
Scheduling with Constraint
Programming

• Job Shop
• Cumulative Job Shop

CP vs MIP: Task Sequencing

• We need to sequence a set of tasks on a machine
– Each task i has a specific fixed processing time pi

– Each task can be started after its release date ri, and must be completed before
its deadline di

– Tasks cannot overlap in time

Time is represented as a discrete set of time points, say 1, 2,…, H
(H stands for horizon)

2

MIP model

• Variables
– Binary variable xij represents whether task i starts at time period j

• Constraints
– Each task starts on exactly one time point

∑j xij = 1 for all tasks i

– Respect release date and deadline
j*xij = 0 for all tasks i and (j < ri) or (j > di - pi)

3

MIP model (cont’d)

• Tasks cannot overlap
–variant 1
∑i xij <= 1 for all time points j
• we also need to take processing times into account; try as an exercise

–variant 2
• introduce binary variable bik representing whether task i comes before task k
• must be linked to xij; we need to add constraints to make them consistent

with one another (i.e., triplets of tasks); (try as an exercise)

4

CP model

• Variables
– Let starti represent the starting time of task i

takes a value from domain {1,2,…, H}

– This immediately ensures that each task starts at exactly one time point

• Constraints
– Respect release date and deadline

ri ≤ starti ≤ di - pi

5

CP model

• Tasks cannot overlap:
for all tasks i and j

(starti + pi < startj) OR (startj + pj < starti)

That’s it!

• an even more compact model is possible for this problem, using
a‘global’ scheduling constraint

6

Benefits of CP model

• The number of CP variables is equal to the number of tasks, while the
number of MIP variables depends also on the time granularity (for a
horizon H, and n tasks, we have H*n binary variables xij)

• The sequencing constraints are quite messy in MIP, but
straightforward and intuitive in CP

7

Advanced Scheduling

• Basic building blocks
– Activities a1, a2,..., an

– Resources r1, r2,..., rm

• Variables corresponding to activity ai

• Each activity requires one or more units of ‘energy’ from
one or more resources

• Each resource has a capacity (usually fixed)

Activities

• Activities	are	defined	with:
– start(ai) start time
– end(ai) end time
– proc(ai) processing time (with: proc(ai) = end(ai) - start(ai))
– size(ai) or intensity or energy

• Activities	can	further	be:
– Optional
– Have	priority

• All	of	these	are	transformed	into	CP	(finite	domain)	variable	which	
can	be	used	to	model	constraints	directly

9

Resources

• There	is	essentially	two	types	of	resources:
– Sequential
– Parallel

• Sequential	resources:
– Execute	only	one	activity	at	a	time.
– Allow	for	two	form	of	precedencies	

• a	“comes	before”	b,	but	c	can	be	between	a	and	b
• or	a	“precedes”	b,	and	nothing	can	be	scheduled	in	between

– Allow	to	define	the	first	and	last	activities

• Transition
– Occurs	when	switching	from	one	activity	to	another	one
– Can	be	defined	for	each	pair	of	activity	(transitions	between	cities)
– Can	be	defined	for	each	pair	of	activity	group	(transitions	between	colors) 10

Resources

• Parallel	resources
– May	execute	many	activities	concurrently
– Total	size	of	activities	run	in	parallel	must	not	exceed	resource	capacity
– Allow	to	track	change	in	resource	consumption	level	(a.k.a profile)

11

Chapter 21. Constraint Programming 319

Level change�
 or pulse�

.Begin� .End�

Amount�

Begin change�

.Begin� .End�

Amount�

End change�

.Begin� .End�

Amount�

.Level:�

.Level:�

.Level:�

Figure 21.1: Changes to the suffix .ActivityLevel of a resource

! An activity in the END CHANGE attribute increases the .ActivityLevel of the

resource at the .End of the activity by the indicated amount.

