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Abstract
In emission tomography statistically based iterative methods can improve image
quality relative to analytic image reconstruction through more accurate physical
and statistical modelling of high-energy photon production and detection
processes. Continued exponential improvements in computing power, coupled
with the development of fast algorithms, have made routine use of iterative
techniques practical, resulting in their increasing popularity in both clinical
and research environments. Here we review recent progress in developing
statistically based iterative techniques for emission computed tomography.
We describe the different formulations of the emission image reconstruction
problem and their properties. We then describe the numerical algorithms that
are used for optimizing these functions and illustrate their behaviour using
small scale simulations.

1. Introduction

Emission computed tomography (ECT), encompassing positron emission tomography (PET)
and single photon emission computed tomography (SPECT), produces noninvasive measures
of a broad range of physiological processes through three-dimensional (3D) imaging of the
spatial distribution of radiolabelled biological probes or tracers. The two primary factors
limiting image quality are detector resolution, which determines the maximum resolution of
the reconstructed images, and photon count density, which determines the minimum noise
level that can be achieved at the maximum resolution. To maximize resolution in a particular
system, it is necessary to accurately model the photon detection process. In practice, system
resolution is often sacrificed to reduce noise in the images. To achieve an optimal trade-
off between resolution and noise propagation it is necessary to accurately model the noise
processes in the data. The models for the data and noise are determined, either explicitly or
implicitly, by the choice of reconstruction algorithm. The choice of reconstruction algorithm
therefore plays a crucial role in the overall performance of any ECT system.
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In this paper, we will review the recent literature on iterative approaches to PET and
SPECT image reconstruction. Our viewpoint is that consideration of the factors limiting noise
and resolution leads naturally to the choice of a model-based approach in which the physical
and statistical properties of the system are explicitly included. These formulations in turn
lead to numerical problems involving large sets of possibly nonlinear equations, which can
generally only be solved using iterative methods. We will assume a basic familiarity both with
the physical principles underlying PET and SPECT imaging and with the instrumentation used
for data acquisition. Excellent reviews of these topics can be found in Cherry et al (2004),
Wernick and Aarsvold (2004), Cherry and Phelps (1996), Bendriem and Townsend (1998),
Rosenthal et al (1995).

A huge number of iterative methods have been described for ECT, with a corresponding
profusion of acronyms. Here we attempt to describe the commonalities and differences
between these methods. In doing this, we keep in mind the following three essential ways
in which the algorithms can differ: (i) the choice of cost function—this includes the model
for the data, the function of the data to be optimized and, where appropriate, the choice
of regularizing or smoothing function on the solution; (ii) the optimization procedure—the
numerical algorithm chosen to maximize or minimize the cost function; (iii) computation
cost—determined by the convergence rate, which determines the number of iterations required,
and the computation cost per iteration.

It is often the choice of cost function that determines the final solution; the route taken
to this solution by different algorithms optimizing the same function should not affect the
result. Therefore it is important to differentiate between methods optimizing different criteria
and methods that take different approaches to minimizing a particular function. However, this
situation is complicated in practice by the fact that it is common to terminate many algorithms
before convergence, in which case the solution will always depend on the algorithm. For
the case of nonconvex smoothing functions, for which multiple local optima may exist, the
choice of search algorithm may also affect the final solution since two methods may converge
to different local optima. These two issues, selection of an appropriate cost function and the
numerical algorithm chosen to optimize this function, are the primary focus of this review.

We organize the paper as follows. We begin with the motivation for using iterative
reconstruction methods rather than direct methods based on the line-integral model. In
section 3 we give an overview of the various approaches to iterative ECT. We then return and
provide a more detailed description of the cost functions typically used in iterative PET and
SPECT image reconstruction. We conclude with a detailed review of the different numerical
approaches to optimizing these functions.

2. Why use iterative reconstruction methods?

Detection of coincident photon pairs in PET leads naturally to a line-integral model for the
data, i.e. the number of coincident photon pairs detected between any pair of detectors is
approximately linearly proportional to the integral of the tracer density along a line joining
the two detectors. Similarly, data from SPECT systems using parallel, fan beam and cone
beam collimators can also be modelled as sets of line integrals of the tracer density along the
collimation directions. Consequently, PET and SPECT images can be reconstructed using
analytic inversion methods that are based on the relationship between a function and its line
integrals.

