Outils de Recherche Opérationnelle en Génie

MTH 8414

Astuce de modélisation en Programmation Linéaire

Résumé

- Les problèmes ne se présentent pas toujours sous une forme qui soit naturellement linéaire.
- Toutefois comme la PL est une technique très efficace, il est souvent avantageux de «reformuler » un problème de manière à ce qu'il soit linéaire.
- On présente donc ici quelques trucs et astuces en vrac...
- À noter que leur efficacité dépend de chaque solveur et de leur capacité à effectuer un prétraitement sur les modèles.
- Cette section est tirée du chapitre 6 du livre AIMMS-modeling.

Valeur absolue

- Soit le problème linéaire suivant (le signe : ₹signifie <= ou >=)

Minimize:

$$
\sum_{j \in J} c_{j}\left|x_{j}\right| \quad c_{j}>0
$$

Subject to:

$$
\begin{gathered}
\sum_{j \in J} a_{i j} x_{j} \gtrless b_{i} \quad \forall i \in I \\
x_{j} \quad \text { free }
\end{gathered}
$$

- La valeur absolue n'étant pas une fonction linéaire, il faut trouver une manière de s'en débarrasser...

Valeur absolue

- Pour ce faire on va remplacer chaque variable x_{j} par deux autres variables x_{j}^{+}et x_{j}^{-}qui représente les parties positives et négatives de chaque variable.
- Pour ce faire on applique la substitution suivante:

$$
\begin{gathered}
x_{j}=x_{j}^{+}-x_{j}^{-} \\
\left|x_{j}\right|= \\
=x_{j}^{+}+x_{j}^{-} \\
x_{j}^{+}, x_{j}^{-} \geq 0
\end{gathered}
$$

- Ce qui nous donne le modèle suivant:

Minimize:

$$
\sum_{j \in J} c_{j}\left(x_{j}^{+}+x_{j}^{-}\right) \quad c_{j}>0
$$

Subject to:

$$
\begin{aligned}
\sum_{j \in J} a_{i j}\left(x_{j}^{+}-x_{j}^{-}\right) \gtrless b_{i} & \forall i \in I \\
x_{j}^{+}, x_{j}^{-} \geq 0 & \forall j \in J
\end{aligned}
$$

Valeur absolue

- La valeur optimale de ces deux modèles si pour chaque j au moins une des deux valeurs de x_{j}^{+}et x_{j}^{-}est 0 .
- Dans ce cas $x_{j}^{+}=x_{j}$ si $x_{j}>=0$ et $-x_{j}^{-}=x_{j}$ si $x_{j}<=0$
- Dans le cas ou x_{j}^{+}et $x_{j}^{-}>0$ pour un certain j,
- définissions $d=\min \left(x_{j}^{+}, x_{j}^{-}\right), d$ est donc >0
- Soustrayons d de x_{j}^{+}et de x_{j}^{-}
- Ceci ne change en rien la valeur de $x_{j}=x_{j}^{+}-x_{j}^{-}$
- Mais la valeur de $\left|x_{j}\right|=x_{j}^{+}+x_{j}^{-}$est réduite de $2 d$
- Ce qui contredit le fait que la solution était optimale, puisqu'il est possible de la réduire de $2 d$.
- Sous quelle condition la technique précédente est-elle valide ?

Valeur absolue: un exemple

- La valeur absolue représente souvent une déviation (un écart positif ou négatif) par rapport à une cible souhaitée.
- Prenons l'exemple d'une régression linéaire:
- On veut déterminer la droite qui permet le mieux possible d'expliquer un ensemble de points ($\mathrm{v}_{\mathrm{j}}, \mathrm{w}_{\mathrm{j}}$).
- Les coefficients de la droite sont donnés par a et b de sorte que $w=a v+b$ (a est la pente de la droite et b est l'ordonnée à l'origine).
- Le problème de la régression linéaire est posé comme suit:

Minimize:
$f(z)$
Subject to:

$$
w_{j}=a v_{j}+b-z_{j} \quad \forall j \in J
$$

Valeur absolue: un exemple

- Dans ce modèle z_{j} représente la différence entre $\mathrm{av}_{\mathrm{j}}+\mathrm{b}$ (la prédiction de la droite) et w_{j} (l'observation réelle). C'est en quelque sorte l'erréur d'approximation par une droite.

$$
\begin{gathered}
f(z) \\
w_{j}=a v_{j}+b-z_{j} \quad \forall j \in J
\end{gathered}
$$

