MTH44IO
 Constraint Programming

Merci à Willem-Jan van Hoeve, CMU.

Outline

- Successful Applications
- Modeling
- Solving
- Some details
- global constraints
- scheduling
- Integrated methods (MIP+CP)

Constraint Programming Overview

Evolution events of CP

- 1970s: Image processing applications in AI; Search+qualitative inference
- 1980s: Logic Programming (Prolog); Search + logical inference
- 1989: CHIP System; Constraint Logic Programming
- 1990s: Constraint Programming; Industrial Solvers (ILOG, Eclipse,...)
- 1994:Advanced inference for alldifferent and resource scheduling
- 2000s: Global constraints; integrated methods; modeling languages
- 2006: CISCO Systems acquires Eclipse CLP solver
- 2009: IBM acquires ILOG CP Solver \& Cplex

Successful applications

Sport Scheduling

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7
Period 1	0 vs 1	0 vs 2	4 vs 7	3 vs 6	3 vs 7	1 vs 5	2 vs 4
Period 2	2 vs 3	1 vs 7	0 vs 3	5 vs 7	1 vs 4	0 vs 6	5 vs 6
Period 3	4 vs 5	3 vs 5	1 vs 6	0 vs 4	2 vs 6	2 vs 7	0 vs 7
Period 4	6 vs 7	4 vs 6	2 vs 5	1 vs 2	0 vs 5	3 vs 4	1 vs 3

Schedule of 1997/I998 ACC basketball league (9 teams)

- various complicated side constraints
- all I79 solutions were found in 24 h using enumeration and integer linear programming [Nemhauser \& Trick, 1998]
- all 179 solutions were found in less than a minute using constraint programming [Henz, 1999, 200I]

Hong Kong Airport

- Gate allocation at the new (1998) Hong Kong airport
- System was implemented in only four months, includes constraint programming technology (ILOG)
- Schedules ~ 800 flights a day
(47 million passengers in 2007)

G. Freuder and M. Wallace. Constraint Technology and the Commercial World. IEEE Intelligent Systems I5(I): 20-23, 2000.

Port of Singapore

Railroad Optimization

- Netherlands Railways has among the densest rail networks in the world, with 5,500 trains per day
- Constraint programming is one of the components in their railway planning software, which was used to design a new timetable from scratch (2009)
- Much more robust and effective schedule, and $\$ 75 \mathrm{M}$ additional annual profit
- INFORMS Edelman Award winner (2009)

Modeling in CP

CP Modeling basics

- CP models are very different from MIP models
- Virtually any expression over the variables is allowed
- e.g., $x^{3}\left(y^{2}-z\right) \geq 25+x^{2} \cdot \max (x, y, z)$
- CP models can be much more intuitive, close to natural language
- As a consequence, CP applies a different solving method compared to MIP

CP Variables

- Variables in CP can be the same as in your regular MIP model:
- binary, integer, continuous
- In addition, they may take a value from any finite set
- e.g., x in $\{a, b, c, d, e\}$
- the set of possible values is called the domain of a variable
- Finally, there are some 'special' variable types for modeling 'scheduling' applications

CP Constraints

- A constraint is a relation between one or more variables.
- Let i and j be two integer variables i in $\{0 . .10\}$; j in $\{0 . .10\}$;

- Let $\mathrm{R}(\mathrm{i}, \mathrm{j})$ be the following constraint
- When $\mathrm{R}(\mathrm{i}, \mathrm{j})$ is asserted:
- The domain for i is restricted to $\{1,2,5,7\}$
- The domain for j is restricted to $\{2,3,4,10\}$

CP Constraints

- A solution to a constraint problem assigns a value to all the variables in such a way that all the constraints are satisfied
- $i=2, j=4, k=8$ is a solution of the system of three constraints R,S,T below

T \quad k
1 j 1 3 2 7 5 3 8

CP Constraints

What does a constraint do?

- Feasibility checking
-can the constraint be satisfied given the domains of its variables
- Pruning
-remove values from the domains if they do not appear in any solution of the constraint.

