Scheduling with Constraint Programming

• Job Shop

Cumulative Job Shop

CP vs MIP: Task Sequencing

ÉCOLE POLYTECHNIQUE M O N T R É A L

- We need to sequence a set of tasks on a machine
 - Each task i has a specific fixed processing time p_i
 - Each task can be started after its release date $r_{\rm i}$, and must be completed before its deadline $d_{\rm i}$
 - Tasks cannot overlap in time

Time is represented as a discrete set of time points, say 1, 2,..., H (H stands for horizon)

MIP model

- Variables
 - Binary variable x_{ij} represents whether task i starts at time period j
- Constraints
 - Each task starts on exactly one time point

 $\sum_{i} x_{ii} = 1$ for all tasks i

- Respect release date and deadline

$$j^*x_{ij} = 0$$
 for all tasks i and $(j < r_i)$ or $(j > d_i - p_i)$

MIP model (cont'd)

- Tasks cannot overlap
 - -variant 1
 - $\sum_{i} x_{ij} \le 1$ for all time points j

• we also need to take processing times into account; try as an exercise

-variant 2

- \bullet introduce binary variable b_{ik} representing whether task i comes before task k
- must be linked to x_{ij} ; we need to add constraints to make them consistent with one another (i.e., triplets of tasks); (try as an exercise)

CP model

• Variables

– Let $start_i$ represent the starting time of task i

```
takes a value from domain {1,2,..., H}
```

- This immediately ensures that each task starts at exactly one time point
- Constraints
 - Respect release date and deadline

 $r_i \leq start_i \leq d_i - p_i$

CP model

 Tasks cannot overlap: for all tasks i and j

```
(start_i + p_i < start_j) OR (start_j + p_j < start_i)
```

That's it!

 an even more compact model is possible for this problem, using a 'global' scheduling constraint

Benefits of CP model

- The number of CP variables is equal to the number of tasks, while the number of MIP variables depends also on the time granularity (for a horizon H, and n tasks, we have H*n binary variables x_{ii})
- The sequencing constraints are quite messy in MIP, but straightforward and intuitive in CP

Advanced Scheduling

- Basic building blocks
 - -Activities $a_1, a_2, ..., a_n$
 - –Resources r₁, r₂,..., r_m
- Variables corresponding to activity a_i
- Each activity requires one or more units of 'energy' from one or more resources
- Each resource has a capacity (usually fixed)

Activities

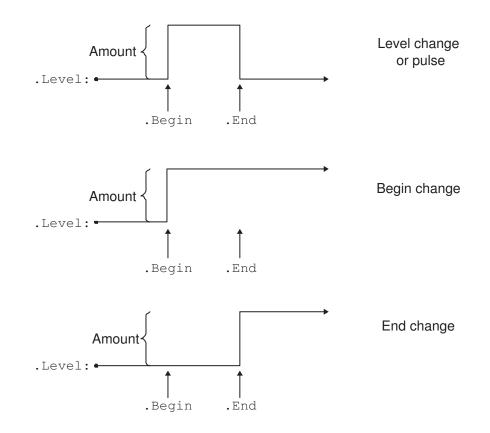
- Activities are defined with:
 - start(a_i) start time
 - $-end(a_i)$ end time
 - $-proc(a_i)$ processing time (with: $proc(a_i) = end(a_i) start(a_i)$)
 - $-size(a_i)$ or intensity or energy
- Activities can further be:
 - Optional
 - Have priority
- All of these are transformed into CP (finite domain) variable which can be used to model constraints directly

Resources

- There is essentially two types of resources:
 - Sequential
 - Parallel
- Sequential resources:
 - Execute only one activity at a time.
 - Allow for two form of precedencies
 - a "comes before" b, but c can be between a and b
 - or a "precedes" b, and nothing can be scheduled in between
 - Allow to define the first and last activities
- Transition
 - Occurs when switching from one activity to another one
 - Can be defined for each pair of activity (transitions between cities)
 - Can be defined for each pair of activity group (transitions between colors) 10

Resources

- Parallel resources
 - May execute many activities concurrently
 - Total size of activities run in parallel must not exceed resource capacity
 - Allow to track change in resource consumption level (a.k.a profile)