For two-dimensional (2D) PET systems with septa and SPECT with parallel or fan beam
collimators, 2D filtered backprojection (FBP) algorithms are routinely used for reconstruction.
For 3D PET systems without septa and cone beam collimated SPECT, the reconstruction
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problems are inherently 3D and not separable into a set of independent 2D problems. For
cone beam data, tremendous progress has been made in the last decade on analytic inversion
methods for a range of sampling geometries as determined by the collimator design and
the trajectory of the gamma camera about the patient. For example, exact FBP algorithms
have now been developed for helical geometries (Katsevich 2002). The analytic 3D PET
reconstruction problem has been solved for some time (Colsher 1980) but is complicated in
practice by truncation of the oblique 2D x-ray projections of the source distribution as a result
of the finite axial extent of the scanner. This can be solved using a 3D filtered backprojection
method in conjunction with a reprojection computation to fill in the missing data (Kinahan
and Rogers 1989). An alternative approach to 3D FBP reconstruction is to rebin the data
into an equivalent set of stacked 2D sinograms, one per transaxial plane, and reconstruct
the images using 2D FBP. These rebinning algorithms range from approximate single-slice
(Daube-Witherspoon and Muehllehner 1987) and Fourier rebinning to more computationally
expensive but exact Fourier space rebinning methods (Defrise et al 1997).

While the analytic approaches typically result in fast reconstruction algorithms, accuracy
of the reconstructed images is limited by the approximations implicit in the line-integral model
on which the reconstruction formulae are based. In PET the line-integral model is reasonably
accurate since depth-dependent variations in detector resolution are relatively small and the
effects of attenuation are well modelled as a single multiplicative scaling factor that can be
applied to each line integral. Even so, resolution is affected by the combined effects of
positron range, noncollinearity of the photon pair, variations in detector-pair sensitivity along
the LOR, and the spatially variant response of the detector caused by intercrystal penetration
and scatter. In SPECT, line integrals are a far less accurate model. The collimators produce
pronounced depth dependence in resolution that is not included in the line-integral model. The
single photon detection process results in attenuation that can differ between each voxel and
each detector element. In routine SPECT reconstruction protocols, the first of these factors is
often ignored while attenuation is often corrected approximately using a post-processing step
(Chang 1978).

Methods to compensate for many of these factors that cause data to deviate from the line
integral have been applied within the framework of direct image reconstruction. Examples in
PET include correction for positron range (Derenzo 1986) and detector response (Huesman
et al 1989, Liang 1994). Similarly, analytic methods have recently been developed for
compensation for depth-dependent resolution (Edholm et al 1986, Xia et al 1995) and for
attenuation (Liang et al 1994, Tang et al 2005, Huang et al 2005) in SPECT. These require
analytic models for the factors that cause deviation from the line-integral model. They are
often computationally demanding, and are typically not optimized for use with photon-limited
data.

In contrast to the analytic methods, an iterative model-based approach can simply model
the mapping from source to detector without requiring explicit line-integral or other models.
The simplest iterative methods use on-the-fly computation of forward- and backprojection
with the same linear-interpolation-based method as is commonly used in FBP. A more flexible
approach, which allows more accurate modelling of the physical detection process, is to
precompute and store the projection matrices that define this mapping. This can lead to huge
computation demands, but methods to reduce costs using sparse matrix structures and efficient
factorizations are making this approach increasingly practical. The ability of the model-based
approaches to accurately model photon detection leads to improvements in attainable resolution
given a sufficient number of counts. A combination of analytic, geometric and Monte Carlo
modelling can produce projections of arbitrarily high accuracy (Floyd and Jaszczak 1985,
Veklerov and Llacer 1988, Qi et al 1998b, Huesman et al 2000, Laurette et al 2000, Beekman
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et al 2002). Alternatively, the projection matrix can be measured directly (Formiconi et al
1989, Panin et al 2004, Chen et al 2004).

Alternative SPECT collimation schemes, such as coded aperture (Paxman et al 1985, Koral
and Rogers 1979) and electronic collimation (Hebert et al 1990), produce measurements that
are not simple line integrals and present special challenges for analytic inversion. In contrast,
the iterative approaches are essentially identical for all collection geometries differing only in
the specifics of the projection matrices.

