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ENE6101: Week 3 Dynamics of a scattering reaction – 1/21



Content (week 3) 1

Basic approximations of neutron transport

Common approximations of neutron transport

Neutron-nucleus collision

in the LAB

in the CM

available kinetic energy for excitation

Collision of a neutron on a nucleus initially at rest

The collision law of the scattering reaction

ENE6101: Week 3 Dynamics of a scattering reaction – 2/21



Basic approximations 1

1. Relativistic effect can be neglected. The kinetic energy of a neutron is generally

smaller than 10 MeV in a nuclear reactor. This value is << E0 = mc2 = 939.55 MeV).

2. The neutron-neutron interactions can be neglected. This approximation is justified by

the small number density of neutrons, compared to the number density of nuclei.

3. The neutron trajectories between collision are straight lines.

4. The materials are isotropic in space. Consequently, the effects of a neutron-nucleus

collision are not function of the initial direction of the neutron.

5. The lifetime of a neutron in a nuclear reactor is smaller than the radioactive half-life of

the neutron (≃10.25 m) by many orders of magnitude. Radioactive decay of neutrons

is therefore neglected.

6. The nuclei are always in thermal equilibrium with the material and their velocity

distribution is given by the Maxwell-Boltzmann law at absolute temperature T .
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Maxwell-Boltzmann law 1

The Maxwell-Boltzmann law is a probability density written as

p(VA) =

(

mA

2πkT

) 3

2

exp

(

−mAV
2

A

2kT

)

where

VA = module of VA, the velocity of the nucleus in the LAB

k = Boltzmann constant (= 8.617065× 10−5 eV/◦ K = 1.38054× 10−23J/K)

T = absolute temperature of the mixture (K)

m = neutron mass (= 1.6749544× 10−27kg)

A = atomic mass ratio (nucleus mass in units of the neutron mass)

p(VA) d3VA = probability for a nucleus to have a velocity VA (within a d3VA interval) in the

LAB.

This probability density is normalized as

∫

∞

d3VA p(VA) = 1 .
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Common approximations 1

These new approximations are less fundamental than the preceding ones and may be

defeated in some practical cases.

7. In a neutron-nucleus collision, both momentum and kinetic energy of the system are

conserved. Such a reaction is said to be elastic. Note that this approximation may be

defeated in some nuclear reactions, such as inelastic scattering, where gamma energy

is produced.

8. The neutron-nucleus collision is isotropic in the center of mass frame of reference

(CM) of the colliding pair. This approximation means that all the emission angles of the

secondary particles are equiprobable in the CM frame of reference. This approximation

is known to be defeated for energies of the incident neutron greater than 1 MeV.

9. The nuclei are free between impacts. This approximation consists to assume that the

nuclides are free from any atomic or molecular binding forces. However, for energies of

the incident neutron smaller than 4 eV, molecular or metallic binding forces do have an

effect if the nuclide is used as a moderator (e.g., H2O, D2O, Graphite, etc.).

ENE6101: Week 3 Dynamics of a scattering reaction – 5/21



Neutron-nucleus collision in the LAB 1
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The collision law will be obtained in term of the following quantities:

Vn,Vn
′ = initial and final velocity of the neutron in the LAB. We will also define the

modulus of these vectors as Vn = |Vn| and V ′

n = |Vn
′|.

E,E′ = initial and final kinetic energy of the neutron in the LAB. They are computed as

E = 1
2mV

2
n and E′ = 1

2mV
′2
n .

VA,VA
′ = initial and final velocity of the nucleus in the LAB.

ψ, θ = deviation angles in the LAB for the nucleus and the neutron, as shown in figure.
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The collision law 1

The collision law is a probability density written Pe(E′ ← E, µ) where µ = cos θ.

The quantity Pe(E′ ← E, µ) dE′ dµ is the probability for a neutron of initial energy E

and undergoing an isotropic collision in the CM to have a final energy equal to E′

(within a dE’ interval) and a deviation cosine equal to µ (within a dµ interval) in the

LAB.

This collision law is a distribution with respect of variables E′ and µ but a function with

respect to E.

It may also be a function of other quantities such as the absolute temperature on the

underlying material.

Its support is 0 ≤ E′ ≤ ∞ and −1 ≤ µ ≤ 1.
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Neutron-nucleus collision in the CM 1

It is easier to obtain the collision law by studying the same collision in the CM. The position

rCM of the center of mass in the LAB is defined by

(A+ 1) rCM = rn +A rA

where rn and rA are the position of the neutron and of the nucleus, respectively. The

velocity of the center of mass in the LAB is

(A+ 1)VCM = Vn +AVA = Vn
′ +AVA

′

where the RHS part of this equation is an application of the conservation of linear

momentum. The velocity VCM of the center of mass is constant in the LAB, before and after

the collision.