- On minimise $f(z)$, une fonction de l'erreur qui peut être:
- La somme des carrés

$$
f(z)=\sum_{j \in J} z_{j}^{2}
$$

- La somme des valeurs absolues

$$
f(z)=\sum_{j \in J}\left|z_{j}\right|
$$

- L'erreur maximale

$$
\begin{equation*}
f(z)=\max _{j \in J}\left|z_{j}\right| \tag{7}
\end{equation*}
$$

Objectif minimax

- Considérer le modèle suivant (le signe : چsignifie <= ou >=)

Minimize:

$$
\max _{k \in K} \sum_{j \in J} c_{k j} x_{j}
$$

Subject to:

$$
\begin{aligned}
\sum_{j \in J} a_{i j} x_{j} \gtrless b_{i} & \forall i \in I \\
x_{j} & \geq 0
\end{aligned} \quad \forall j \in J ~ \$
$$

- Si par exemple on a $K=\{1,2,3\}$ et $J=\{1,2\}$ alors l'objectif sera - Minimiser $\operatorname{Max}\left(c_{11} x_{1}+c_{12} x_{2}, c_{21} x_{1}+c_{22} x_{2}, c_{31} x_{1}+c_{32} x_{2}\right)$
- On retrouve ce type de problème lorsqu'on veut réduire le pire cas, comme l'erreur maximum, la violation maximale, etc.

Objectif minimax

- Encore une fois, on peut linéariser cet objectif en ajoutant une nouvelle variable: la valeur du coût maximum:

$$
z=\max _{k \in K} \sum_{j \in J} c_{k j} x_{j}
$$

- Toutefois l'opération max doit disparaitre, on doit donc plutôt introduire cette variable à travers des contraintes liantes nécessaires:

Minimize: z
Subject to:

$$
\begin{aligned}
\sum_{j \in J} a_{i j} x_{j} \gtrless b_{i} & \forall i \in I \\
\sum_{j \in J} c_{k j} x_{j} \leq z & \forall k \in K \\
x_{j} \geq 0 & \forall j \in J
\end{aligned}
$$

- En minimisant z, on s'assure de minimiser les $|K|$ objectifs. De plus, on garantit que z est égal au maximum des coûts (pourquoi ?)

Objectif fractionnaire

- Considérons le modèle suivant:

Minimize:

$$
\left(\sum_{j \in J} c_{j} x_{j}+\alpha\right) /\left(\sum_{j \in J} d_{j} x_{j}+\beta\right)
$$

Subject to:

$$
\begin{aligned}
\sum_{j \in J} a_{i j} x_{j} \gtrless b_{i} & \forall i \in I \\
x_{j} \geq 0 & \forall j \in J
\end{aligned}
$$

- Ici nous avons un ratio de deux termes linéaires, et tout le reste du modèle est linéaire. Il faut donc transformer l'objectif.
- On retrouve ce genre de modèle lorsqu'on traite des données financières par exemple (taux de rendement).

Objectif fractionnaire

- Encore une fois, nous introduirons des variables supplémentaires afin de linéariser le modèle.
- Supposons sans perte de généralité que le dénominateur soit positif (sinon il faut inverser les inégalités)
- Nous utiliserons les variables t et y_{i} défini comme suit: $y_{j}=t x_{j}$
- On substitue l'inégalité ci-dessous dans le modèle originel.

Minimize:

$$
\sum_{j \in J} c_{j} x_{j} t+\alpha t
$$

Subject to:

$$
\begin{aligned}
& \sum_{j \in J} a_{i j} x_{j} \gtrless b_{i} \quad \forall i \in I \\
& \sum_{j \in J} d_{j} x_{j} t+\beta t=1 \\
& t>0 \\
& x_{j} \geq 0 \quad \forall j \in J
\end{aligned}
$$

Objectif fractionnaire

- Ensuite on multiplie chaque côté des contraintes originelles par t ($t>=0$) et on réécrit le modèle en terme de y_{j} et de t (où $y_{j}=t x_{j}$).

Minimize:

$$
\sum_{j \in J} c_{j} y_{j}+\alpha t
$$

Subject to:

$$
\begin{aligned}
\sum_{j \in J} a_{i j} y_{j} & \gtrless b_{i} t \quad \forall i \in I \\
\sum_{j \in J} d_{j} y_{j}+\beta t=1 & \\
t & >0 \\
y_{j} & \geq 0 \quad \forall j \in J
\end{aligned}
$$

- Finalement on permet à t d'être $^{\prime}=0$ plutôt que >0 afin d'obtenir un programme linéaire.
- Les valeurs de x_{j} peuvent être obtenus de la solution optimale en divisant y_{j} par t