Constraint Propagation

- When the domain of a variable is reduced, constraints may imply domain reductions for other related variables.
- Example:
- Remove 1 from the domain of i

- It results in removing 2 from the domain of j
- The value 3 is still in the domain of j

Constraint Propagation

- When the domain of a variable is reduced, the effects of this change are propagated through all the constraints
- In this example, let us set i to the value 2

Constraints as Algorithms

- In most cases, it is inefficient to implement constraints using actual relational tables.
- CP languages thus use propagation algorithms to implement arithmetic constraints and all others.
- The propagation algorithm must behave in the same way as the corresponding extensional relation.

Example: Magic Series

- A series $S=\left(S_{0}, \ldots, S_{n}\right)$ is magic if S_{i} is the number of occurrences of i in S

Example: Magic Series

- A series $S=\left(S_{0}, \ldots, S_{n}\right)$ is magic if S_{i} is the number of occurrences of i in S

Reification

Reification

```
n}=
D = {0..n-1}
var s[D] in D
forall(k in D) s[k] == sum(i in D) (s[i]==k));
```

- Reification
- Allow constraints inside constraints
- Replace the constraint in () by a 0/1 variables representing the truth value of the constraint

Example: Stable Marriages

Example: Stable Marriages

A marriage is stable between James and Kathryn provided that

- Whenever James prefers another woman, say Anne, to Kathryn, then Anne prefers her husband to James;
- Whenever Kathryn prefers another man, say Laurent, to James, then Laurent prefers his spouse to Kathryn.

Example: Stable Marriages

Element Constraints

- Element constraints
- ability to index an array/matrix with a decision variable or an expression;
- Logical constraints
- ability to express any logical combination of constraint
- see also reification

The Element Constraint

- X : variable

- Y : variable

- C : array

3	4	5	5	4	3

- Constraint: $\mathrm{X}=\mathrm{C}[\mathrm{Y}]$
- $X \neq 3$
- $Y \neq 1 \& Y \neq 4$

The Element Constraint

- Facility location: want a constraint that customer c can be assigned to warehouse i only if warehouse open. (open[i]=1 if warehouse i is open)
- MIP: $\mathrm{x}[\mathrm{c}, \mathrm{i}]$ is 1 if customer c is assigned to i

$$
x[c, i]<=\text { open }[i]
$$

- CP: w[c] is the warehouse customer c is assigned to open $[w[c]]=1$; (not a 0,1 variable)

Assignment Problem

- Solve the following assignment problem with AIMMS
- Given 5 tasks (t_{1} to t_{5}) and 5 employees (e_{1} to e_{5})
- Assign one and only one task to each employees such that the assignment minimizes the following costs:

T\E	1	2	3	4	6
1	2	3	5	1	8
2	3	4	3	4	5
3	1	3	4	7	9
4	3	3	2	6	4
5	5	7	2	8	5

- Can you compare with a MIP version of this problem?

Another example of Element: the TSP

- The traveling salesperson problem asks to find a closed tour on a given set of n locations, with minimum total length (see class on heuristics)
- Input: set of locations and distance d_{ij} between two locations i and j

TSP: MIP model

- Classical model based on 'assignment problem'
- Binary variable x_{ij} represents whether the tour goes from i to j
- Objective

$$
\min \sum_{i j} d_{i j} x_{i j}
$$

- Need to make sure that we leave and enter each location exactly once

$$
\begin{aligned}
& \sum_{i} x_{i j}=I \text { for all } i \\
& \sum_{i} x_{i j}=I \text { for all } j
\end{aligned}
$$

- Remove all possible subtours: there are exponentially many; impossible to model concisely in MIP
- MIP Solvers therefore resort to specialized solving methods for the TSP

TSP: CP model

- Variable x_{i} represents the i-th location that the tour visits (variable domain is $\{1,2, \ldots, n\}$)
- Objective
$\min d_{x_{n}, x_{1}}+\sum_{i=1}^{n-1} d_{x_{i}, x_{i+1}} \quad \begin{aligned} & \text { Another way to write } \\ & \text { Element constaints is to put } \\ & \text { variables as subscripts! }\end{aligned}$
- Constraint alldifferent $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$
this is a 'global' constraint

Example: Alldifferent

Alldifferent $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ semantically equivalent to
$\left\{x_{i} \neq x_{i}\right.$ for all $\left.i \neq j\right\}$

Model I:

$$
\begin{aligned}
& x_{1} \in\{a, b\}, x_{2} \in\{a, b\}, x_{3} \in\{a, b, c\} \\
& x_{1} \neq x_{2}, x_{1} \neq x_{3}, x_{2} \neq x_{3} \\
& \rightarrow \text { no domain values will be filtered }
\end{aligned}
$$

Model 2: $\quad x_{1} \in\{a, b\}, x_{2} \in\{a, b\}, x_{3} \in\{a, b, c\}$ alldifferent($\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{2}$)
\rightarrow global view of alldifferent: $x_{3} \in\{c\}$

Grouping constraints together allows more domain filtering!

