MTH4410 Constraint Programming

Merci à Willem-Jan van Hoeve, CMU.

Outline

- Successful Applications
- Modeling
- Solving
- Some details
 - global constraints
 - scheduling
- Integrated methods (MIP+CP)

Constraint Programming Overview

Evolution events of CP

- 1970s: Image processing applications in AI; Search+qualitative inference
- 1980s: Logic Programming (Prolog); Search + logical inference
- I 989: CHIP System; Constraint Logic Programming
- I990s: Constraint Programming; Industrial Solvers (ILOG, Eclipse,...)
- I994: Advanced inference for alldifferent and resource scheduling
- 2000s: Global constraints; integrated methods; modeling languages
- 2006: CISCO Systems acquires Eclipse CLP solver
- 2009: IBM acquires ILOG CP Solver & Cplex

Successful applications

Sport Scheduling

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7
Period 1	0 vs 1	0 vs 2	4 vs 7	3 vs 6	3 vs 7	1 vs 5	2 vs 4
Period 2	2 vs 3	1 vs 7	0 vs 3	5 vs 7	1 vs 4	0 vs 6	5 vs 6
Period 3	4 vs 5	3 vs 5	1 vs 6	0 vs 4	2 vs 6	2 vs 7	0 vs 7
Period 4	6 vs 7	4 vs 6	2 vs 5	1 vs 2	0 vs 5	3 vs 4	1 vs 3

Schedule of 1997/1998 ACC basketball league (9 teams)

- various complicated side constraints
- all 179 solutions were found in 24h using enumeration and integer linear programming [Nemhauser & Trick, 1998]
- all 179 solutions were found in less than a minute using constraint programming [Henz, 1999, 2001]

Hong Kong Airport

- Gate allocation at the new (1998) Hong Kong airport
- System was implemented in only four months, includes constraint programming technology (ILOG)
- Schedules ~800 flights a day (47 million passengers in 2007)

G. Freuder and M. Wallace. Constraint Technology and the Commercial World. *IEEE Intelligent* Systems 15(1): 20-23, 2000.

Port of Singapore

Railroad Optimization

- Netherlands Railways has among the densest rail networks in the world, with 5,500 trains per day
- Constraint programming is one of the components in their railway planning software, which was used to design a new timetable from scratch (2009)
- Much more robust and effective schedule, and \$75M additional annual profit
- INFORMS Edelman Award winner (2009)

Modeling in CP

CP Modeling basics

- CP models are very different from MIP models
- Virtually any expression over the variables is allowed - e.g., $x^3(y^2 - z) \ge 25 + x^{2} \cdot \max(x,y,z)$
- CP models can be much more intuitive, close to natural language
- As a consequence, CP applies a different solving method compared to MIP

CP Variables

- Variables in CP can be the same as in your regular MIP model:
 binary, integer, continuous
- In addition, they may take a value from any finite set
 e.g., x in {a,b,c,d,e}
 - the set of possible values is called the *domain* of a variable
- Finally, there are some 'special' variable types for modeling 'scheduling' applications

CP Constraints

- A constraint is a relation between one or more variables.
- Let i and j be two integer variables
 i in {0..10};
 j in {0..10};

R	i	j
	1	2
	1	3
	2	4
	5	3
	7	10

- Let R(i,j) be the following constraint
 - When R(i,j) is asserted:
 - The domain for i is restricted to {1,2,5,7}
 - The domain for j is restricted to {2,3,4,10}

CP Constraints

 i=2, j=4, k=8 is a solution of the system of three constraints R,S,T below

What does a constraint do?

- Feasibility checking
 - -can the constraint be satisfied given the domains of its variables
- Pruning
 - remove values from the domains if they do not appear in any solution of the constraint.

Constraint Propagation

- When the domain of a variable is reduced, constraints may imply domain reductions for other related variables.
- Example:
 - Remove 1 from the domain of i

- It results in removing 2 from the domain of j
- The value 3 is still in the domain of j

Constraint Propagation

- When the domain of a variable is reduced, the effects of this change are propagated through all the constraints
- In this example, let us set i to the value 2

Constraints as Algorithms

- In most cases, it is inefficient to implement constraints using actual relational tables.
- CP languages thus use propagation algorithms to implement arithmetic constraints and all others.
- The propagation algorithm must behave in the same way as the corresponding extensional relation.