A second limitation of the analytic approaches is that they do not take account of
the statistical variability inherent in photon-limited detection. The resulting noise in the
reconstructions is usually controlled, at the expense of resolution, by varying the cut-off
frequency of a linear filter applied to the sinogram. Since the noise is signal dependent, this
type of filtering is not particularly effective at achieving an optimal bias-variance trade-off.
More complex methods, such as Wiener filtering, attempt to achieve an improved trade-off, but
even these methods are based on assumptions, such as wide sense stationarity of the noise, that
are inconsistent with the Poisson nature of the photon counting process in PET and SPECT.
Conversely, a model-based method can explicitly model the statistical variations in the photon
detection process through a probabilistic model for the data. If prior information regarding
image smoothness or structure is also available then further improvements can be realized
through the use of Bayesian estimation schemes.

The combination of improved modelling of the detection process and improved handling
of statistical noise when using statistically based methods offers the possibility for enhanced
performance of PET and SPECT with both high count data (where model accuracy limits
resolution) and low count data (where statistical noise limits resolution). In its simplest
form the imaging problem can be cast as one of parameter estimation, where the data are
Poisson random variables with mean equal to a linear transformation of the parameters. This
formulation is complicated, as we will describe below, by the impact of additional noise and
correction terms.

3. An overview of iterative reconstruction methods

The model-based iterative approaches to PET and SPECT reconstruction are based on a linear
model that relates the measured projection data y to the unknown source distribution f through
a projection matrix P . This matrix models the probability of an emission from each voxel
element in the source being detected at each sinogram element. The problem is complicated
by the presence of scatter, background radiation or randoms, and by the stochastic nature of
the photon emission and detection process. The reconstruction problem therefore effectively
reduces to approximately solving the set of equations y = Pf , taking into account the effects
of noise and background.

The earliest iterative tomographic methods are the large class of algebraic reconstruction
techniques or ART methods (Gordon et al 1970). These are a class of numerical procedures
for solving large sparse systems of equations. In the event that the data are consistent, i.e., an
exact solution to the equations exists, then the methods will converge to such a solution. In the
more common case where the data are inconsistent, these methods will typically not converge
but instead enter a limit cycle. There are several excellent reviews and tutorials on this class
of method (Censor 1983, De Pierro 1990, Censor and Zenios 1997).

Lacking the formulation of the ART methods is a direct consideration of noise in the data,
which in the case of uncorrected PET and SPECT data is well modelled as a Poisson process.
The earliest attempt to explicitly include a Poisson model in tomographic reconstruction
was the maximum-likelihood (ML) method developed by Rockmore and Macovski (1976).
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However, it was the work by Shepp and Vardi (1982) on the EM (expectation maximization)
algorithm and Lange and Carson (1984) that marked the beginning of a very fruitful period
in which a large number of variations on this approach were developed, leading to the now
widespread use of statistically based iterative reconstruction methods in clinical and small
animal PET and SPECT systems.

The EM algorithm is a general approach to solving ML problems through the introduction
of a set of ‘complete data’ which, if observed, would make the ML problem readily solvable
(Dempster et al 1977). The algorithm then iterates between computing the mean of the
complete data, given the observed data and the current estimate of the image, and maximizing
the probability of the complete data over the image space. The choice of complete data in the
EM algorithm for the linear Poisson problem leads to an elegant closed form update equation
reminiscent of the multiplicative ART algorithms. The EM algorithm has attractive properties
including guaranteed non-negativity, convergence and ‘count preservation’ at each iteration.
However it also converges very slowly.

Much of the work in statistically based algorithms over the past 20 years has concentrated
on finding alternatives to the EM algorithm that converge faster. In the ordered subsets EM
(OSEM) method (Hudson and Larkin 1994), the data are divided into a number of disjoint sets,
and the EM algorithm applied sequentially to each of these data sets in turn. This produces
remarkable improvements in the initial convergence rate compared to EM. This property,
coupled with the relatively simple form of the update equation, has led to the widespread
adoption of OSEM as a standard method for iterative reconstruction in PET and SPECT.
While the method is practically attractive, it is not a true ML estimator and will not converge
in general. There are many variations on this method that we describe in section 6.3. Of
particular interest among the variations on OSEM are the convergent OS algorithms (Browne
and De Pierro 1996, Ahn and Fessler 2003, Hsiao et al 2004). These methods are closely
related to the general class of incremental gradient methods in which the cost function is
decomposed into a sum of terms and the image updated with respect to the gradient of only
one term at each iteration (Bertsekas 1997). Convergence can be guaranteed through an
appropriate choice of relaxation parameter.

