
MTH4410
Constraint Programming

Merci à Willem-Jan van Hoeve, CMU.

Outline

• Successful Applications
• Modeling
• Solving
• Some details

– global constraints
– scheduling

• Integrated methods (MIP+CP)

Constraint Programming Overview

Constraint
Programming

Artificial
Intelligence

Operations
Research

Computer
Science

search
logical inference

optimization
algorithms data structures

formal languages

Evolution events of CP

1980s: Logic Programming (Prolog); Search + logical inference

1970s: Image processing applications in AI; Search+qualitative inference

1990s: Constraint Programming; Industrial Solvers (ILOG, Eclipse,…)

2000s: Global constraints; integrated methods; modeling languages

1994: Advanced inference for alldifferent and resource scheduling

1989: CHIP System; Constraint Logic Programming

2006: CISCO Systems acquires Eclipse CLP solver

2009: IBM acquires ILOG CP Solver & Cplex

Successful applications

Sport Scheduling

Schedule of 1997/1998 ACC basketball league (9 teams)
• various complicated side constraints
• all 179 solutions were found in 24h using enumeration and integer

linear programming [Nemhauser & Trick, 1998]
• all 179 solutions were found in less than a minute using constraint

programming [Henz, 1999, 2001]

Week	1 Week	2 Week	3 Week	4 Week	5 Week	6 Week	7

Period	1 0	vs 1 0	vs 2 4	vs 7 3	vs 6 3	vs	7 1	vs	5 2	vs 4

Period	2 2	vs 3 1	vs 7 0	vs 3 5	vs 7 1	vs 4 0	vs 6 5	vs	6

Period	3 4	vs	5 3	vs	5 1	vs 6 0	vs 4 2	vs 6 2	vs 7 0	vs 7

Period	4 6	vs	7 4	vs	6 2	vs	5 1	vs	2 0	vs 5 3	vs 4 1	vs 3

Hong Kong Airport

• Gate allocation at the new (1998) Hong Kong airport
• System was implemented in only four months, includes constraint

programming technology (ILOG)
• Schedules ~800 flights a day

(47 million passengers in 2007)

G. Freuder and M. Wallace. Constraint Technology and the Commercial World. IEEE Intelligent
Systems 15(1): 20-23, 2000.

Port of Singapore

• One of the world’s largest container transshipment hubs
• Links shippers to a network of 200 shipping lines with connections to 600

ports in 123 countries

• Problem: Assign yard locations and loading plans under various operational
and safety requirements

• Solution: Yard planning system, based on constraint programming (ILOG)

8

Railroad Optimization

• Netherlands Railways has among the densest rail networks in the
world, with 5,500 trains per day

• Constraint programming is one of the components in their railway
planning software, which was used to design a new timetable from
scratch (2009)

• Much more robust and effective schedule, and $75M additional annual
profit

• INFORMS Edelman Award winner (2009)

Modeling in CP

CP Modeling basics

• CP models are very different from MIP models

• Virtually any expression over the variables is allowed
– e.g., x3(y2 – z) ≥ 25 + x2·max(x,y,z)

• CP models can be much more intuitive, close to natural language

• As a consequence, CP applies a different solving method
compared to MIP

11

CP Variables

• Variables in CP can be the same as in your regular MIP model:
– binary, integer, continuous

• In addition, they may take a value from any finite set
– e.g., x in {a,b,c,d,e}

– the set of possible values is called the domain of a variable

• Finally, there are some ‘special’ variable types for modeling
‘scheduling’ applications

12

13

CP	Constraints

• A constraint is a relation between
one or more variables.

• Let i and j be two integer variables
i in {0..10};

j in {0..10};

• Let R(i,j) be the following
constraint

• When R(i,j) is asserted:
• The domain for i is

restricted to {1,2,5,7}

• The domain for j is
restricted to {2,3,4,10}1 2

1 3

2 4

5 3

7 10

i jR

CP	Constraints

• A	solution	to	a	constraint	problem	assigns	a	value	to	all	the	
variables	in	such	a	way	that	all	the	constraints		are	satisfied

• i=2,	j=4,	k=8	is	a	solution	of	the	system	of	three	constraints	
R,S,T	below

2 2

1 3

2 4

5 3

7 10

i jR
2 1

1 8

2 8

5 1

4 10

i kS
1 4

1 3

2 7

5 3

8 4

k jT

CP	Constraints

What	does	a	constraint	do?
• Feasibility	checking
–can	the	constraint	be	satisfied	given	the	domains	of	its	variables

• Pruning
–remove	values	from	the	domains	if	they	do	not	appear	in	any	
solution	of	the	constraint.

