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Definition of cross sections 1

1. The trajectory of a neutron in a material is a straight line which can be interrupted by a

nuclear interaction with a nucleus of the material.

2. The neutron-nucleus collision can result in a variety of nuclear reactions (such as the

elastic scattering reaction).

3. The concept of cross section is used to describe the probability of each type of nuclear

reaction. The probability for a neutron located at r and moving in a material at velocity

Vn to undergo a nuclear reaction in a differential element of trajectory ds is

independent of the past history of the neutron and is proportional to ds.

Let’s consider a one-speed and parallel beam of neutrons of intensity I neutrons per unit

surface and unit time. The beam hits perpendicularly a target of width ds. The target

contains a unique type of nuclide with a number density of N nuclei per unit volume.

ds

I (cm-2 s-1)
N (cm-3)
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Definition of cross sections 2

The number density of nucleus in the target is given by

N =
ρA0

M
(1)

where ρ is the density (g/cm3), M is the atomic mass of one nuclide (u) and A0 is the

Avogadro number defined as 6.022094 × 1023 u/g.

The intensity I if the beam is obtained from

I = VR n(2)

where VR is the relative velocity of the neutrons with respect to the target and n is the

number density of the neutrons (cm−3) in the beam. If the target is at 0K, VR = Vn.

The surfacic reaction rate dRx is defined as the number of nuclear reactions of type x per

unit time and unit surface of the target. It is experimentally found that dRx is proportional to

the number density N , to the intensity of the beam I, and to the width of the target, at the

limit of zero width. The microscopic cross section σx is defined as the proportionality factor:

dRx = σx N I ds .(3)
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Definition of cross sections 3

The microscopic cross section must have the dimension of a surface to make Eq. (3)

dimensionally consistent. They are generally expressed in barn (b), with 1 b = 10−24 cm2. It

is also common to define the macroscopic cross section Σx to group all the characteristics of

the target in a single value. It is defined as Σx = N σx.

If the material of the target is an homogeneous mixture of different types i of nuclides, the

resulting macroscopic cross section is

Σx =
∑

i

Ni σx,i .(4)

Moreover, we define the total macroscopic cross section as the sum of cross sections from

all nuclear reactions. We write

Σ =
∑

x

Σx .(5)
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Definition of cross sections 4

ds

I0 (cm-2 s-1)

s

Let’s consider now a one-speed and parallel beam of neutrons of intensity I0 neutrons per

unit surface and unit time. The beam hits perpendicularly a slab of finite width. The collision

or total reaction rate dR is the number of collisions of neutrons in an elemental width ds

located at distance s, per unit time and unit surface of the slab. Each time a neutron collide

in ds, it is removed from the uncollided beam. The reaction rate is written

dR = −dI(s) = I(s) Σ ds(6)

where I(s) is the intensity of the uncollided beam after a distance s in the slab. Integrating

this equation between 0 and s, we obtain

I(s) = I0 e−Σs .(7)
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Definition of cross sections 5

The ratio I(s)/I0 is the probability for the neutron to be uncollided after a distance s. The

probability of an interaction for this neutron in the following elemental width ds is Σ ds. The

probability P (s) ds for a neutron in I0 to collide in ds is therefore

P (s) ds = Σ e−Σs ds .(8)

This equation is useful to define the mean free path λ of neutrons in an infinite slab, an

important quantity in reactor physics. The mean free path is the average trajectory length of

the neutrons in an infinite and homogeneous material. This value is obtained from equation

λ =

∫ ∞

0

ds s P (s) =
1

Σ
.(9)
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Definition of cross sections 6

1. Each type of nuclear reaction is characterized by a specific microscopic cross section

σx which is also function of the type of nuclide and on the velocity or kinetic energy of

the neutron. However, the potential cross section is independent of neutron energy.

2. An elastic neutron-nucleus collision is characterized by an elastic scattering cross

section σe. This reaction includes both potential and resonant elastic collisions.