Example: Magic Series

• A series $S = (S_0, ..., S_n)$ is magic if S_i is the number of occurrences of i in S

Example: Magic Series

• A series $S = (S_0, ..., S_n)$ is magic if S_i is the number of occurrences of i in S

Reification

Reification

- Allow constraints inside constraints
- Replace the constraint in () by a 0/1 variables representing the truth value of the constraint

Example: Stable Marriages

Example: Stable Marriages

- A marriage is stable between James and Kathryn provided that
 - Whenever James prefers another woman, say Anne, to Kathryn, then Anne prefers her husband to James;
 - Whenever Kathryn prefers another man, say Laurent, to James, then Laurent prefers his spouse to Kathryn.

Example: Stable Marriages

Element Constraints

- Element constraints
 - ability to index an array/matrix with a decision variable or an expression;
- Logical constraints
 - ability to express any logical combination of constraint
 - see also reification

The Element Constraint

- X : variable
- Y : variable

• C : array

- Constraint: X = C[Y]
- X ≠ 3
- Y ≠ 1 & Y ≠ 4

The Element Constraint

- Facility location: want a constraint that customer c can be assigned to warehouse i only if warehouse open. (open[i]=1 if warehouse i is open)
- MIP: x[c,i] is 1 if customer c is assigned to i x[c,i] <= open[i]
- CP: w[c] is the warehouse customer c is assigned to open[w[c]] = 1; (not a 0,1 variable)

Assignment Problem

- Solve the following assignment problem with AIMMS
 - Given 5 tasks (t_1 to t_5) and 5 employees (e_1 to e_5)
 - Assign one and only one task to each employees such that the assignment minimizes the following costs:

T\E	1	2	3	4	6
1	2	3	5	1	8
2	3	4	3	4	5
3	1	3	4	7	9
4	3	3	2	6	4
5	5	7	2	8	5

- Can you compare with a MIP version of this problem ?

Another example of Element: the TSP

- The traveling salesperson problem asks to find a closed tour on a given set of *n* locations, with minimum total length (see class on heuristics)
- Input: set of locations and distance d_{ij} between two locations i and j

TSP: MIP model

- Classical model based on 'assignment problem'
- Binary variable x_{ii} represents whether the tour goes from i to j
- Objective

 $\min \ \sum_{ij} d_{ij} \, x_{ij}$

Need to make sure that we leave and enter each location exactly once

 $\sum_{j} \mathbf{x}_{ij} = \mathbf{I}$ for all i

 $\sum_{i} x_{ij} = I$ for all j

- Remove all possible subtours: there are exponentially many; impossible to model concisely in MIP
- MIP Solvers therefore resort to specialized solving methods for the TSP

TSP: CP model

- Variable x_i represents the i-th location that the tour visits (variable domain is {1,2,...,n})
- Objective

min
$$d_{x_n, x_1} + \sum_{i=1}^{n-1} d_{x_i, x_{i+1}}$$

Another way to write Element constaints is to put variables as subscripts!

Constraint

alldifferent($x_1, x_2, ..., x_n$)

this is a 'global' constraint

Example: Alldifferent

All different $(x_1, x_2, ..., x_n)$ semantically equivalent to $\{ \mathbf{x}_i \neq \mathbf{x}_i \text{ for all } i \neq j \}$

Model I: $x_1 \in \{a,b\}, x_2 \in \{a,b\}, x_3 \in \{a,b,c\}$ $x_1 \neq x_2, x_1 \neq x_3, x_2 \neq x_3$

 \rightarrow no domain values will be filtered

 $x_1 \in \{a,b\}, x_2 \in \{a,b\}, x_3 \in \{a,b,c\}$ Model 2: all different (x_1, x_2, x_2) \rightarrow global view of all different: $x_3 \in \{c\}$

Grouping constraints together allows more domain filtering!