Constraint	Propagation
• When	the	domain	of	a	variable	is	reduced,	constraints	may	imply	
domain	reductions	for	other	related	variables.

• Example:	
– Remove	1	from	the	domain	of	i

– It	results	in	removing	2	from	the	domain	of	j
– The	value	3	is	still	in	the	domain	of	j

1 2

1 3

2 4

5 3

7 10

i jR

Constraint	Propagation
• When	the	domain	of	a	variable	is	reduced,	the	effects	of	this	change	are	
propagated	through	all	the	constraints

• In	this	example,	let	us	set	i to	the	value	2

2 2

1 3

2 4

5 3

7 10

i j
R

2 1

1 8

2 8

5 1

2 10

i k
S

1 4

8 2

2 4

10 3

8 4

k j
T

Constraints	as	Algorithms
• In	most	cases,	it	is	inefficient	to	implement	constraints	using	actual	
relational	tables.

• CP	languages	thus	use	propagation	algorithms	to	implement	arithmetic	
constraints	and	all	others.

• The	propagation	algorithm	must	behave	in	the	same	way	as	the	
corresponding	extensional	relation.

1 2

1 3

1 4

2 3

2 4

x y<
1 1

1 2

2 1

2 2

3 1

+
2

3

3

4

4

Example:	Magic	Series

• A	series	S	=	(S0,…,Sn)	is	magic	if	Si is	the	number	of	occurrences	of	i in	S

? ? ? ? ?

0 1 2 3 4

Example:	Magic	Series

• A	series	S	=	(S0,…,Sn)	is	magic	if	Si is	the	number	of	occurrences	of	i in	S

2 1 2 0 0

0 1 2 3 4

Reification

n = 5
D = {0..n-1}
var s[D] in D
forall(k in D) s[k] == sum(i in D) (s[i]==k));

Reification

§ Reification
n Allow	constraints	inside	constraints
n Replace	the	constraint	in	()	by	a	0/1	variables	
representing	the	truth	value	of	the	constraint

Example:	Stable	Marriages

Example:	Stable	Marriages

• A marriage is stable between James and Kathryn
provided that
• Whenever James prefers another woman, say Anne, to Kathryn,

then Anne prefers her husband to James;
• Whenever Kathryn prefers another man, say Laurent, to James,

then Laurent prefers his spouse to Kathryn.

Example:	Stable	Marriages

Men = {Richard,James,John,Hugh,Greg}
Women = {Helen,Tracy,Linda,Sally,Wanda}
preferm[Men,Women] = …
preferw[Women,Men] = …
var wife[Men] in {Women}
var husband[Women] in {Men}

forall(i in Men) husband[wife[i]] == i

forall(i in Women) wife[husband[i]] == i

forall(i in Men,j in Women)
(preferm[i,j] > preferm[i,wife[i]]) => (preferw[j,husband[j]] > preferw[j,i])

forall(i in Men,j in Women)
(preferw[j,i] < preferw[j,husband[j]]) => (preferm[i,wife[i]] < preferm[i,j]);
}

Element
Constraint

Reification

Implication

Element	Constraints

• Element constraints
– ability to index an array/matrix with a decision variable or an

expression;
• Logical constraints
– ability to express any logical combination of constraint
– see also reification

The	Element	Constraint

3 4 5

3 4 5 5 4 3

• X	:	variable

• Y	:	variable

• C	:	array

• Constraint:	X	=	C[Y]
• X ≠	3
• Y ≠	1	&	Y ≠	4

[1][0] [2] [3] [4] [5]
0 1 2 3 4 5

The	Element	Constraint

• Facility	location:		want	a	constraint	that	customer	c can	
be	assigned	to	warehouse	i only	if	warehouse	open.	
(open[i]=1	if	warehouse	i is	open)

• MIP:	x[c,i]	is	1	if	customer	c	is	assigned	to	i
x[c,i]	<=	open[i]

• CP:	w[c]	is	the	warehouse	customer	c is	assigned	to
open[w[c]]	=	1;		(not	a	0,1	variable)

Assignment	Problem

• Solve	the	following	assignment	problem	with	AIMMS
– Given	5	tasks	(t1 to	t5)	and	5	employees	(e1 to	e5)
– Assign	one	and	only	one	task	to	each	employees	such	that	the	assignment	
minimizes	the	following	costs:

– Can	you	compare	with	a	MIP	version	of	this	problem	?