3. The symbol Q represents the energy produced by a nuclear reaction in the form of

kinetic energy in excess of eexc. In a threshold reactions, Q is negative and the

nuclear reaction can occur only if eexc ≥ −Q. If a scattering reaction has a threshold

energy −Q, the compound nucleus is left excited after the collision and decay with

gamma ray emission of energy −Q (short half life). This is the inelastic scattering

cross section (σin).

The scattering cross section σs is written σs = σe + σin +
∑

x≥2 σn,xn.

σe σin σfσn,2n σpσα

σ

σγσn,3n

σs

transmutation(n,xn)

scattering

total

absorption
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Definition of cross sections 7

In a similar way, we may define cross sections for reactions involving the absorption of the

incident neutron. A representation of this hierarchy is given in figure.

Nuclear reactions in reactor physics are often represented with the following notation:

(n,n): elastic scattering,

(n,n’): inelastic scattering,

(n,γ): the radiative capture cross section σγ

(n,f): the fission cross section σf ,

(n,α), (n,p): transmutation cross sections σα (an α particle is emitted)

or σp (a proton is emitted)

(n,2n): n-2n reaction, etc.

All these reactions, with the exception of the potential scattering, involve the formation of a

compound nucleus and are characterized by cross sections that may exhibit high variation

with neutron energy. This phenomena will be studied in the next section.

The total cross section is the sum of all existing cross sections.
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Formation of a compound nucleus 1

Any nuclear reaction with formation of a compound nucleus are proceeding in two

successive steps:

1. The incident neutron is absorbed by the target nucleus A
ZX to form an excited state of

nucleus A+1
Z X called the compound nucleus. During the formation process, the

available kinetic energy of the incident neutron eexc and the binding energy of this

additional neutron Sn(A + 1, Z) are distributed among all the nucleons of the

compound nucleus. The binding energy is computed in term of the mass default using

Sn(A + 1, Z) = [M(A,Z) + mn −M(A + 1, Z)] c2(10)

where M(A,Z) is the mass of isotope A
ZX expressed in u, mn = 1.008665 u is the

mass of the neutron and c2 = 931.5 MeV/u is the square of the light velocity in void.

2. The compound nucleus decay with a half life between 10−22 and 10−14 second,

without reminding how it was formed. The neutronic reactions are not the only ones

that can produce a compound nucleus; a photo-nuclear interaction (with an incident γ

ray) can produce the same effect. This decay can occur following a number of decay

channels, as represented in table. Each decay channel involves the production of

secondary rays and/or particles which can emerge in ground or excited state.
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Formation of a compound nucleus 2

Type of reaction Number of decay channels

1© elastic scattering 1 channel

2© inelastic scattering 1 channel if eexc ≥ −Q

3© radiative capture very high number of channels

4© fission ≃ 2 or 3 channels if eexc + Sn ≥ ef

The compound nucleus model consists to write the interaction as a two-stage reaction,

A
ZX +1

0 n →A+1
Z X∗ →















1©
2©
3©
4©

,(11)

where the asterisk indicates that the compound nucleus is in an excited state. The first arrow

denotes the formation stage and the second, the decay stage. The energy-level diagram for

this reaction is shown in figure.
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Formation of a compound nucleus 3

X
A
Z

X
A+1

Z
(compound nucleus)

eexc

Sn(A+1,Z)

es = –Q

negative resonances

J
π2

I
π1

1

2

3

4

≈ 5 MeV

≈ 40 keV

(excited level)

≈ 1 eV
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Formation of a compound nucleus 4

A decay channel is open only if the three following laws are observed: conservation of

energy, linear and angular momentum of the nuclide-nucleus pair. The first two laws have

already been studied in Week 3. The conservation of angular momentum is written

J = I + K + L where(12)

I , K = angular momentum of the target nucleus A
ZX in its ground state and of the neutron

J = angular momentum of the compound nucleus A+1
Z X in its excited state

L = orbital angular momentum of the nuclide-nucleus pair in the CM.

The classical definition of the orbital angular momentum of the nuclide-nucleus pair about

the origin of the CM is L = m(rn − rCM) × vn + mA(rA − rCM) × vA.