An alternative approach to ML estimation is to use standard gradient-based optimization
procedures such as steepest ascent or the conjugate-gradient method. The EM algorithm
itself can be rewritten as a gradient ascent method (Kaufman 1987). In this form, it can
be modified to include a line search at each iteration to enhance convergence. Kaufman
(1987) also investigated using a standard conjugate-gradient approach in place of the EM
algorithm. Interestingly, even in this case, the EM algorithm plays a role since using a
preconditioner, derived by analogy to the EM algorithm, results in substantial improvements
in the convergence rate. This simple diagonal preconditioner has been widely used by
us and others as a means of improving convergence rates, e.g. Mumcuoglu et al (1996),
Qi et al (1998b).

Rather than update all voxel values simultaneously as in the EM and gradient-based
methods, we can instead update each voxel in turn as in the iterated coordinate-ascent (ICA)
methods (Bouman and Sauer 1996). These methods optimize the cost function with respect
to a single variable at each iteration, which can result in a relatively simple update step and
surprisingly fast convergence given a good initial estimate. Updating a subset of the voxels
at each iteration is referred to as a grouped coordinate-ascent method (Fessler et al 1997) and
falls naturally between the coordinatewise and the gradient-based methods.

The EM algorithm is in fact a special case of a rather general class of algorithms that
are referred to as ‘functional substitution’ or ‘optimization transfer’ methods (Lange et al
2000). These work as follows. The problem of maximizing likelihood involves the solution
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of a set of highly nonlinear equations, which cannot be found in a closed form. Functional
substitution methods replace the original cost function at each step with an alternative function,
which when maximized, is guaranteed to also increase the value of the original function. By
choosing the substituting functions carefully, reductions in computation time and speed-up in
convergence can be realized. Among the class of functional substitution methods is the set
of SAGE algorithms which generalize the idea of EM by specifying multiple sets of ‘hidden
data’ (analogous to the complete data in EM) with respect to a subset of the voxels (Fessler
and Hero 1995). Alternatively, we can combine the functional substitution approach with
ICA, and at each iteration replace the function to be updated with a simpler approximation so
that the update can be reduced to a closed form. As we will see later, functional substitution
methods can also be used to solve penalized ML or Bayesian reconstruction problems in which
the presence of a smoothing prior adds further complexity to the cost function.

A problem common to all ML methods in PET and SPECT is ill-conditioning, i.e. the
solutions are sensitive to small changes in the data so that the estimates are of high variance.
This ill-conditioning is seen in practice through the ‘checkerboard’ effect of high spatial
variance in the ML images for high iteration numbers of the EM or OSEM algorithms.
It can be investigated theoretically using the Fisher information matrix, from which lower
bounds on the variance of unbiased estimators can be computed. Approaches to solving this
instability problem include early termination of the iterations using heuristic or statistically
based stopping rules (Veklerov and Llacer 1987, Coakley 1991, Johnson 1994), filtering of the
reconstructed images during or after reconstruction (Llacer et al 1993, Silverman et al 1990),
or using Grenander’s methods of sieves (Grenander 1981, Snyder and Miller 1985).

An alternative solution to the ill-conditioning problem, which we will emphasize here, is
to add a smoothing penalty to the likelihood function and compute a penalized ML solution
(Fessler 1996). Equivalently, we can reformulate the problem in a Bayesian framework and
include a prior distribution on the image that reflects our expectations of smoothness or other
characteristics in the image (Geman and McClure 1985). We then compute an image as a
MAP (maximum a posteriori) estimate from the posterior density for the image conditioned
on the data. The purpose of the penalty term in penalized ML, or the prior in MAP, is then to
select among the set of solutions that are essentially equivalent in terms of the data, the one
which is most probable in terms of our prior expectations of image structure or smoothness.