T\E 1 2 3 4 6

1 2 3 5 1 8

2 3 4 3 4 5

3 1 3 4 7 9

4 3 3 2 6 4

5 5 7 2 8 5

Another example of Element: the TSP

• The traveling salesperson problem asks to find a closed tour on a
given set of n locations, with minimum total length (see class on
heuristics)

• Input: set of locations and distance dij between two locations i and j

29

TSP: MIP model

• Classical model based on ‘assignment problem’
• Binary variable xij represents whether the tour goes from i to j
• Objective

min ∑ij dij xij

• Need to make sure that we leave and enter each location exactly
once

∑j xij = 1 for all i

∑i xij = 1 for all j

• Remove all possible subtours: there are exponentially many;
impossible to model concisely in MIP

• MIP Solvers therefore resort to specialized solving methods for the
TSP

30

TSP: CP model

• Variable xi represents the i-th location that the tour visits (variable
domain is {1,2,…,n})

• Objective

min

• Constraint
alldifferent(x1, x2, …, xn)

31

dxn ,x1 + dxi ,xi+1
i=1

n-1

å

this is a ‘global’ constraint

Another way to write
Element constaints is to put
variables as subscripts!

Example: Alldifferent

Alldifferent(x1,x2,...,xn) semantically equivalent to
{ xi ≠ xj for all i ≠ j }

Model 1: x1 Î {a,b}, x2 Î {a,b}, x3 Î {a,b,c}
x1 ≠ x2, x1 ≠ x3 , x2 ≠ x3

® no domain values will be filtered

Model 2: x1 Î {a,b}, x2 Î {a,b}, x3 Î {a,b,c}
alldifferent(x1,x2,x2)

® global view of alldifferent: x3 Î {c}

Grouping constraints together allows more domain filtering!

Filtering for alldifferent

Observation [Régin, 1994]:

Example:

x1 Î {a,b}, x2 Î {a,b}, x3 Î {b,c}
alldifferent(x1,x2,x3)

Filtering: remove all edges (and corresponding domain values) that are
not in any matching covering the variables

Find initial matching: O(m√n) time1 [Hopcroft and Karp, 1973]

Filter all inconsistent edges?
1 for n variables and m edges 33

x1 x2 x3

a b c

solution to alldifferent matching in bipartite graph
covering all variables

Û

MIP and CP model compared

• The CP model needs only n variables, while the MIP model needs n2

variables (n is #locations)

• The MIP model is of exponential size, while the CP model only needs
one single constraint

• The CP model is more intuitive, as it is based directly on the problem
structure: the ordering of the locations in the tour

Note: The special-purpose MIP solving methods outperform CP on pure TSP. In
presence of side constraints (e.g., time windows), CP becomes competitive.

34

Illustration: Sudoku

• each row contains numbers 1 up to 9
• each column contains numbers 1 up to 9
• each block contains numbers 1 up to 9

6 3 9 7 8 2 4 1 5
2 5 1 9 4 3 7 6 8
4 7 8 6 1 5 9 2 3
3 6 2 1 7 9 5 8 4
1 8 7 5 3 4 6 9 2
5 9 4 8 2 6 3 7 1
9 4 3 2 6 8 1 5 7
8 1 6 3 5 7 2 4 9
7 2 5 4 9 1 8 3 6

3 1
4 6

4 8 1 5 3
8 4

1 5 4 2
5 9
9 2 6 1 7
1 5
2 3

Sudoku puzzle:
try to complete partially filled square

6 3 9 7 8 2 4 1 5
2 5 1 9 4 3 7 6 8
4 7 8 6 1 5 9 2 3
3 6 2 1 7 9 5 8 4
1 8 7 5 3 4 6 9 2
5 9 4 8 2 6 3 7 1
9 4 3 2 6 8 1 5 7
8 1 6 3 5 7 2 4 9
7 2 5 4 9 1 8 3 6