If the nucleus is initially at rest, VA = 0 and

VCM =
1

A+ 1
Vn
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Neutron-nucleus collision in the CM 2
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The new dynamics relations will be obtained in term of the following quantities:

vn,vn
′ = initial and final velocity of the neutron in the CM. We will also define the modulus

of these vectors as vn = |vn| and v′n = |vn
′|.

en, en
′ = initial and final kinetic energy of the neutron in the CM. They are computed as

en = 1
2mv

2
n and en′ = 1

2mv
′2
n .

vA,vA
′ = initial and final velocity of the nucleus in the CM.

eA, eA
′ = initial and final kinetic energy of the nucleus in the CM. They are computed as

eA = 1
2mAv

2

A and eA
′ = 1

2mAv
′2

A .
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Neutron-nucleus collision in the CM 3

The velocities in the CM are

vn = Vn − VCM , vA = VA − VCM

vn
′ = Vn

′ − VCM and vA
′ = VA

′ − VCM .

Combining these Eqs., we can show that

vn = Vn −
Vn + AVA

A+ 1
=

A

A+ 1
VR and vA =

−1
A+ 1

VR

where VR is the initial relative velocity between the neutron and the nucleus. It is defined as

VR = Vn − VA .

We observe that vn and vA are colinear vectors of opposite direction in the CM.
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Neutron-nucleus collision in the CM 4

During the collision, the two particles will stay at rest in the CM. If a compound nucleus is

formed, it will stay at rest in the CM, so that all the kinetic energy of the particles will be

available as excitation energy. This quantity is the available kinetic energy for excitation eexc

defined as

eexc = en + eA =
1

2

mA

A+ 1
V 2

R
.

We will see later that eexc is only one component of the excitation energy for the compound

nucleus. Morever, eexc is not the sum of En and EA, as the compound nucleus is moving in

the LAB. The kinetic energy of the compound nucleus in the LAB is not available as

excitation energy.

Assuming conservation of linear momentum in the CM, we write

vn +AvA = vn
′ + AvA

′ =
A

A+ 1
VR −A

1

A+ 1
VR = 0

so that

vn = −AvA and vn
′ = −AvA

′ .
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Neutron-nucleus collision in the CM 5

Assuming conservation of energy in the CM, we write

en + eA = e′n + e′
A

= eexc

so that
1

2
mv′n

2
+

1

2
mAv′

A

2
=

1

2

mA

A+ 1
V 2

R
.

We finally find

v′n = vn =
A

A+ 1
VR and v′

A
= vA =

1

A+ 1
VR .

The last two Eqs. are scalar relations demonstrating the conservation of the CM velocity

modules for each particle during the collision.
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Azimuthal reduction 1

We have now reached the point where the collision law can be obtained. Assuming the

isotropic emission of the secondary neutron in the CM, a first probability density can be

written as

Pe(Ω
′ ← Ω) =

1

4π
(1)

where the solid angles are defined in term of the deviation angle ϕ and on the azimuth ǫ in

the CM. The two angles are defined in the figure

nvn'

ϕ εΩ

Ω'

ex

Assuming that Ω = i, we see that Ω′ = cosϕ i+ sinϕ cos ǫ j + sinϕ sin ǫk. The support of

Pe is 0 ≤ ϕ ≤ π and 0 ≤ ǫ ≤ 2π. Pe(Ω
′ ← Ω)d2Ω′ is the probability for a neutron of initial

direction Ω and undergoing an isotropic collision in the CM to have a final direction equal to

Ω
′ (within a d2Ω′ interval) in the CM.
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Azimuthal reduction 2

A distribution reduction is performed to get the probability density in term of the deviation

cosine cosϕ = Ω ·Ω′ in the CM. We obtain

Pe(cosϕ) =

∫

2π

0

dǫPe(Ω
′ ← Ω) =

1

2
(2)

over the support −1 ≤ cosϕ ≤ 1. Pe(cosϕ) d(cosϕ) is the probability for a neutron

undergoing an isotropic collision in the CM to have a deviation cosine equal to cosϕ (within a

d(cosϕ) interval) in the CM. As expected, this probability density is normatized to one:

∫

1

−1

d(cosϕ)Pe(cosϕ) = 1 .
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Nucleus initially at rest 1

We first study the collision of a neutron on a nucleus initially at rest. In this case, the

preceding equations still applied, with VA = 0 in the LAB. Expressions of VCM and v′n are

now written

VCM =
1

A+ 1
Vn and v′n = vn =

A

A+ 1
Vn .(3)

θ
ϕ

VCM

vn'
Vn
'

We can also apply the cosines law. We obtain

V ′

n

2
= V 2

CM
+ v′n

2
+ 2VCM v′n cosϕ(4)

where VCM and v′n are independent of ϕ. Taking the derivative of Eq. (4) and substituting

Eqs. (3) leads to

2V ′

n dV
′

n = 2VCM v′n d(cosϕ) =
2A

(A+ 1)2
V 2
n d(cosϕ) .(5)
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Nucleus initially at rest 2

The last equation can be written in term of initial and final energies of the neutron in the LAB.