Note that not only can the indicated amount be positive and negative, it can

also be an integer variable. The effect of an activity on the .ActivityLevel is

illustrated in the Figure 21.1. The syntax of these attributes is as follows:

level-modification :

activity-reference : expression

,

The next example illustrates the use of the .ActivityLevel modification at-

tributes:

Resource
identifier : Budget
schedule domain : Days
usage : parallel
activities : Act(i), Alt_Act(j), Deposit_Act(d)
level range : [0, 100]
level change : Alt_Act(i) : -alt_act_budget(i)
begin change : Deposit_Act(d): Deposit(d),

Scheduling constraints

• We have	a	set	of	possible	constraints which can be stated

12

Chapter 21. Constraint Programming 322

Scheduling Constraints Interpretation

cp::Span(g,i,ai) The activity g spans the activities ai
g.Begin = mini ai.Begin∧

g.End = maxi ai.End

cp::Alternative(g,i,ai) Activity g is the single selected activity ai
∃j : g = aj ∧∀k, j ≠ k : ak.present = 0

cp::Synchronize(g,i,ai) If g is present, all present activities ai
are scheduled at the same time.

g.present⇒ (∀i : ai.present⇒ g = ai)

Precedence Relations

When activities a and b are present

and for a non-negative integer delay d

cp::BeginBeforeBegin(a,b,d) a.Begin+ d ≤ b.Begin

cp::BeginBeforeEnd(a,b,d) a.Begin+ d ≤ b.End

cp::EndBeforeBegin(a,b,d) a.End+ d ≤ b.Begin

cp::EndBeforeEnd(a,b,d) a.End+ d ≤ b.End

cp::BeginAtBegin(a,b,d) a.Begin+ d = b.Begin

cp::BeginAtEnd(a,b,d) a.Begin+ d = b.End

cp::EndAtBegin(a,b,d) a.End+ d = b.Begin

cp::EndAtEnd(a,b,d) a.End+ d = b.End

Adjacent Activity

r is the resource

s is the scheduled activity

e is extreme value (when s is first or last)

a is absent value (s is not scheduled)

cp::BeginOfNext(r ,s,e,a) Beginning of next activity

cp::BeginOfPrevious(r ,s,e,a) Beginning of previous activity

cp::EndOfNext(r ,s,e,a) End of next activity

cp::EndOfPrevious(r ,s,e,a) End of previous activity

cp::GroupOfNext(r ,s,e,a) Group of next activity, see also page 316

cp::GroupOfPrevious(r ,s,e,a) Group of previous activity

cp::LengthOfNext(r ,s,e,a) Length of next activity

cp::LengthOfPrevious(r ,s,e,a) Length of previous activity

cp::SizeOfNext(r ,s,e,a) Size of next activity

cp::SizeOfPrevious(r ,s,e,a) Size of previous activity

Table 21.5: Constraints for scheduling

21.3.2 Search Heuristics

Search

heuristics

During the solving process, constraint programming employs search heuris-

tics that define the shape of the search tree, and the order in which the search

tree nodes are visited. The shape of the search tree is typically defined by the

Searching for	solution

• During	the	solving	process,	constraint	programming	employs	search	
heuristics	that	define	the	shape	of	the	search	tree,	and	the	order	in	
which	the	search	tree	nodes	are	visited.

• The	shape	of	the	search	tree	is	typically	defined	by	the	order	of	the	
variables	to	branch	on,	and	the	corresponding	value	assignment.	

• For	example,	to	decide	the	next	variable	to	branch	on,	a	commonly	
used	search	heuristic	is	to	choose	a	non-fixed	variable	with	the	
minimum	domain	size,	and	assign	it	its	minimum	domain	value.	

• One	can	use	the	Priorities	to	force	the	system	to	branch	first	on	
activities	with	the	highest	priority.

13

Searching for	solution

• Other heuristics are	available…

14

Chapter 21. Constraint Programming 323

order of the variables to branch on, and the corresponding value assignment.

Aimms allows the user to specify which variable and value selection heuris-

tics are being used. For example, to decide the next variable to branch on,

a commonly used search heuristic is to choose a non-fixed variable with the

minimum domain size, and assign it its minimum domain value.

Search phasesThe first method offered by Aimms to influence the search process is by using

the PRIORITY attributes of the variables. Aimms will group together all vari-

ables that have the same priority value, and each block of variables will define

a search phase. That is, the solver will first assign the variables in the block

with highest priority, then choose the next block, and so on. As discussed in

Section 14.1.1, the highest priority is the one with the lowest positive value.

Defining search phases can be very useful. For example, when scheduling ac-

tivities to different alternative resources, it is natural to first assign an activity

to its resource before assigning its begin.