CP model for Sudoku

variables and domains:
xij in {1,2,3,4,5,6,8,9} for all i,j in 1..9

constraints:
alldifferent(xij : j=1..9) for all rows i
alldifferent(xij : i=1..9) for all columns j
alldifferent(xij : i,j in block b) for all blocks b

xij = k if cell (i,j) is pre-set to value k

3 1
4 6

4 8 1 5 3
8 4

1 5 4 2
5 9
9 2 6 1 7
1 5
2 3See Sudoku.aimmspack

Solving time

Experimental results over larger Sudoku instances (16´16) 1

not-equal constraints alldifferent constraints
{ xi ≠ xj for all i ≠ j } alldifferent(xij)

solved: 94% solved: 100%
total time: 249.21s total time: 6.47s
backtracks: 2,284,716 backtracks: 3020

1 time limit 600s
37

What is the effect of changing the
inference level from ‘default’ to
‘extended’ in our AIMMS model?

Global Constraints

• Examples
– Alldifferent, Count, BinPacking, SequentialSchedule, ParallelSchedule,

NetworkFlow, …

• Global constraints represent combinatorial structure
– Can be viewed as the combination of elementary constraints
– Expressive building blocks for modeling applications
– Embed powerful algorithms from OR, Graph Theory, AI, CS, …

• Essential for the successful application of CP
– When modeling a problem, always try to identify possible global

constraints that can be used

List	of	Global	Constraints (in	AIMMS)

39

Chapter 21. Constraint Programming 307

Global constraint Meaning

cp::AllDifferent(i,xi) The xi must have distinct values.

∀i, j|i ≠ j : xi ≠ xj
cp::Count(i,xi,c,⊗,y) The number of xi related to c is y .

∑
i(xi = c)⊗y where

⊗ ∈ {≤,≥,=, >,<,≠}

cp::Cardinality(i,xi , The number of xi equal to cj is yj .

j,cj ,yj) ∀j :
∑
i(xi = cj) = yj

cp::Sequence(i,xi , The number of xi ∈ S for each

S,q,l,u) subsequence of length q is

between l and u.

∀i = 1..n− q + 1 :

l ≤
∑i+q−1
j=i (xj ∈ S) ≤ u

cp::Channel(i,xi , Channel variable xi → J to yj → I

j,yj) ∀i, j : xi = j" yj = i

cp::Lexicographic(i,xi ,yi) x is lexicographically before y

∃i : ∀j < i : xj = yj ∧ xi < yi
cp::BinPacking(i,li , Assign object j of known size sj to

j,aj ,sj) bin aj → I. Size of bin i ∈ I is li.

∀i :
∑
j|aj=i sj ≤ li

Table 21.2: Global constraints

Global

constraints

Aimms supports the global constraints presented in Table 21.2. These global

constraints come with powerful filtering techniques that may significantly re-

duce the search tree and thus the solution time needed to solve the problem.

The example below illustrates the use of the global constraint cp::AllDifferent

as used in the Latin square completion problem. A Latin square of order n is

an n×n matrix where the values are in the range {1..n} and distinct over each

row and column.

CONSTRAINT:
identifier : RowsAllDifferent
index domain : r
definition : cp::AllDifferent(c, Entry(r, c));

CONSTRAINT:
identifier : ColsAllDifferent
index domain : c
definition : cp::AllDifferent(r, Entry(r, c));

Additional examples of global constraints are present in the Aimms Function

Reference.