Using relations in week 3 and defining the ez–directed axis as perpendicular to the plane

where the particles are moving, this equation simplifies to

L = ∆RVR m0 ez(13)

where ∆R is the distance between the lines of definition of vectors vn and vA in the CM and

m0 is the reduced mass of the neutron defined as m0 = mA
A+1

.
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Formation of a compound nucleus 5

In reactor physics, the principle of conservation of angular momentum involves principles of

quantum mechanics. There is a relation between the orbital angular momentum of the

neutron-nucleus pair and the angular momentum quantum number.

In quantum mechanics, the modulus of the orbital angular momentum vector L is related to

the angular momentum quantum number ℓ, a positive integer, by the relation

L =
√

ℓ(ℓ + 1) ~(14)

where ~ = 1.054494 × 10−34 J·s is the reduced Plank constant. A comparison of the

classical expression of L in Eq. (13) and of the quantum expression in Eq (14) indicates that

ℓ = 0 is likely to occur if VR is low. However in cases where ∆R or VR is high, greater values

of ℓ become possible. Note that high values of ∆R is only possible when the target nucleus

has a large radius, a characteristics of heavy nuclides. The following nomenclature is

universally accepted:

ℓ =







0; s–wave interaction,

1; p–wave interaction,

2; d–wave interaction.

In conclusion, s–wave interactions are the most common for low-energy incident neutrons

and p– or d–wave interactions will be more probable for heavy target nuclides.
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Selection rules 1

The parity π is also required. It is a binary quantity (equal to +1 or -1) that characterize the

energy levels of the particles in interaction. The basic information about parity is:

Spin (I, J or K) Parity (π)

Neutron 1/2 +1

Nucleus (ground state):

even A and even Z 0 +1

even A and odd Z integer and 6= 0 unknown

odd A half integer unknown

Notations Iπ1 and Jπ2 are often used to represent the spin and parity of initial and final

levels, respectively. An energy level of the compound nucleus can be excited if the following

two selection rules are fulfill (see ENDF–102):

1. the spin J of the excited level in A+1
Z X is an element of set

{Jmin, Jmin + 1, . . . , Jmax} where Jmin =
∣

∣|I − ℓ| − 1
2

∣

∣ and Jmax = ℓ + I + 1
2

,

2. the parity of the excited level in A+1
ZX must obey π2 = π1(−1)ℓ where π1 and π2 are

the parity of the target (ground level) and of the compound nucleus (excited level).
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Resonances 1

Notice that e∗ = Sn(A + 1, Z) + eexc is the available excitation energy of the compound

nucleus and is measured on the CM. If the compound nucleus has an excited state at ei that

is close to e∗, then one can have resonance condition and the compound nucleus formation

cross section will show a peak at the neutron incident energy corresponding to ei. These

peaks are at the origin of the resonant cross section phenomena, as depicted in figure. We

also observe that the resonance peaks for a cross section of isotope A
ZX correspond to the

excitation states of isotope A+1
Z X located above energy Sn(A + 1, Z).
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Resonances 2

1. Each excitation level ei has a certain energy width γi, due to the Heisenberg

uncertainty principle. The width γi corresponds to its finite lifetime τi:

γi =
~

τi
.(15)

The finite lifetime is the average lifetime of the compound nucleus at level i. It is the

reciprocal of the radioactive decay constant. The smaller the width means the longer

the lifetime of the level. The energy width γi is defined in the CM.

2. The resonance width is related to the formation of the compound nucleus at level i.

The probability for it to decay with a nuclear reaction of type x is given in term of the

partial resonance width γx,i as

Px,i =
γx,i

γi
(16)

so that

γi =
∑

x

γx,i .(17)

The decay channel x is one of the nuclear reactions. The partial width corresponding

to the scattering reaction is the neutron width γn,i.
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Resonances 3

3. The peak energy of a resonance may be negative, in the case where a level of the

compound nucleus is close to the state corresponding to the capture of a neutron by

the target but is located below this state (called a negative resonance).

