ∑

j∈J
aijxj ≷ bi ∀i ∈ I

xj ≥ 0 ∀j ∈ J

Such an objective, which requires a maximum to be minimized, is known as a
minimax objective. For example, when K = {1,2,3} and J = {1,2}, then the
objective is:

Minimize: max{c11x1 + c12x2 c21x1 + c22x2 c31x1 + c32x2}

An example of such a problem is in least maximum deviation regression, ex-
plained in the previous section.

Transforming a
minimax
objective

The minimax objective can be transformed by including an additional decision
variable z, which represents the maximum costs:

z = max
k∈K

∑

j∈J
ckjxj

In order to establish this relationship, the following extra constraints must be
imposed: ∑

j∈J
ckjxj ≤ z ∀k ∈ K

Now when z is minimized, these constraints ensure that z will be greater than,
or equal to,

∑
j∈J ckjxj for all k. At the same time, the optimal value of z

will be no greater than the maximum of all
∑
j∈J ckjxj because z has been

minimized. Therefore the optimal value of z will be both as small as possible
and exactly equal to the maximum cost over K.

The equivalent
linear program

Minimize: z
Subject to: ∑

j∈J
aijxj ≷ bi ∀i ∈ I

∑

j∈J
ckjxj ≤ z ∀k ∈ K

xj ≥ 0 ∀j ∈ J

The problem of maximizing a minimum (a maximin objective) can be trans-
formed in a similar fashion.
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Objectif	minimax

• Encore	une	fois,	on	peut	linéariser	cet	objectif	en	ajoutant	une	
nouvelle	variable:	la	valeur	du	coût	maximum:

• Toutefois	l’opération	max doit	disparaitre,	on	doit	donc	plutôt	
introduire	cette	variable	à	travers	des	contraintes	liantes	nécessaires:

• En	minimisant	z,	on	s’assure	de	minimiser	les	|K|	objectifs.	De	plus,	
on	garantit	que	z est	égal	au	maximum	des	coûts	(pourquoi	?)
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imposed: ∑

j∈J
ckjxj ≤ z ∀k ∈ K

Now when z is minimized, these constraints ensure that z will be greater than,
or equal to,

∑
j∈J ckjxj for all k. At the same time, the optimal value of z

will be no greater than the maximum of all
∑
j∈J ckjxj because z has been

minimized. Therefore the optimal value of z will be both as small as possible
and exactly equal to the maximum cost over K.

The equivalent
linear program

Minimize: z
Subject to: ∑

j∈J
aijxj ≷ bi ∀i ∈ I

∑

j∈J
ckjxj ≤ z ∀k ∈ K

xj ≥ 0 ∀j ∈ J

The problem of maximizing a minimum (a maximin objective) can be trans-
formed in a similar fashion.
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6.2 A minimax objective

The modelConsider the model
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will be no greater than the maximum of all
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j∈J
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The problem of maximizing a minimum (a maximin objective) can be trans-
formed in a similar fashion.



Objectif	fractionnaire

• Considérons	le	modèle	suivant:

• Ici	nous	avons	un	ratio	de	deux	termes	linéaires,	et	tout	le	reste	du	
modèle	est	linéaire.	Il	faut	donc	transformer	l’objectif.

• On	retrouve	ce	genre	de	modèle	lorsqu’on	traite	des	données	
financières	par	exemple	(taux	de	rendement).
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6.3 A fractional objective

The modelConsider the following model:

Minimize:
(∑

j∈J
cjxj +α

)/ (∑

j∈J
djxj + β

)

Subject to: ∑

j∈J
aijxj ≷ bi ∀i ∈ I

xj ≥ 0 ∀j ∈ J

In this problem the objective is the ratio of two linear terms. It is assumed
that the denominator (the expression

∑
j∈J djxj + β) is either positive or neg-

ative over the entire feasible set of xj . The constraints are linear, so that a
linear program will be obtained if the objective can be transformed to a linear
function. Such problems typically arise in financial planning models. Possible
objectives include the rate of return, turnover ratios, accounting ratios and
productivity ratios.

Transforming a
fractional
objective

The following method for transforming the above model into a regular linear
programming model is from Charnes and Cooper ([Ch62]). The main trick is to
introduce variables yj and t which satisfy: yj = txj . In the explanation below,
it is assumed that the value of the denominator is positive. If it is negative, the
directions in the inequalities must be reversed.

1. Rewrite the objective function in terms of t, where

t = 1/(
∑

j∈J
djxj + β)

and add this equality and the constraint t > 0 to the model. This gives:

Minimize:
∑

j∈J
cjxjt +αt

Subject to: ∑

j∈J
aijxj ≷ bi ∀i ∈ I

∑

j∈J
djxjt + βt = 1

t > 0

xj ≥ 0 ∀j ∈ J

2. Multiply both sides of the original constraints by t, (t > 0), and rewrite
the model in terms of yj and t, where yj = xjt. This yields the model:



Objectif	fractionnaire

• Encore	une	fois,	nous	introduirons	des	variables	supplémentaires	
afin	de	linéariser	le	modèle.
– Supposons	sans	perte	de	généralité	que	le	dénominateur	soit	positif	(sinon	il	
faut	inverser	les	inégalités)

– Nous	utiliserons	les	variables	t et		yi	défini	comme	suit:	yj =	txj
• On	substitue	l’inégalité	ci-dessous	dans	le	modèle	originel.

11
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aijxj ≷ bi ∀i ∈ I
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Objectif	fractionnaire

• Ensuite	on	multiplie	chaque	côté	des	contraintes	originelles	par	t
(t >=	0)	et	on	réécrit	le	modèle	en	terme	de	yj et	de	t (où	yj =	txj ).

• Finalement	on	permet	à	t d’être	>=0	plutôt	que	>0	afin	d’obtenir	
un	programme	linéaire.

• Les	valeurs	de	xj peuvent	être	obtenus	de	la	solution	optimale	en	
divisant	yj par	t

12
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Minimize:
∑

j∈J
cjyj +αt

Subject to: ∑

j∈J
aijyj ≷ bit ∀i ∈ I

∑

j∈J
djyj + βt = 1

t > 0

yj ≥ 0 ∀j ∈ J

3. Finally, temporarily allow t to be ≥ 0 instead of t > 0 in order to get a
linear programming model. This linear programming model is equivalent
to the fractional objective model stated above, provided t > 0 at the
optimal solution. The values of the variables xj in the optimal solution
of the fractional objective model are obtained by dividing the optimal yj
by the optimal t.

6.4 A range constraint

The modelConsider the following model:

Minimize:
∑

j∈J
cjxj

Subject to:
di ≤

∑

j∈J
aijxj ≤ ei ∀i ∈ I

xj ≥ 0 ∀j ∈ J

When one of the constraints has both an upper and lower bound, it is called
a range constraint. Such a constraint occurs, for instance, when a minimum
amount of a nutrient is required in a blend and, at the same time, there is a
limited amount available.

Handling
a range
constraint

The most obvious way to model such a range constraint is to replace it by two
constraints:

∑

j∈J
aijxj ≥ di and

∑

j∈J
aijxj ≤ ei ∀i ∈ I

However, as each constraint is now stated twice, both must be modified when
changes occur. A more elegant way is to introduce extra variables. By intro-
ducing new variables ui one can rewrite the constraints as follows:

ui +
∑

j∈J
aijxj = ei ∀i ∈ I