Basic scheduling

constraints

Aimms offers support for both basic scheduling and advanced scheduling. Ad-

vanced scheduling will be detailed in the next section, but for basic scheduling,

Aimms offers the following two global constraints:

Summary of CP modeling

• Variables range over finite or continuous domain:

v Î {a,b,c,d}, start Î {0,1,2,8,9,10}, z Î [2.18, 4.33]

• Algebraic expressions:

x3(y2 – z) ≥ 25 + x2·max(x,y,z)

• Variables as subscripts:

y = cost[x] (here y and x are variables, ‘cost’ is an array of parameters)

• Reasoning with meta-constraints:

∑i (xi > Ti) ≤ 5

• Logical relations in which (meta-)constraints can be mixed:

((x < y) OR (y < z)) Þ (c = min(x,y))

• Global constraints (a.k.a. symbolic constraints):

Alldifferent(x1,x2, ...,xn)

SequentialSchedule([start1,..., startn], [dur1,...,durn], [end1,...,endn])

CP Solving

CP Solving

In general
• CP variables are

– discrete (i.e., integer valued)

• while CP constraints are
– non-linear

– non-differentiable

– discontinuous

Hence, no traditional Operations Research technique can
solve these models (LP, NLP, MIP, etc)

42

Basics of CP solving

• CP solving is based on intelligently enumerating all possible
variable-value combinations
– called backtracking search
– similar to branch&bound for MIP

• Unlike branch&bound, CP does not solve a LP relaxation at
each search node, but applies specific constraint propagation
algorithms

• These propagation algorithms are applied to individual
constraints, and their role is to limit the size of the search
tree

43

Solving

Example:
variables/domains x1 Î {1,2}, x2 Î {0,1,2,3}, x3 Î {2,3}

constraints x1 > x2

x1 + x2 = x3

alldifferent(x1,x2,x3)

44

Solving

45

x3

2 3

x3

2 3

2 3

x3

2 3

x3

2 3

2 3

x1

x2

x3

2 3

x3

2 3

x2

x3

2 3

x3

2 3

0 1 0 1

1 2

Example:
variables/domains x1 Î {1,2}, x2 Î {0,1,2,3}, x3 Î {2,3}

constraints x1 > x2

x1 + x2 = x3

alldifferent(x1,x2,x3)

Solving

Example:
variables/domains x1 Î {1}, x2 Î {0,1}, x3 Î {2,3}

constraints x1 > x2

x1 + x2 = x3

alldifferent(x1,x2,x3)

46

x3

2 3

x3

2 3

0 1

x1

x2 x2

x3

2 3

x3

2 3

0 1

1 2

Solving

Example:
variables/domains x1 Î {2}, x2 Î {0,1}, x3 Î {2,3}

constraints x1 > x2

x1 + x2 = x3

alldifferent(x1,x2,x3)

47

3

1

x3

2 3 2

0

x1

x2

1 2

x3

3

1

x3

x2

CP - Summary

The solution process of CP interleaves
• Domain filtering

– remove inconsistent values from the domains of the variables,
based on individual constraints

• Constraint propagation
– propagate the filtered domains through the constraints, by re-

evaluating them until there are no more changes in the variable
domains

• Search
– implicitly all possible variable-value combinations are enumerated,

but the search tree is kept small due to the domain filtering and
constraint propagation

Partial Latin Square (order 3)

3 1 2

21

2

A possible solution

3

3 1

• A number in {1,2,3} in each cell
• Numbers on each row must be

pairwise different
• Numbers on each column must be

pairwise different
• Some cells are pre-filled

Another example

Partial Latin Square (order 3)

As a CSP:
Variables and domains

Constraints

3 1 2

21

2

3

3 1

• A number in {1,2,3} in each cell
• Numbers on each row must be

pairwise different
• Numbers on each column must be

pairwise different
• Some cells are pre-filled

Another example

Partial Latin Square (order 3)

As a CSP:

Pairwise different on rows

Pairwise different on cols

Pre-filled cells

3 1 2

21

2

3

3 1

• A number in {1,2,3} in each cell
• Numbers on each row must be

pairwise different
• Numbers on each column must be

pairwise different
• Some cells are pre-filled

Another example

3

3

{1,2,3} {1,2,3} {1,2,3}

{1,2,3} {1,2,3}

{1,2,3}{1,2,3}

Before propagation

Another example

3

3

{1,2,3} {1,2,3} {1,2,3}

{1,2,3} {1,2,3}

{1,2,3}{1,2,3}

After propagation

Another example

How to search for a solution?
The simplest approach is using Depth First Search

Open a choice point
On each branch post a new constraint
So as to partition the solution space