Filtering for alldifferent

Observation [Régin, 1994]: solution to alldifferent
matching in bipartite graph covering all variables

Example:

$$
\begin{aligned}
& x_{1} \in\{a, b\}, x_{2} \in\{a, b\}, x_{3} \in\{b, c\} \\
& \text { alldifferent }\left(x_{1}, x_{2}, x_{3}\right)
\end{aligned}
$$

Filtering: remove all edges (and corresponding domain values) that are not in any matching covering the variables

Find initial matching: $\mathrm{O}(m \sqrt{ })$ time ${ }^{1}$ [Hopcroft and Karp, 1973]
Filter all inconsistent edges?
${ }^{1}$ for n variables and m edges

MIP and CP model compared

- The CP model needs only n variables, while the MIP model needs n^{2} variables (n is \#locations)
- The MIP model is of exponential size, while the CP model only needs one single constraint
- The CP model is more intuitive, as it is based directly on the problem structure: the ordering of the locations in the tour

Note: The special-purpose MIP solving methods outperform CP on pure TSP. In presence of side constraints (e.g., time windows), CP becomes competitive.

Illustration: Sudoku

- each row contains numbers I up to 9
- each column contains numbers I up to 9
- each block contains numbers I up to 9

Sudoku puzzle:
try to complete partially filled square

6	$\mathbf{3}$	9	7	8	2	4	$\mathbf{1}$	5
2	5	1	9	$\mathbf{4}$	3	7	$\mathbf{6}$	8
$\mathbf{4}$	7	8	6	$\mathbf{1}$	$\mathbf{5}$	9	2	3
3	6	2	1	7	9	5	8	4
$\mathbf{1}$	8	7	5	3	$\mathbf{4}$	6	9	$\mathbf{2}$
$\mathbf{5}$	$\mathbf{9}$	4	8	2	6	3	7	1
$\mathbf{9}$	4	3	2	6	8	$\mathbf{1}$	5	7
8	$\mathbf{1}$	6	3	5	7	2	4	9
7	$\mathbf{2}$	5	4	9	1	8	3	6

CP model for Sudoku

variables and domains:
$x_{i j}$ in $\{1,2,3,4,5,6,8,9\}$ for all i, j in $1 . .9$

constraints:

alldifferent $\left(x_{i j}: j=1 . .9\right)$ for all rows i alldifferent($\mathrm{x}_{\mathrm{ij}}: i=1 . .9$) for all columns j alldifferent(x_{ij} : i, j in block b) for all blocks b $x_{i j}=k$ if cell (i, j) is pre-set to value k

See Sudoku.aimmspack

	3						1	
				4			6	
4		8		1	5			3
							8	4
1			5		4			2
5	9							
9			2	6		1		7
	1			5				
	2						3	

Solving time

Experimental results over larger Sudoku instances $(16 \times 16)^{1}$
not-equal constraints
$\left\{x_{i} \neq x_{i}\right.$ for all $\left.i \neq j\right\}$
solved: 94\%
total time: 249.2 Is
backtracks: 2,284,7I6
${ }^{1}$ time limit 600s
alldifferent constraints alldifferent $\left(\mathrm{x}_{\mathrm{ij}}\right)$
solved: 100\%
total time: 6.47s
backtracks: 3020

What is the effect of changing the inference level from 'default' to 'extended’ in our AIMMS model?