Filtering for all different

ÉCOLE POLYTECHNIQUE M O N T R É A L

Observation [Régin, 1994]:

solution to all different \iff

matching in bipartite graph covering all variables

Example:

$$\begin{aligned} \mathbf{x}_1 \in \{a,b\}, \, \mathbf{x}_2 \in \{a,b\}, \, \mathbf{x}_3 \in \{b,c\} \\ \textit{alldifferent}(\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3) \end{aligned}$$

Filtering: remove all edges (and corresponding domain values) that are not in any matching covering the variables

Find initial matching: $O(m\sqrt{n})$ time¹ [Hopcroft and Karp, 1973]

Filter all inconsistent edges?

¹ for *n* variables and *m* edges

MIP and CP model compared

- The CP model needs only n variables, while the MIP model needs n² variables (n is #locations)
- The MIP model is of exponential size, while the CP model only needs one single constraint
- The CP model is more intuitive, as it is based directly on the problem structure: the ordering of the locations in the tour

Note: The special-purpose MIP solving methods outperform CP on *pure* TSP. In presence of side constraints (e.g., time windows), CP becomes competitive.

Illustration: Sudoku

- each row contains numbers 1 up to 9
- each column contains numbers 1 up to 9
- each block contains numbers 1 up to 9

Sudoku *puzzle*:

try to complete partially filled square

6	3	9	7	8	2	4	1	5
2	5	1	9	4	3	7	6	8
4	7	8	6	1	5	9	2	3
3	6	2	1	7	9	5	8	4
1	8	7	5	3	4	6	9	2
5	9	4	8	2	6	3	7	1
9	4	3	2	6	8	1	5	7
8	1	6	3	5	7	2	4	9
7	2	5	4	9	1	8	3	6

variables and domains:

 x_{ij} in {1,2,3,4,5,6,8,9} for all i,j in 1..9

constraints:

alldifferent(x_{ij} : j=1..9) for all rows i
alldifferent(x_{ij} : i=1..9) for all columns j
alldifferent(x_{ij} : i,j in block b) for all blocks b

 $x_{ij} = k$ if cell (i,j) is pre-set to value k

See Sudoku.aimmspack

	3						1	
				4			6	
4		8		1	5			3
							8	4
1			5		4			2
5	9							
9			2	6		1		7
	1			5				
	2						3	

Solving time

Experimental results over larger Sudoku instances (16×16)¹

not-equal constraints $\{ x_i \neq x_j \text{ for all } i \neq j \}$

solved: 94% total time: 249.21s backtracks: 2,284,716 alldifferent constraints alldifferent(x_{ij})

solved: 100% total time: 6.47s backtracks: 3020

time limit 600s

What is the effect of changing the inference level from 'default' to 'extended' in our AIMMS model?

Global Constraints

ÉCOLE POLYTECHNIQUE M O N T R É A L

• Examples

- –Alldifferent, Count, BinPacking, SequentialSchedule, ParallelSchedule, NetworkFlow, ...
- Global constraints represent combinatorial structure
 - -Can be viewed as the combination of elementary constraints
 - Expressive building blocks for modeling applications
 - -Embed powerful algorithms from OR, Graph Theory, AI, CS, ...
- Essential for the successful application of CP

-When modeling a problem, always try to identify possible global constraints that can be used

List of Global Constraints (in AIMMS)