4. Intermediate and heavy isotopes are characterized by a high number of resonances. It

become possible to apply statistical studies on the resonance widths γ and of their

spacing D, corresponding to a given spin and parity. This statistical treatment is useful

for the representation of the unresolved resonances in domain 10keV ≤ E ≤ 300keV.

5. The neutron width is a function of the incident neutron energy and is written γn(eexc).

The statistical treatment on the neutron width is applied on the random variable

x =
γℓ
n

〈

γℓ
n

〉(18)

where the reduced neutron width γℓ
n, a function of the angular momentum quantum

number ℓ, is defined as

γℓ
n =

γn(eexc)

vℓ(eexc)
√
eexc

(19)

where vℓ(eexc) is a coefficient related to the penetrability of the potential barrier in the

target nucleus.
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Resonances 4

The first three values of the penetrability coefficient are

v0(eexc) = 1

v1(eexc) =

(

R
 λ

)2
[

1 +

(

R
 λ

)2
]−1

v2(eexc) =

(

R
 λ

)4
[

9 + 3

(

R
 λ

)2

+

(

R
 λ

)4
]−1

(20)

where R is the hard sphere radius of the nucleus. It can be computed in term of the atomic

mass ratio A using R =
(

0.123A1/3 + 0.08
)

× 10−12 cm, and where  λ is the reduced

wavelength of the neutron, defined by the relation

 λ =
~

m0 VR

=
~√

2m0 eexc
(21)

where m0 is the reduced mass of the neutron.
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Resonances 5

The reduced wavelength can also be written in term of the neutron mass m and of the

excitation energy Eexc in the LAB. We write

 λ =
A + 1

A

~√
2mEexc

=
(

0.4552136 × 10−9
) A + 1

A

1√
Eexc

cm(22)

where

Eexc =
A + 1

A
eexc(23)

is expressed in eV. Using the above definitions, we find that the reduced neutron width γℓ
n

can be expressed in
√

meV.
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Porter and Thomas distribution 1

0 1 2 3
0
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ν = ∞

ν = 1

ν = 2
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ν = 16

P(x,ν)

x

Porter and Thomas have shown that the resonance widths γγ , γf and the normalized

neutron width γℓ
n corresponding to a single spin and parity obey a chi-square statistics:

P (x, ν) =
ν

2G(ν/2)

(νx

2

)ν
2
−1

e−νx/2
(24)

where x = γx/ 〈γx〉 is the random variable defined as the ratio of the actual resonance width

divided by the average resonance width for reaction x. The random variable x =
γℓ

n

〈γℓ
n〉

must

be used in the case of the neutron width.
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Porter and Thomas distribution 2

The number of degrees of freedom ν in the Porter-Thomas distribution is equal to the

number of decay channels of the compound nucleus. The average value of x is 1 and its

most probable value is xp = 1 − 2/ν if ν ≥ 2. In the case where ν = 1, P (x, 1) becomes

infinite at x = 0. The gamma function G(ρ) is defined as

G(ρ) =

∫ ∞

0

dt e−t tρ−1
(25)

so that G(1/2) =
√
π, G(1) = 1 and G(ρ) = (ρ− 1)G(ρ− 1). The Porter-Thomas is

depicted in figure for different values of ν.

In the case of a scattering reaction, ν = 1 and the Porter-Thomas distribution simplifies to a

simple decreasing exponential. In the case of a radiative capture, the number of decay

channels is very high and P (x,∞) = δ(x− 1), the Dirac delta distribution. In this case, γγ

will be almost constant from resonance to resonance.
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Wigner distribution 1
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The statistical distribution of the resonance spacings corresponding to a single spin and

parity follows the Wigner distribution written as

S(x) =
π

2
x e−

π
4
x2

where x =
D

〈D〉(26)

and depicted in figure.
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The SLBW formula 1

The single level Breit and Wigner (SLBW) formulas result from the application of the

Schrödinger equation to a compound nucleus model with a single excitation level. With this

model, variations in cross sections are related to the width and energy characteristics of this

excited level.