Scheduling constraints

• We have a set of possible constraints which can be stated

Scheduling Constraints	Interpretation
$cp::Span(g,i,a_i)$	The activity g spans the activities a_i
	$g.\text{Begin} = \min_i a_i.\text{Begin} \land$
	$g.End = max_i a_i.End$
$cp::Alternative(g,i,a_i)$	Activity <i>g</i> is the single selected activity a_i
	$\exists j : g = a_j \land \forall k, j \neq k : a_k. \text{present} = 0$
cp::Synchronize(<i>g</i> , <i>i</i> , <i>a</i> _{<i>i</i>})	If <i>g</i> is present, all present activities a_i
	are scheduled at the same time.
	$g.present \Rightarrow (\forall i : a_i.present \Rightarrow g = a_i)$
Precedence Relations	
Trecedence Kelutions	When activities <i>a</i> and <i>b</i> are present
	and for a non-negative integer delay d
<pre>cp::BeginBeforeBegin(a,b,d)</pre>	and for a non-negative integer delay a a.Begin + $d \le b$.Begin
cp::BeginBeforeEnd(a,b,d)	$a.Begin + d \le b.Begin$ $a.Begin + d \le b.End$
cp::EndBeforeBegin(a,b,d)	$a.\text{End} + d \le b.\text{Begin}$
cp::EndBeforeEnd(a,b,d)	$a.End + d \le b.End$
•	
cp::BeginAtBegin (a,b,d)	a.Begin + $d = b$.Begin
cp::BeginAtEnd(a,b,d)	a.Begin + d = b.End
cp::EndAtBegin (a,b,d)	a.End + d = b.Begin
cp::EndAtEnd(a,b,d)	a.End + $d = b$.End
Adjacent Activity	
	r is the resource
	<i>s</i> is the scheduled activity
	<i>e</i> is extreme value (when <i>s</i> is first or last)
	<i>a</i> is absent value (<i>s</i> is not scheduled)
cp::BeginOfNext(r,s,e,a)	Beginning of next activity
cp::BeginOfPrevious(r,s,e,a)	Beginning of previous activity
cp::EndOfNext(r,s,e,a)	End of next activity
cp::EndOfPrevious(r,s,e,a)	End of previous activity
<pre>cp::GroupOfNext(r,s,e,a)</pre>	Group of next activity, see also page 316
<pre>cp::GroupOfPrevious(r,s,e,a)</pre>	Group of previous activity
cp::LengthOfNext(r,s,e,a)	Length of next activity
<pre>cp::LengthOfPrevious(r,s,e,a)</pre>	Length of previous activity
cp::SizeOfNext(r,s,e,a)	Size of next activity
<pre>cp::SizeOfPrevious(r,s,e,a)</pre>	Size of previous activity

Searching for solution

- During the solving process, constraint programming employs search heuristics that define the shape of the search tree, and the order in which the search tree nodes are visited.
- The shape of the search tree is typically defined by the order of the variables to branch on, and the corresponding value assignment.
- For example, to decide the next variable to branch on, a commonly used search heuristic is to choose a non-fixed variable with the minimum domain size, and assign it its minimum domain value.
- One can use the Priorities to force the system to branch first on activities with the highest priority.

Searching for solution

• Other heuristics are available...

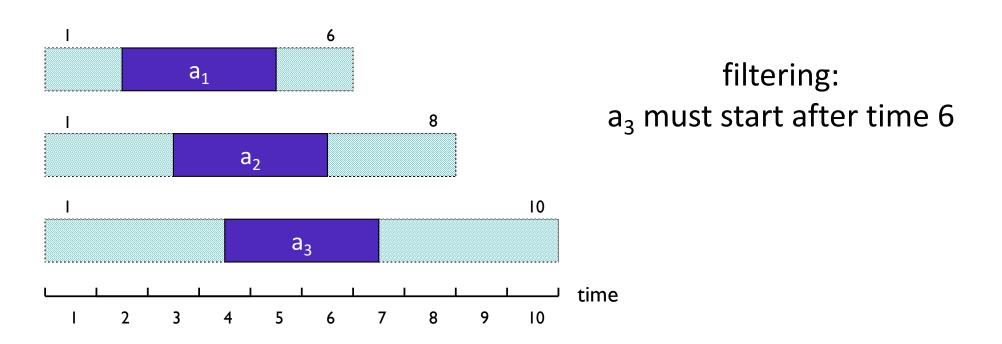
Heuristic	Interpretation
Variable selection:	choose the non-fixed variable with:
Automatic	use the solver's default heuristic
MinSize	the smallest domain size
MaxSize	the largest domain size
MinValue	the smallest domain value
MaxValue	the largest domain value
Value selection:	assign:
Automatic	use the solver's default heuristic
Min	the smallest domain value
Max	the largest domain value
Random	a uniform-random domain value

Typical Objectives

- Find feasible schedule
- Minimize makespan (latest end time)
- Minimize maximum tardiness (delay)
- Minimize total (weighted) number of late jobs
- Can you write these objectives using the variable derived from the activities ?
- Lets now look at filtering for scheduling constraints...