Global Constraints

- Examples
-Alldifferent, Count, BinPacking, SequentialSchedule, ParallelSchedule, NetworkFlow, ...
- Global constraints represent combinatorial structure
-Can be viewed as the combination of elementary constraints
-Expressive building blocks for modeling applications
-Embed powerful algorithms from OR, Graph Theory, AI, CS, ...
- Essential for the successful application of CP
-When modeling a problem, always try to identify possible global constraints that can be used

List of Global Constraints (in AIMMS)

Global constraint	Meaning
cp: :A11Different $\left(i, x_{i}\right)$	The x_{i} must have distinct values. $\forall i, j \mid i \neq j: x_{i} \neq x_{j}$
cp: : $\operatorname{Count}\left(i, x_{i}, \mathcal{C}, \otimes, y\right)$	The number of x_{i} related to c is y. $\begin{aligned} & \sum_{i}\left(x_{i}=c\right) \otimes y \text { where } \\ & \quad \otimes \in\{\leq, \geq,=,>,<, \neq\} \end{aligned}$
$\begin{gathered} \mathrm{cp}: \text { :Cardinality }\left(i, x_{i},\right. \\ \left.j, c_{j}, y_{j}\right) \end{gathered}$	The number of x_{i} equal to c_{j} is y_{j}. $\forall j: \sum_{i}\left(x_{i}=c_{j}\right)=y_{j}$
$\begin{gathered} \text { cp: : Sequence }\left(i, x_{i},\right. \\ S, q, l, u) \end{gathered}$	The number of $x_{i} \in S$ for each subsequence of length q is between l and u. $\begin{aligned} & \forall i=1 . . n-q+1: \\ & \quad l \leq \sum_{j=i}^{i+q-1}\left(x_{j} \in S\right) \leq u \end{aligned}$
$\begin{gathered} \mathrm{cp}:: \text { Channe } 7\left(i, x_{i},\right. \\ \left.j, y_{j}\right) \end{gathered}$	Channel variable $x_{i} \rightarrow J$ to $y_{j} \rightarrow I$ $\forall i, j: x_{i}=j \Leftrightarrow y_{j}=i$
cp: :Lexicographic($\left.i, x_{i}, y_{i}\right)$	x is lexicographically before y $\exists i: \forall j<i: x_{j}=y_{j} \wedge x_{i}<y_{i}$
$\begin{gathered} \text { cp: : BinPacking }\left(i, l_{i},\right. \\ \left.j, a_{j}, s_{j}\right) \end{gathered}$	Assign object j of known size s_{j} to bin $a_{j} \rightarrow I$. Size of bin $i \in I$ is l_{i}. $\forall i: \sum_{j \mid a_{j}=i} s_{j} \leq l_{i}$

Summary of CP modeling

- Variables range over finite or continuous domain:

$$
v \in\{a, b, c, d\}, \text { start } \in\{0, I, 2,8,9,10\}, z \in[2.18,4.33]
$$

- Algebraic expressions:

$$
x^{3}\left(y^{2}-z\right) \geq 25+x^{2} \cdot \max (x, y, z)
$$

- Variables as subscripts:
$y=\operatorname{cost}[x] \quad$ (here y and x are variables, 'cost' is an array of parameters)
- Reasoning with meta-constraints:

$$
\sum_{i}\left(x_{i}>T_{i}\right) \leq 5
$$

- Logical relations in which (meta-)constraints can be mixed:

$$
((x<y) O R(y<z)) \Rightarrow(c=\min (x, y))
$$

- Global constraints (a.k.a. symbolic constraints):

Alldifferent($\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$)
SequentialSchedule([start,\ldots, start $\left._{n}\right],\left[\right.$ dur $_{1}, \ldots$, dur $\left._{n}\right],\left[\right.$ end $_{1}, \ldots$, end $\left._{n}\right]$)

CP Solving

CP Solving

In general

- CP variables are
- discrete (i.e., integer valued)
- while CP constraints are
- non-linear
- non-differentiable
- discontinuous

Hence, no traditional Operations Research technique can solve these models (LP, NLP, MIP, etc)

Basics of CP solving

- CP solving is based on intelligently enumerating all possible variable-value combinations
- called backtracking search
- similar to branch\&bound for MIP
- Unlike branch\&bound, CP does not solve a LP relaxation at each search node, but applies specific constraint propagation algorithms
- These propagation algorithms are applied to individual constraints, and their role is to limit the size of the search tree