A typical example:

xi = vj
xi

xi ≠ vj

Choose a variable xi

Choose a value vj in Di

Post xi = vj on the left branch
Post the opposite constraint on backtrack

binary choice
point

Another example

Key mechanism:
The new constraints narrow the domains
And cause propagation
On backtrack, the domains are restored

3

3

{1,2,3} {1,2,3} {1,2,3}

{1,2,3} {1,2,3}

{1,2,3}{1,2,3}

Let’s see that in action:
Choose var with smallest index
Choose smallest value

Another example

Key mechanism:
The new constraints narrow the domains
And cause propagation
On backtrack, the domains are restored

3

3

{1,2,3} {1,2,3} {1,2,3}

{1,2,3} {1,2,3}

{1,2,3}{1,2,3}

x11

Another example

x11 = 1

Key mechanism:
The new constraints narrow the domains
And cause propagation
On backtrack, the domains are restored

3

3

{1,2,3} {1,2,3} {1,2,3}

{1,2,3} {1,2,3}

{1,2,3}{1,2,3}

x11

Another example

Key mechanism:
The new constraints narrow the domains
And cause propagation
On backtrack, the domains are restored

3

3

{1,2,3} {1,2,3} {1,2,3}

{1,2,3} {1,2,3}

{1,2,3}{1,2,3}

x11
x11 = 1

domain
wipeout

Another example

Key mechanism:
The new constraints narrow the domains
And cause propagation
On backtrack, the domains are restored

3

3

{1,2,3} {1,2,3} {1,2,3}

{1,2,3} {1,2,3}

{1,2,3}{1,2,3}

x11
x11 = 1

domain
wipeout

fail

Another example

Key mechanism:
The new constraints narrow the domains
And cause propagation
On backtrack, the domains are restored

3

3

{1,2,3} {1,2,3} {1,2,3}

{1,2,3} {1,2,3}

{1,2,3}{1,2,3}

x11
x11 = 1

Another example

Key mechanism:
The new constraints narrow the domains
And cause propagation
On backtrack, the domains are restored

3

3

{1,2,3} {1,2,3} {1,2,3}

{1,2,3} {1,2,3}

{1,2,3}{1,2,3}

x11
x11 = 1 x11 ≠ 1

x11

Another example

Key mechanism:
The new constraints narrow the domains
And cause propagation
On backtrack, the domains are restored

3

3

{1,2,3} {1,2,3} {1,2,3}

{1,2,3} {1,2,3}

{1,2,3}{1,2,3}

x11
x11 = 1 x11 ≠ 1

x11 = 2
x11

Another example

Key mechanism:
The new constraints narrow the domains
And cause propagation
On backtrack, the domains are restored

3

3

{1,2,3} {1,2,3} {1,2,3}

{1,2,3} {1,2,3}

{1,2,3}{1,2,3}

x11
x11 = 1 x11 ≠ 1

x11 = 2

another
wipeout

x11

Another example

Key mechanism:
The new constraints narrow the domains
And cause propagation
On backtrack, the domains are restored

3

3

{1,2,3} {1,2,3} {1,2,3}

{1,2,3} {1,2,3}

{1,2,3}{1,2,3}

x11
x11 = 1 x11 ≠ 1

x11 = 2

another
wipeout

x11

fail

Another example

x11 = 2

Key mechanism:
The new constraints narrow the domains
And cause propagation
On backtrack, the domains are restored

3

3

{1,2,3} {1,2,3} {1,2,3}

{1,2,3} {1,2,3}

{1,2,3}{1,2,3}

x11
x11 = 1 x11 ≠ 1

x11

Another example

x11 = 2

Key mechanism:
The new constraints narrow the domains
And cause propagation
On backtrack, the domains are restored

3

3

{1,2,3} {1,2,3} {1,2,3}

{1,2,3} {1,2,3}

{1,2,3}{1,2,3}

x11
x11 = 1 x11 ≠ 1

x11
x11 ≠ 2

x12

Another example

x11 = 2

Key mechanism:
The new constraints narrow the domains
And cause propagation
On backtrack, the domains are restored