Global constraint	Meaning	
cp::AllDifferent (i, x_i)	The x_i must have distinct values.	
	$\forall i, j i \neq j : x_i \neq x_j$	
$cp::Count(i,x_i,c,\otimes,y)$	The number of x_i related to c is y .	
	$\sum_{i} (x_i = c) \otimes y$ where	
	$\otimes \in \{\leq,\geq,=,>,<,\neq\}$	
cp::Cardinality $(i, x_i, $	The number of x_i equal to c_j is y_j .	
$j,c_j,y_j)$	$\forall j : \sum_i (x_i = c_j) = y_j$	
cp::Sequence $(i, x_i,$	The number of $x_i \in S$ for each	
S,q,l,u)	subsequence of length <i>q</i> is	
	between l and u .	
	$\forall i = 1n - q + 1$:	
	$l \leq \sum_{j=i}^{i+q-1} (x_j \in S) \leq u$	
cp::Channel $(i, x_i,$	Channel variable $x_i \rightarrow J$ to $y_j \rightarrow I$	
$j, {\mathcal Y}_j)$	$\forall i, j : x_i = j \Leftrightarrow y_j = i$	
$cp::Lexicographic(i,x_i,y_i)$	x is lexicographically before y	
	$\exists i: \forall j < i: x_j = y_j \land x_i < y_i$	
cp::BinPacking(<i>i</i> , <i>l_i</i> ,	Assign object j of known size s_j to	
$j,a_j,s_j)$	bin $a_j \rightarrow I$. Size of bin $i \in I$ is l_i .	
	$\forall i : \sum_{j \mid a_j = i} S_j \le l_i$	

Summary of CP modeling

- Variables range over finite or continuous domain:
 v ∈ {a,b,c,d}, start ∈ {0,1,2,8,9,10}, z ∈ [2.18, 4.33]
- Algebraic expressions:

 $x^{3}(y^{2}-z) \geq 25 + x^{2} \cdot \max(x,y,z)$

• Variables as subscripts:

y = cost[x] (here y and x are variables, 'cost' is an array of parameters)

• Reasoning with meta-constraints:

 $\sum_{i} (x_i > T_i) \le 5$

- Logical relations in which (meta-)constraints can be mixed: ((x < y) OR (y < z)) ⇒ (c = min(x,y))
- Global constraints (a.k.a. symbolic constraints):
 Alldifferent(x₁,x₂, ...,x_n)
 SequentialSchodulo(Fatent actent] Educe due] Fond and

SequentialSchedule([start₁,..., start_n], [dur₁,...,dur_n], [end₁,...,end_n])

CP Solving

In general

- CP variables are
 - discrete (i.e., integer valued)
- while CP constraints are
 - non-linear
 - non-differentiable
 - discontinuous

Hence, no traditional Operations Research technique can solve these models (LP, NLP, MIP, etc)

- CP solving is based on intelligently enumerating all possible variable-value combinations
 - -called backtracking search
 - -similar to branch&bound for MIP
- Unlike branch&bound, CP does not solve a LP relaxation at each search node, but applies specific constraint propagation algorithms
- These propagation algorithms are applied to individual constraints, and their role is to limit the size of the search tree

Example:

variables/domains constraints

$$\begin{aligned} \mathbf{x}_{1} &\in \{1,2\}, \, \mathbf{x}_{2} \in \{0,1,2,3\}, \, \mathbf{x}_{3} \in \{2,3\} \\ \mathbf{x}_{1} &> \mathbf{x}_{2} \\ \mathbf{x}_{1} &+ \mathbf{x}_{2} = \mathbf{x}_{3} \\ all different(\mathbf{x}_{1},\mathbf{x}_{2},\mathbf{x}_{3}) \end{aligned}$$

Example:

variables/domains

constraints

CP - Summary

The solution process of CP interleaves

• Domain filtering

- remove inconsistent values from the domains of the variables, based on individual constraints
- Constraint propagation
 - propagate the filtered domains through the constraints, by reevaluating them until there are no more changes in the variable domains

• Search

 implicitly all possible variable-value combinations are enumerated, but the search tree is kept small due to the domain filtering and constraint propagation

Partial Latin Square (order 3)

- A number in $\{1,2,3\}$ in each cell
- Numbers on each row must be pairwise different
- Numbers on each column must be pairwise different
- Some cells are pre-filled

A possible solution

Partial Latin Square (order 3)

- A number in $\{1,2,3\}$ in each cell
- Numbers on each row must be pairwise different
- Numbers on each column must be pairwise different
- Some cells are pre-filled

As a CSP:

Partial Latin Square (order 3)