Solving

Example:
variables/domains $\quad x_{1} \in\{1,2\}, x_{2} \in\{0,1,2,3\}, x_{3} \in\{2,3\}$
constraints

$$
x_{1}>x_{2}
$$

$$
x_{1}+x_{2}=x_{3}
$$

alldifferent $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)$

Solving

Example:

$$
\begin{array}{ll}
\text { variables/domains } & x_{1} \in\{1,2\}, x_{2} \in\{0,1,2, p\}, x_{3} \in\{2,3\} \\
\text { constraints } & x_{1}>x_{2} \\
& x_{1}+x_{2}=x_{3} \\
& \text { alldifferent }\left(x_{1}, x_{2}, x_{3}\right)
\end{array}
$$

Solving

Example:

$$
\begin{array}{ll}
\text { variables/domains } & \left.x_{1} \in\{/\}, x_{2} \in\{\phi, \gamma\}, x_{3} \in\{\chi, 3\}\right\} \\
\text { constraints } & x_{1}>x_{2} \\
& x_{1}+x_{2}=x_{3} \\
& \text { alldifferent }\left(x_{1}, x_{2}, x_{3}\right)
\end{array}
$$

Solving

Example:
variables/domains
$x_{1} \in\{2\}, x_{2} \in\{\phi, I\}, x_{3} \in\{\nmid 2,3\}$
constraints
$x_{1}>x_{2}$
$x_{1}+x_{2}=x_{3}$
alldifferent $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)$

CP - Summary

The solution process of CP interleaves

- Domain filtering
-remove inconsistent values from the domains of the variables, based on individual constraints
- Constraint propagation
- propagate the filtered domains through the constraints, by reevaluating them until there are no more changes in the variable domains
- Search
-implicitly all possible variable-value combinations are enumerated, but the search tree is kept small due to the domain filtering and constraint propagation

Another example

Partial Latin Square (order 3)

- A number in $\{1,2,3\}$ in each cell
- Numbers on each row must be pairwise different
- Numbers on each column must be pairwise different
- Some cells are pre-filled

A possible solution

Another example

Partial Latin Square (order 3)

- A number in $\{1,2,3\}$ in each cell
- Numbers on each row must be pairwise different
- Numbers on each column must be pairwise different
- Some cells are pre-filled

As a CSP:

$$
\begin{aligned}
& x_{i, j} \in\{1,2,3\} \longleftarrow \text { Variables and domains } \\
& x_{i, j} \neq x_{i, k} \quad \forall j \neq k \longleftarrow \\
& x_{i, j} \neq x_{k, j} \quad \forall j \neq k \\
& x_{1,2}=x_{2,1}=3
\end{aligned}
$$

Another example

Partial Latin Square (order 3)

- A number in $\{1,2,3\}$ in each cell
- Numbers on each row must be pairwise different
- Numbers on each column must be pairwise different
- Some cells are pre-filled

As a CSP:

$$
\begin{aligned}
& x_{i, j} \in\{1,2,3\} \\
& x_{i, j} \neq x_{i, k} \quad \forall j \neq k \longleftarrow \text { Pairwise different on rows } \\
& x_{i, j} \neq x_{k, j} \quad \forall j \neq k \longleftarrow \text { Pairwise different on cols } \\
& x_{1,2}=x_{2,1}=3 \longleftarrow \text { Pre-filled cells }
\end{aligned}
$$

Another example

Before propagation

Another example

After propagation

Another example

How to search for a solution?

The simplest approach is using Depth First Search

- Open a choice point
- On each branch post a new constraint
- So as to partition the solution space

A typical example:

$$
x_{i}=v_{j} x_{i} x_{i} \neq v_{j}
$$

- Choose a variable x_{i}
- Choose a value v_{j} in D_{i}
- Post $\mathrm{x}_{\mathrm{i}}=\mathrm{v}_{\mathrm{j}}$ on the left branch
- Post the opposite constraint on backtrack

Another example

Key mechanism:

- The new constraints narrow the domains
- And cause propagation
- On backtrack, the domains are restored

Let's see that in action:

- Choose var with smallest index
- Choose smallest value

Another example

Key mechanism:

- The new constraints narrow the domains
- And cause propagation
- On backtrack, the domains are restored

Another example

Key mechanism:

- The new constraints narrow the domains
- And cause propagation
- On backtrack, the domains are restored

Another example

Key mechanism:

- The new constraints narrow the domains
- And cause propagation
- On backtrack, the domains are restored
domain
wipeout

Another example

Key mechanism:

- The new constraints narrow the domains
- And cause propagation
- On backtrack, the domains are restored
domain
wipeout

fail

Another example

Key mechanism:

- The new constraints narrow the domains
- And cause propagation
- On backtrack, the domains are restored

Another example

Key mechanism:

- The new constraints narrow the domains
- And cause propagation
- On backtrack, the domains are restored

Another example

Key mechanism:

- The new constraints narrow the domains
- And cause propagation
- On backtrack, the domains are restored

Another example

Key mechanism:

- The new constraints narrow the domains
- And cause propagation
- On backtrack, the domains are restored
another wipeout

Another example

Key mechanism:

- The new constraints narrow the domains
- And cause propagation
- On backtrack, the domains are restored
another wipeout

Another example

Key mechanism:

- The new constraints narrow the domains
- And cause propagation
- On backtrack, the domains are restored

Another example

Key mechanism:

- The new constraints narrow the domains
- And cause propagation
- On backtrack, the domains are restored

Another example

Key mechanism:

- The new constraints narrow the domains
- And cause propagation
- On backtrack, the domains are restored

Another example

Key mechanism:

- The new constraints narrow the domains
- And cause propagation
- On backtrack, the domains are restored

Another example

Key mechanism:

- The new constraints narrow the domains
- And cause propagation
- On backtrack, the domains are restored

Another example

Key mechanism:

- The new constraints narrow the domains
- And cause propagation
- On backtrack, the domains are restored

Another example

Propagation can have a huge impact

With: 3 leaves
Without: 2,187 leaves

Redundant Constraints

Redundant constraints

- Sometimes it is worth adding a constraint
- Even if it is not necessary
- Because of the additional propagation

Example:

- Let's add a redundant constraint

$$
\begin{aligned}
& \text { "there must be a } 3 \text { in row } 1 \text { " } \\
& \left(\mathrm{x}_{11}=3\right) \vee\left(\mathrm{x}_{12}=3\right) \vee\left(\mathrm{x}_{13}=3\right)
\end{aligned}
$$

Redundant Constraints

Redundant constraints

- Sometimes it is worth adding a constraint
- Even if it is not necessary
- Because of the additional propagation
first round
of propagation

Example:

- Let's add a redundant constraint

$$
\begin{gathered}
\text { "there must be a } 3 \text { in row } 1 \text { " } \\
\left(\mathrm{x}_{11}=3\right) \vee\left(\mathrm{x}_{12}=3\right) \vee\left(\mathrm{x}_{13}=3\right) \\
\text { cst }=0
\end{gathered}
$$

Redundant Constraints

Redundant constraints

- Sometimes it is worth adding a constraint
- Even if it is not necessary
- Because of the additional propagation
first round
of propagation

Example:

- Let's add a redundant constraint

"there must be a 3 in row $1 "$	
$\left(\mathrm{x}_{11}=3\right) \vee$	$\left(\mathrm{x}_{12}=3\right) \vee$
\downarrow	\uparrow
this is 1	cst $=0$

From here, we find a solution with no fail at all!

Redundant Constraints

Global Constraints

- A constraint reasoning on many variables at the same time
- Specialized, powerful filtering

Example

- No more propagation after this

Redundant Constraints

Global Constraints

- A constraint reasoning on many variables at the same time
- Specialized, powerful filtering

Example

- No more propagation after this
- But if we reason on a whole row...

Redundant Constraints

Global Constraints

- A constraint reasoning on many variables at the same time
- Specialized, powerful filtering

Example

- No more propagation after this
- But if we reason on a whole row...
- ...we can deduce (and filter) more

Remember: from here, we find a solution with no fail at all!

Redundant Constraints

Meta constraints vs globals

- Meta-constraints allow to model just about everything
- But they often have poor filtering
- Advice: use globals whenever it is possible

Redundant constraints vs globals

- Redundant constraints must be carefully engineered based on domain knowledge
- But they provide some"global" propagation
- Advice: add if the additional propagation is not subsumed