The smoothing priors are chosen to reflect the property common to virtually all nuclear
medicine images that they are locally smooth. The issue is complicated by the fact that the
locally smooth images are often interrupted by sharp changes in intensity, reflecting large
tracer density differences between neighbouring tissues of differing types. The large literature
that now exists on different priors for nuclear medicine images is largely concerned with
the problem of simultaneously satisfying the constraint that the images are locally smooth
while still allowing rather sharp transitions in intensity. The simplest form of smoothing
priors assumes statistical independence between voxels so that the image probability density
function (pdf) is simply a product of univariate densities. The key attraction of these models is
that we can often find closed form extensions of the EM algorithm when extended to penalized
ML since there is no coupling between pixels introduced through the prior. However, these
priors act primarily through the choice of their mean value. In practice, the means are often
updated using the results of earlier iterations, which make it difficult to specify the properties
of the method or the cost function that is ultimately optimized.

More common in the literature are images drawn from the broad class of Markov random
field models whose pdfs are specified through functions defined in terms of interactions
between neighbouring voxels. These priors are exponential in form where the negative
exponent is the sum of a set of functions defined on the difference between pairs of neighbouring
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pixels. By making this function nondecreasing, the prior effectively penalizes images that
exhibit large differences between adjacent pixels. The specific choice of this function can
greatly affect the appearance of the reconstructed images and they range from a simple
Gaussian model (where we take the squared difference between voxels) to highly nonconvex
functions that produce more sharply defined boundaries in the image. In section 5 we will
describe these priors in more detail, their extensions to higher order interactions, and their use
of anatomical priors.

The optimization algorithms for penalized ML or MAP estimation closely parallel those
for the standard ML problem. For instance, the EM algorithm is directly extendible to MAP
using the generalized EM (GEM) algorithm. The general gradient-based and coordinate-
ascent methods extend directly to MAP as do many of the functional substitution methods.
For this reason, the optimization algorithms are all reviewed in section 6. A special concern
in MAP estimation is the existence of multiple local maxima when using nonconvex priors
or priors with discrete variables that are typically used to represent the presence or absence
of image boundaries between voxels. In this case, special programming methods, such as
simulated annealing, can be used to find a global optimum, although these methods are
typically impractical for routine use.

4. Formulation of the maximum-likelihood problem

The ML estimate is the tracer distribution that maximizes the probability of the observed data
assuming no prior statistical model on the tracer distribution. In this section, we formulate the
likelihood function for emission data and discuss the properties of the ML estimate.

4.1. The linear Poisson model

PET and SPECT data represent the detection of high-energy photons produced through
radioactive decay. In the case of SPECT we directly observe gamma-ray emissions from
the radiolabelled tracer; for PET we detect photon pairs produced through annihilation of
positrons emitted from the tracer. Provided that the detection of each decay event by the
system is independent and can be modelled as a Bernoulli process, then the sinogram data are
a collection of independent Poisson random variables. Let M be the number of detector bins
in the ECT system, the mean of the data, ȳ = {ȳi , i = 1, . . . , M}, is related to the unknown
tracer distribution f (x) through a transform that is defined by the physical characteristics of
the ECT system,

ȳi = E[yi] =
∫

f (x) c(i,x) dx + ri + si, i = 1, . . . ,M, (1)

where c(i,x) is the detection response function for the ith measurement or line of response
(LOR), and r and s represent the expectations of random events (in PET) and scattered and
background events (in PET and SPECT), respectively. Although the source distribution f (x)

in (1) is actually a continuous function in the spatial domain, most researchers use a finite set
of basis functions to represent f (x) in image reconstruction, which converts the continuous–
discrete data model in (1) to a discrete–discrete model. Readers are referred to Barrett and
Myers (2003) and Lewitt and Matej (2003) for more detailed discussions on different imaging
models. The most popular basis element is the ‘voxel’ in which image intensity is constant
over the cubic support of the voxel and zero elsewhere. Alternative basis elements include
smooth spherically symmetric ‘blobs’ (Matej and Lewitt 1996), wavelets (Frese et al 2002)
and natural pixels (Gullberg et al 1996, Bhatia et al 1997, Hsieh et al 1998). Using a finite set