For reactions involving the absorption of the incident neutron, such as radiative capture or

fission, the SLBW formula is written in term of the reduced energy variable

u =
2

γ1
(eexc − e1)(27)

as

σx(eexc) = σ0
γx,1

γ1

1

1 + u2
(28)

where

γx,1 = resonance width of the excited level for an absorption reaction of type x

γ1 = total resonance width of the excited level

e1 = energy of the excited level in the CM relative to the ground level of the target nucleus.
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The SLBW formula 2

The parameter σ0 is defined as

σ0 = 4π  λ2 gJ
γn,1(eexc)

γ1
=

2π~2

m0
√
eexc

vℓ(eexc) gJ
γℓ
n,1

γ1
(29)

where the expression for γn,1(eexc) and  λ2 were recovered from Eqs. (19) and (21),

respectively. In this relation, γℓ
n,1 is constant. The statistical spin factor gJ is defined as

gJ =
2J + 1

(2I + 1)(2K + 1)
=

2J + 1

2(2I + 1)
(30)

since K = 1/2 for the neutron. The excited level of the compound nucleus has a spin J

function of the angular momentum quantum number ℓ and consistent with the selection rules.
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The SLBW formula 3

In the case of the elastic scattering reaction, the cross section is the sum of three

components. The first two are the potential and resonant cross section terms. There is also

an interaction term between the first two components. The interference term arises in the

quantum mechanical model when the modulus of the sum of two complex quantities is taken.

The SLBW formula corresponding to the elastic scattering cross section is

σe(eexc) = σℓ
p + σ0 sin 2φℓ

u

1 + u2
+ σ0

(

γn,1

γ1
− 2 sin2 φℓ

)

1

1 + u2
.(31)

The potential component σℓ
p is defined in term of the angular momentum quantum number ℓ

as

σℓ
p = 4π  λ2 (2ℓ + 1) sin2 φℓ(32)

where the integer quantum number ℓ is ≥ 0 and where φℓ are the shift factors.
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The SLBW formula 4

The first values of the shift factor φℓ are written as

φ0 =
a
 λ

φ1 =
a
 λ
− tan−1 a

 λ

φ2 =
a
 λ
− tan−1

3a
 λ

3 −
( a

 λ

)2
.(33)

We have used the diffusion radius a different from the hard sphere radius R introduced

earlier. In general, the ratio a/  λ is small with respect to one, and the potential cross section

component σ0
p for s wave interactions is almost equal to the classical value corresponding to

a “billiard-ball" collision:

σ0
p = 4π a2 .(34)
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The SLBW formula 5

Summation of Eq. (28) with Eqs. (31) corresponding to all absorption types of nuclear

reactions leads to the SLBW expression of the total cross section:

σ(eexc) = σℓ
p + σ0 sin 2φℓ

u

1 + u2
+ σ0 cos 2φℓ

1

1 + u2
.(35)

Equations (28) and (31) are giving the variation of the absorption-type and scattering cross

sections with energy eexc in the case of a unique resonance. These variations are depicted

in figure.
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Figure depicts a nice illustration of the effect of the interference term in Eq. (31).
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The SLBW formula 6

This is a very well known shielding issue associated with 56Fe. The cross section is almost

vanishing near 24 keV, so that incident neutrons with this energy are undergoing very few

collisions in iron.
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The SLBW formula 7

1. The SLBW formula can only be applied to the case of an isolated resonance. However,

most isotopes feature many resonances at increasing energies. A crude approximation

consists to neglect resonance interactions, so that the cross section of a reaction

x 6= e is written by summing the contributions of I resonances as

σx(eexc) =
I

∑

i=1

σ0
γx,i

γi

1

1 + u2
.(36)

A similar expression can be written for σe(eexc).

2. In the general case, many levels of the compound nucleus interact together and a

multilevel formula is required. In this case, the cross section are obtained by summing

the contributions from each individual resonance, taking care to introduce interaction

terms in the sum.