3

3

{1,2,3} {1,2,3} {1,2,3}

{1,2,3} {1,2,3}

{1,2,3}{1,2,3}

x11
x11 = 1 x11 ≠ 1

x11
x11 ≠ 2

x12
x12 = 1

Another example

x11 = 2

Key mechanism:
The new constraints narrow the domains
And cause propagation
On backtrack, the domains are restored

3

3

{1,2,3} {1,2,3} {1,2,3}

{1,2,3} {1,2,3}

{1,2,3}{1,2,3}

x11
x11 = 1 x11 ≠ 1

x11
x11 ≠ 2

x12
x12 = 1

Another example

x11 = 2

Key mechanism:
The new constraints narrow the domains
And cause propagation
On backtrack, the domains are restored

3

3

{1,2,3} {1,2,3} {1,2,3}

{1,2,3} {1,2,3}

{1,2,3}{1,2,3}

x11
x11 = 1 x11 ≠ 1

x11
x11 ≠ 2

x12
x12 = 1

Another example

x11 = 2

Key mechanism:
The new constraints narrow the domains
And cause propagation
On backtrack, the domains are restored

3

3

x11
x11 = 1 x11 ≠ 1

x11
x11 ≠ 2

x12
x12 = 1

3 1 2

21

2 1

Another example

x11 = 2

x11
x11 = 1 x11 ≠ 1

x11
x11 ≠ 2

x12
x12 = 1

Propagation can have a huge impact

3

3

3 1 2

21

2 1

With: 3	leaves Without: 2,187	leaves

Another example

3

3

{1,2,3} {1,2,3} {1,2,3}

{1,2,3} {1,2,3}

{1,2,3}{1,2,3}

Example:

(x11 = 3) ⋁ (x12 = 3) ⋁ (x13 = 3)

“there must be a 3 in row 1”
Let’s add a redundant constraint

Redundant Constraints

Redundant constraints
Sometimes it is worth adding a constraint
Even if it is not necessary
Because of the additional propagation

3

3

{1,2,3} {1,2,3} {1,2,3}

{1,2,3} {1,2,3}

{1,2,3}{1,2,3}

first round
of propagation

cst = 0 cst = 0

Example:

(x11 = 3) ⋁ (x12 = 3) ⋁ (x13 = 3)

“there must be a 3 in row 1”
Let’s add a redundant constraint

Redundant Constraints

Redundant constraints
Sometimes it is worth adding a constraint
Even if it is not necessary
Because of the additional propagation

Redundant constraints
Sometimes it is worth adding a constraint
Even if it is not necessary
Because of the additional propagation

3

3

{1,2,3} {1,2,3} {1,2,3}

{1,2,3} {1,2,3}

{1,2,3}{1,2,3}

Example:
Let’s add a redundant constraint

(x11 = 3) ⋁ (x12 = 3) ⋁ (x13 = 3)

“there must be a 3 in row 1”

first round
of propagation

cst = 0 cst = 0this is 1

From here, we find a solution with no
fail at all!

Redundant Constraints

Global Constraints
A constraint reasoning on many variables at the same time
Specialized, powerful filtering

3

3

{1,2,3} {1,2,3} {1,2,3}

{1,2,3} {1,2,3}

{1,2,3}{1,2,3}

Example
No more propagation after this

Redundant Constraints

Global Constraints
A constraint reasoning on many variables at the same time
Specialized, powerful filtering

3

3

{1,2,3} {1,2,3} {1,2,3}

{1,2,3} {1,2,3}

{1,2,3}{1,2,3}

Example
No more propagation after this
But if we reason on a whole row…

values 1,2 must
go to those vars

Redundant Constraints

Global Constraints
A constraint reasoning on many variables at the same time
Specialized, powerful filtering

3

3

{1,2,3} {1,2,3} {1,2,3}

{1,2,3} {1,2,3}

{1,2,3}{1,2,3}

Example
No more propagation after this
But if we reason on a whole row…

so, this
must be 3

…we can deduce (and filter) more

Remember: from here, we find a solution
with no fail at all!

Redundant Constraints

Meta constraints vs globals
Meta-constraints allow to model just about everything
But they often have poor filtering
Advice: use globals whenever it is possible

Redundant constraints vs globals
Redundant constraints must be carefully engineered based on domain
knowledge
But they provide some“global” propagation
Advice: add if the additional propagation is not subsumed

Redundant Constraints