- A number in $\{1,2,3\}$ in each cell
- Numbers on each row must be pairwise different
- Numbers on each column must be pairwise different
- Some cells are pre-filled

As a CSP:

 $\begin{array}{l} x_{i,j} \in \{1,2,3\} \\ x_{i,j} \neq x_{i,k} \quad \forall j \neq k & \longleftarrow \quad \text{Pairwise different on rows} \\ x_{i,j} \neq x_{k,j} \quad \forall j \neq k & \longleftarrow \quad \text{Pairwise different on cols} \\ x_{1,2} = x_{2,1} = 3 & \longleftarrow \quad \text{Pre-filled cells} \end{array}$

Before propagation

$$\begin{array}{c} : & : \\ \{1,2,3\} \ \{1,2,3\} \ \{1,2,3\} \\ & & & & & & & \\ \{1,2,3\} \ \left\{1,2,3\} \ \begin{array}{c} 1,2,3 \\ & & & & & \\ \end{array} \right\} \\ \left\{1,2,3\} \ \begin{array}{c} 3 \\ & & & & & \\ \end{array} \\ \begin{array}{c} & & & & & \\ \end{array} \\ \left\{1,2,3\} \ \begin{array}{c} 3 \\ & & \\ \end{array} \\ \begin{array}{c} & & & \\ \end{array} \\ \begin{array}{c} & & & \\ \end{array} \end{array}$$

After propagation

$$\begin{array}{c} \vdots & \vdots \\ \{1,2,3\} & \{1,2,3\} & \{1,2,3\} \\ & & & & & & & \\ \{1,2,3\} & \vdots & \{1,2,3\} & \vdots & \mathbf{3} \\ & & & & & & & \\ \{1,2,3\} & \mathbf{3} & \{1,2,3\} \end{array}$$

How to search for a solution?

The simplest approach is using Depth First Search

- Open a choice point
- On each branch post a new constraint
- So as to partition the solution space

A typical example:

$$x_{i} = v_{j} \qquad \qquad x_{i} \neq v_{j}$$

- Choose a variable x_i
- Choose a value v_j in D_i
- Post $x_i = v_j$ on the left branch
- Post the opposite constraint on backtrack

Key mechanism:

- The new constraints narrow the domains
- And <u>cause propagation</u>
- On backtrack, the domains are restored

Let's see that in action:

- Choose var with smallest index
- Choose smallest value

```
\{1,2,3\} \{1,2,3\} \{1,2,3\}
{1,2,%} ·{1,2,%} ·
                     3
{1,2,3}
                   {1,2,3}
```


- The new constraints narrow the domains
- And <u>cause propagation</u>
- On backtrack, the domains are restored

- The new constraints narrow the domains
- And <u>cause propagation</u>
- On backtrack, the domains are restored

Key mechanism:

- The new constraints narrow the domains
- And <u>cause propagation</u>
- On backtrack, the domains are restored

$$\{1, 2, 3\} \{2, 2, 3\} \{2, 2, 3\}$$

$$\{1, 2, 3\} \{1, 2, 3\} \{1, 2, 3\}$$

$$\{1, 2, 3\} \{1, 2, 3\} \{1, 2, 3\}$$

domain wipeout

Key mechanism:

- The new constraints narrow the domains
- And <u>cause propagation</u>
- On backtrack, the domains are restored

{1,**2**,**3**} {**1**,**2**,**3**} {**1**,**2**,**3**} {1,2,**%**} ·{1,2,**%**} · 3 {1,2,3} {1,2,3}

domain wipeout

- The new constraints narrow the domains
- And <u>cause propagation</u>
- On backtrack, the domains are restored

- The new constraints narrow the domains
- And <u>cause propagation</u>
- On backtrack, the domains are restored

; { 1 ,2,3} {	1,2, <i>3</i> }	: {1,2, <i>3</i> }
{1,2, <i>3</i> } ·{	1,2, <i>3</i> }	· 3 ·
{1,2,3}	3	{1,2,3}

- The new constraints narrow the domains
- And <u>cause propagation</u>
- On backtrack, the domains are restored

Key mechanism:

- The new constraints narrow the domains
- And <u>cause propagation</u>
- On backtrack, the domains are restored

{**1**,**2**,**3**} {**1**,**7**,**7**} {**7**,**7**} {1,2,**%**} ·{1,2,**%**} · 3 {1,2,3} {1,2,3}

another wipeout

Key mechanism:

- The new constraints narrow the domains
- And <u>cause propagation</u>
- On backtrack, the domains are restored

 $\{1,2,3\} \quad \{1,2,3\} \quad \{1,2,3\} \quad \mathbf{3}$ $\{1,2,3\} \quad \{1,2,3\} \quad \mathbf{3}$ $\{1,2,3\} \quad \mathbf{3} \quad \{1,2,3\}$

another wipeout

- The new constraints narrow the domains
- And <u>cause propagation</u>
- On backtrack, the domains are restored

{ 2 ,2,3}	: {1,2, <i>3</i> }	: {1,2, <i>3</i> }
{1 , 2, <i>3</i> }		· · · · 3
{1,2, <i>3</i> }	 3	 {1,2, <i>3</i> }

- The new constraints narrow the domains
- And <u>cause propagation</u>
- On backtrack, the domains are restored

- The new constraints narrow the domains
- And <u>cause propagation</u>
- On backtrack, the domains are restored

- The new constraints narrow the domains
- And <u>cause propagation</u>
- On backtrack, the domains are restored

- The new constraints narrow the domains
- And <u>cause propagation</u>
- On backtrack, the domains are restored

- The new constraints narrow the domains
- And <u>cause propagation</u>
- On backtrack, the domains are restored

Redundant constraints

- Sometimes it is worth adding a constraint
- Even if it is not necessary
- Because of the additional propagation

Example:

• Let's add a redundant constraint *"there must be a 3 in row 1"*

$$(x_{11} = 3) \lor (x_{12} = 3) \lor (x_{13} = 3)$$

Redundant constraints

- Sometimes it is worth adding a constraint
- Even if it is not necessary
- Because of the additional propagation

Example:

first round
of propagation

$$\begin{cases} 1,2,3 \\ 1,2,3 \\ 1,2,3 \\ 1,2,3 \\ 1,2,3 \\ 1,2,3 \\ 3 \\ 1,2,3 \\ 1,2,3 \\ 3 \\ 1,2,3 \\ 1$$

Redundant constraints

- Sometimes it is worth adding a constraint
- Even if it is not necessary
- Because of the additional propagation

Example:

 Let's add a redundant constraint *"there must be a 3 in row 1"* (x₁₁ = 3) ∨ (x₁₂ = 3) ∨ (x₁₃ = 3)
 ↓ ↑ ↑
 ↓ ↑ ↑
 this is 1 cst = 0 cst = 0

From here, we find a solution with no fail at all!

first round
of propagation

$$\begin{cases} 1, 2, 3 \\ 1, 2, 7 \\ 1, 2, 7 \\ 1, 2, 7 \\ 1, 2, 7 \\ 1, 2, 7 \\ 1, 2, 7 \\ 3 \\ 1, 2, 7 \\ 1, 2, 7 \\ 1, 2, 7 \\ 3 \\ 1, 2, 7 \\ 1,$$

Global Constraints

- A constraint reasoning on many variables at the same time
- Specialized, powerful filtering

Example

• No more propagation after this

Global Constraints

- A constraint reasoning on many variables at the same time
- Specialized, powerful filtering

Example

- No more propagation after this
- But if we reason on a whole row...

Global Constraints

- A constraint reasoning on many variables at the same time
- Specialized, powerful filtering

Example

- No more propagation after this
- But if we reason on a whole row...
- ...we can deduce (and filter) more

Remember: from here, we find a solution with no fail at all!

Meta constraints vs globals

- Meta-constraints allow to model just about everything
- But they often have poor filtering
- Advice: use globals whenever it is possible

Redundant constraints vs globals

- Redundant constraints must be carefully engineered based on domain knowledge
- But they provide some"global" propagation
- Advice: add if the additional propagation is not subsumed