3. At energies above ≃ 10 keV, resonances become unresolved and are represented by

statistical parameters. At higher energies, the resonance become tighter up to the

point where they overlap, leading to the continuum energy domain.
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The SLBW formula 8

The SLBW equations (28) and (31) are function of the excitation energy eexc in the CM.

However, most theoretical developments used in reactor physics are expecting cross

sections defined in term of LAB-related quantities. We remember the expression of the

excitation energy Eexc in the LAB as

Eexc =
A + 1

A
eexc =

1

2
mV 2

R .(37)

In case where the target nuclide is initially at rest, Eexc is equal to the initial energy of the

neutron in the LAB. If we replace eexc by Eexc in Eqs. (28) and (31), these equations remain

valid provided that we redifine LAB-related peak energy and resonance widths as

E1 =
A + 1

A
e1 and Γx,1 =

A + 1

A
γx,1 .(38)

Peak energy and resonance widths are measured and are reported in reference tables as

LAB-defined values, similar to those defined in Eqs. (38). The neutron widths are reported

with the statistical spin factor included, as gJΓn,1(E1).
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Resonance parameters of 232Th 1

i Ei (eV) gΓn,i(Ei) (meV) Γγ,i (meV) ℓ

1 8.346 0.0003 29.0 1

2 13.111 0.0002 1

3 21.783 2.0200 24.5 0

4 23.439 3.8800 26.6 0

5 36.926 0.0010 1

6 38.165 0.0006 1

7 40.925 0.0006 1

8 47.001 0.0014 1

9 49.850 0.0006 1

10 54.130 0.0011 1

11 58.780 0.0096 1

12 59.514 3.9000 23.7 0

13 64.580 0.0005 1

14 69.224 43.8000 21.9 0
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Uranium-235 total cross section 1
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Uranium-238 total cross section 1

 1

 10

 100

 1000

 10000

 100 10 1

M
ic

ro
s
c
o
p
ic

 t
o
ta

l 
c
ro

s
s
 s

e
c
ti
o
n
 (

b
)

Energy (eV)

ENE6101: Week 4 Cross sections – 34/37



Plutonium-239 total cross section 1
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Low-energy variation of cross sections 1

We consider a resonance located at an energy ex,1 above the thermal energy domain (> 1

eV) and study its contribution at thermal energies. We will rewrite the SLBW formulas and

take their limits as ex,1 approaches zero.

If R/  λ << 1 and a/  λ << 1, only s wave interactions are contributing to the cross sections.

Using the LAB variables, the SLBW Eqs. reduce to

σx(Eexc) = σ0
Γx,1

Γ1

1

1 + u2
,(39)

σe(Eexc) = 4π a2 + σ0
2a
 λ

u

1 + u2
+ σ0

Γn,1

Γ1

1

1 + u2
,(40)

σ(Eexc) = 4π a2 + σ0
2a
 λ

u

1 + u2
+ σ0

1

1 + u2
,(41)

where the reduced variable u and parameter σ0 are defined as

u =
2

Γ1

(Eexc − E1) and σ0 = 4π  λ2 gJ
Γn,1(Eexc)

Γ1

.(42)
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1. These equations are valid at energies E ≤ 300 keV for a heavy nuclide and at

energies E ≤ 1 MeV for an intermediate nuclide (A ≃ 40).

2. We will next consider an isotope without negative resonance and without resonances

in the thermal energy domain. In this case, the energy-variation of the cross sections

at thermal energies is dictated by the energy variation of  λ and Γn,1. The

absorption-type widths, such as Γγ,1 or Γf,1, are constant in energy.

3. The neutron width Γn,1, on the other hand, varies as
√
E for a s wave interaction, as

E3/2 for a p wave interaction and as E5/2 for a d wave interaction. The squared

reduced wavelength  λ2 varies as 1/E.

4. We therefore observe that s wave absorption-type reactions feature a characteristic

1/v–dependence. At low energies, the probability of these interactions is directly

proportional to the time the neutron spends within the reach of the nuclear force.

5. Assuming s wave interaction, we see that σe(eexc) is almost constant at low energy

and that the absorption-type reactions with no threshold energy vary as 1/
√
E.
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