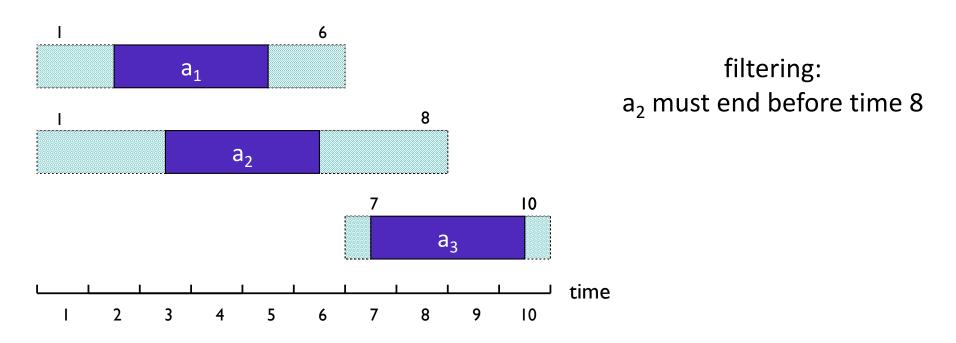
Sequential Scheduling (filtering)

- Machine must execute three activities a₁, a₂, a₃ each with duration of 3 time units, time windows are indicated in figure. Activities cannot overlap in time.
- Filtering task: find earliest start time and latest end time for activities



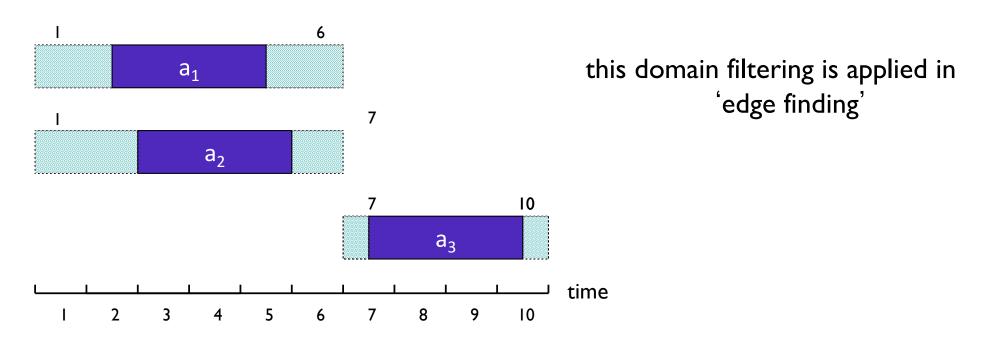
Sequential Scheduling (filtering)

- Machine must execute three activities a_1 , a_2 , a_3 each with duration of 3 time units, time windows are indicated in figure. Activities cannot overlap in time.
- *Filtering task:* find earliest start time and latest end time for activities



Sequential Scheduling (filtering)

- Machine must execute three activities a₁, a₂, a₃ each with duration of 3 time units, time windows are indicated in figure. Activities cannot overlap in time.
- *Filtering task:* find earliest start time and latest end time for activities



Task Sequencing Revisited

Tasks cannot overlap: for all tasks i and j
(start_i + P_i < start_j) OR (start_j + P_j < start_i)

• Can also be modeled with a single global constraint: SequentialSchedule([start₁,..., start_n], [p₁,...,p_n])

Advanced scheduling

- Several different filtering algorithms can be associated with the scheduling constraints
 - -time-table, disjunctive, edge-finding, not-first not-last, network-flow based, precedence graph, ...
- These algorithms are called in sequence
- Dynamic search strategies can be defined using the information from the filtering algorithms
- In order to leverage the power of these algorithms, the model must explicitly use the dedicated scheduling syntax –i.e., activities, resources and global scheduling constraints

- Many applications contain an optimization component as well as a highly combinatorial (scheduling) component
- Use MIP or CP?
- Over the last decade, *integrated* methods combining CP, AI, and OR techniques have been developed (see conference CPAIOR)
 - -Embed OR methods inside global constraints (e.g., network flows)
 - -Double modeling (run CP and MIP separately)
 - -Decomposition where MIP and CP solve different levels

Summarizing Strengths of CP

- Very expressive and intuitive modeling language
- Powerful domain filtering algorithms for global constraints
- Advanced search strategies
- Very effective on complex scheduling problems

Recognizing when to use CP

Definitely try **CP** if:

- Finding feasible (or any) solution is more important than finding an optimal solution
- The problem heavily relies on a 'scheduling' component: timetabling, employee rostering, production line sequencing, ...
- Definitely try **MIP** if:
- Optimality is critical, and moreover the objective is naturally modeled as a linear expression
- The problem structure corresponds to a `continuous' allocation of resources, e.g., network models
- Try an integrated **MIP+CP** approach
- When both linear optimization and scheduling are present