Heuristic Interpretation

Variable selection: choose the non-fixed variable with:

Automatic use the solver’s default heuristic

MinSize the smallest domain size

MaxSize the largest domain size

MinValue the smallest domain value

MaxValue the largest domain value

Value selection: assign:

Automatic use the solver’s default heuristic

Min the smallest domain value

Max the largest domain value

Random a uniform-random domain value

Table 21.6: Search heuristics

Variable and

value selection

The variable and value selection heuristics offered by Aimms are presented in

Table 21.6. They can be accessed via the ‘solver options’ configuration window.

As an example, we can define a ‘constructive’ scheduling heuristic that builds

up the schedule from the begin of the schedule domain by using MinValue as

variable selection, and Min as value selection. Indeed, this heuristic will at-

tempt to greedily schedule the activities as early as possible. Note that these

variable and value heuristics apply to the entire search process. If no variable

priorities are specified, the variable selection heuristic will consider all vari-

ables at a time. Otherwise, the variable selection heuristic is applied to each

block individually.

Typical Objectives

• Find	feasible	schedule
• Minimize	makespan (latest	end	time)
• Minimize	maximum	tardiness	(delay)
• Minimize	total	(weighted)	number	of	late	jobs

• Can	you	write	these	objectives	using	the	variable	derived	
from	the	activities	?

• Lets	now	look	at	filtering	for	scheduling	constraints…

Sequential Scheduling (filtering)

• Machine must execute three activities a1, a2, a3 each with
duration of 3 time units, time windows are indicated in
figure. Activities cannot overlap in time.

• Filtering task: find earliest start time and latest end time for

activities

a1

a2

61

81

a3

1 2 3 4 5 7 8 9 10
time

6

101

filtering:
a3 must	start	after	time	6

Sequential Scheduling (filtering)

a3

107

a1

a2

61

81

1 2 3 4 5 7 8 9 10
time

6

10

filtering:
a2 must	end	before	time	8

• Machine must execute three activities a1, a2, a3 each
with duration of 3 time units, time windows are
indicated in figure. Activities cannot overlap in time.

• Filtering task: find earliest start time and latest end

time for activities

Sequential Scheduling (filtering)

7

a3

107

a1

a2

61

1

1 2 3 4 5 7 8 9 10
time

6

10

• Machine must execute three activities a1, a2, a3 each
with duration of 3 time units, time windows are
indicated in figure. Activities cannot overlap in time.

• Filtering task: find earliest start time and latest end

time for activities

this domain filtering is applied in
‘edge finding’

Task Sequencing Revisited

• Tasks cannot overlap: for all tasks i and j

(starti + pi < startj) OR (startj + pj < starti)

• Can also be modeled with a single global constraint:

SequentialSchedule([start1,..., startn], [p1,...,pn])

19

Advanced scheduling

• Several different filtering algorithms can be associated with
the scheduling constraints
– time-table, disjunctive, edge-finding, not-first not-last, network-flow

based, precedence graph, ...

• These algorithms are called in sequence
• Dynamic search strategies can be defined using the

information from the filtering algorithms

• In order to leverage the power of these algorithms, the
model must explicitly use the dedicated scheduling syntax
– i.e., activities, resources and global scheduling constraints

20

Integrated Methods

• Many applications contain an optimization component as
well as a highly combinatorial (scheduling) component

• Use MIP or CP?

• Over the last decade, integrated methods combining CP, AI,
and OR techniques have been developed (see conference
CPAIOR)
– Embed OR methods inside global constraints (e.g., network flows)
– Double modeling (run CP and MIP separately)
– Decomposition where MIP and CP solve different levels

Summarizing Strengths of CP

• Very expressive and intuitive modeling language

• Powerful domain filtering algorithms for global constraints

• Advanced search strategies

• Very effective on complex scheduling problems

Recognizing when to use CP

Definitely try CP if:
qFinding feasible (or any) solution is more important than finding an

optimal solution

qThe problem heavily relies on a ‘scheduling’ component: timetabling,
employee rostering, production line sequencing, …

Definitely try MIP if:

qOptimality is critical, and moreover the objective is naturally
modeled as a linear expression

qThe problem structure corresponds to a `continuous’ allocation of
resources, e.g., network models

Try an integrated MIP+CP approach

qWhen both linear optimization and scheduling are present