We obtain

2dE′ =
4A

(A+ 1)2
E d(cosϕ) = (1− α)E d(cosϕ)(6)

where

α =

(

A− 1

A+ 1

)2

.(7)

We perform a change of variable toward E′ = f(cosϕ), so that

d

dE′
(cosϕ) =

2

(1− α)E > 0 ; with − 1 ≤ cosϕ ≤ 1(8)

and Eq. (2) becomes

Pe(E
′ ← E) = [Pe(cosϕ)]

[

d

dE′
(cosϕ)

]

=
1

(1− α)E(9)

with E′

min
≤ E′ ≤ E′

max.
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Nucleus initially at rest 3

The support of E′ can also be found using the vector diagram. If cosϕ = −1, then

V ′

n = v′n − VCM =
A− 1

A+ 1
Vn so that E′

min = αE .

At the other limit, cosϕ = 1, and

V ′

n = v′n + VCM = Vn so that E′

max = E .

1/(1-α)E

αE E

Pe(E'←E)

E'

The probability density is uniform in the support αE ≤ E′ ≤ E. The collision of a neutron on

a nucleus initially at rest has the effect to slow down this neutron. The slowing-down effect is

more important for light nuclides, as they are characterized by small values of α.
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Nucleus initially at rest 4

We will now compute the complete collision law Pe(E′ ← E, µ). In the case where the

nucleus is initially at rest, the variables E′ and µ are dependent one of the other and are

related by a function of type µ = f(E′). All the neutrons with a given final energy E′ have

the same deviation angle ϕ in the CM and the same deviation cosine µ in the LAB, for any

given value of E. The probability density describing a known event is the Dirac delta density

δ(x), so that

Pe(E
′ ← E, µ) = Pe(E

′ ← E) δ
[

µ− f(E′)
]

.(10)

The vector diagram and the cosines law will be used again as the starting point to compute

f(E′). We write

v′n
2
= V ′

n

2
+ VCM

2 − 2V ′

n VCM µ .(11)

which becomes

(

A

A+ 1

)2

Vn
2 = V ′

n

2
+

(

1

A+ 1

)2

Vn
2 − 2

A+ 1
V ′

n Vn µ(12)

and which can be written in term of initial and final energy of the neutron in the LAB as

−(A− 1)E + (A+ 1)E′ = 2
√
E E′ µ .(13)
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Nucleus initially at rest 5

The deviation cosine of the neutron in the LAB is obtained as a function of E′. We write

µ = f(E′) =
1

2
(A+ 1)

√

E′

E
− 1

2
(A− 1)

√

E

E′
.(14)

Finally, we obtain the required collision law as

Pe(E
′ ← E, µ) =











1
(1− α)E δ

[

µ− 1

2
(A+ 1)

√

E′

E
+ 1

2
(A− 1)

√

E
E′

]

, if αE ≤ E′ ≤ E;

0 , otherwise.
(15)

This equation is often referred as the elastic slowing-down collision law. It can be used to

study the slowing-down of neutrons in the energy range above 1 eV. At lower energies, the

thermal agitation of nuclides can transmit kinetic energy to the neutrons, which can no longer

be considered initially at rest. The support of this distribution is 0 ≤ E′ ≤ ∞ and

−1 ≤ µ ≤ 1 and its normalization condition is

∫

∞

0

dE′

∫

1

−1

dµPe(E
′ ← E, µ) = 1 .(16)
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Change of variable 1

A neutron is loosing a fraction of its initial kinetic energy in each elastic scattering reaction.

We define the lethargy of the neutron as

u = ln
E0

E

where E0 is a reference energy taken above the maximum energy of all neutrons in the

reactor. The lethargy is generally defined in the LAB. A neutron emitted at energy E0 has a

zero lethargy. Its lethargy will increase as the neutron slow-down in the reactor.

The collision law can also be written in term of lethargy. Pe(u′ ← u, µ)du′ dµ is the

probability for a neutron of initial lethargy u and undergoing an isotropic collision in the CM to

have a final lethargy equal to u′ (within a du′ interval) and a deviation cosine equal to µ

(within a dµ interval) in the LAB.
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Change of variable 2

A change of variable on Eq. (15) leads to.

Pe(u
′ ← u, µ) =

{

e−U

1− α δ
[

µ− 1

2
(A+ 1) e−U/2 + 1

2
(A− 1) eU/2

]

, if 0 ≤ U ≤ ǫ;
0 , otherwise,

where U = u′ − u is the actual lethargy gain of the neutron and

ǫ = ln
1

α

is the maximum gain of lethargy.
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