R548 Topical Review

of basis functions will not result in information loss in the reconstructed images provided they
are sufficiently closely spaced. The spatial basis functions are typically centred on a regular
2D or 3D lattice. For the voxel basis, spacing is equal to the voxel size. The image value at
each voxel is proportional to the total number of radioactive nuclei contained in the volume
spanned by the voxel. We will use a single index to represent the lexicographically ordered
voxels, f = {fj , j = 1 . . . N}. Let φj (x) denote the j th voxel basis function, then

fj =
∫

f (x) φj (x) dx. (2)

The transform in (1) can be approximated as the affine transform,

ȳ = E[y] = Pf + r + s, (3)

where P ∈ R
M×N is the projection or system matrix. The element, pij = ∫ c(i,x)φj (x) dx,

is the average probability of detecting an emission from voxel site j at LOR i. As discussed
in the previous section, one of the advantages of iterative reconstruction methods is that the
system matrix is not limited to a simple line-integral model but can also include factors such
as depth-dependent sensitivity and spatially variant detector response.

Let y = {yi, i = 1, . . . ,M} denote the measured data. The conditional probability, or
likelihood function, for y, given the tracer distribution f , is given by the independent Poisson
distribution:

p(y|f) =
∏

i

e−ȳi
ȳ

yi

i

yi!
. (4)

The ML estimate of f can be computed by maximizing (4), although it is easier to work with
the log of the likelihood function:

L(y|f) =
M∑
i=1

yi log(ȳi) − ȳi − log(yi!). (5)

Since the log is a monotonic function, maximizing p(y|f) and L(y|f) will produce identical
solutions.

The linear Poisson model does not strictly hold when the emission density is very high
since all ECT scanners are limited in the rate at which they can count. This is usually
represented by a ‘dead-time’ calibration factor, which is a measure of the fraction of time
that the scanner is unable to record new events because it is occupied with photons that have
already arrived. Here we will assume that the count rates are sufficiently low that the system
is operating in the linear range. However, methods that account for this nonlinear behaviour
are still needed for high count situations (Yu and Fessler 2000).

4.2. Estimation of random and scatter components

Random events in PET are caused by the detection of two photons from two independent
annihilation events within the coincidence timing window. In most current scanners the
randoms rate is estimated by recording the coincidence events using a delayed timing window
of duration equal to that of the coincidence or ‘prompt’ window. Provided that the randoms
rate is invariant between the prompt window and the delayed window, the randoms can be
corrected for in the data by subtracting the delayed window events from the prompt window
events. When operated in standard mode, PET scanners precorrect data in real time. Randoms
subtraction corrects the mean of the data, but increases the variance. Therefore, the data cannot
be modelled using the Poisson model: the variance of the prompt and delayed measurements
are both equal to their means, since they are Poisson, while the variance of the randoms
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corrected data equals the sum of the means of the prompt and delayed measurements. The true
distribution of the corrected data has a numerically intractable form. A simple approximation
is the shifted Poisson model in which the first two moments of the corrected data are matched
by assuming that adding two times the mean randoms rate to the randoms corrected data, i.e.
yi + 2ri , produces a random variable with mean [Pf ]i + 2ri + si whose density has the form of
the Poisson distribution. This results in the modified log likelihood (Yavuz and Fessler 1998),

LSP(y|f) =
M∑
i=1

[yi + 2ri]+ log([Pf ]i + 2ri + si) − ([Pf ]i + 2ri + si), (6)

where [x]+ = x if x > 0 and is 0 otherwise. Most of the results described later in this paper
for the Poisson model can be directly modified to use the shifted Poisson model by replacing
the Poisson log likelihood with (6).

The alternative saddle point approximation (Yavuz and Fessler 1998) results in less bias
than the shifted Poisson model when applied to low count 3D PET data (Yavuz and Fessler
2000). A third alternative uses a variant on (6) that reduces the systematic bias in the shifted
Poisson model by allowing negative sinogram values (Ahn and Fessler 2004). A different
approach in which there is renewed interest is to work with uncorrected prompt data and
separately estimate the mean of the randoms for use directly in the likelihood function (5).
The mean of the randoms can be estimated from the delayed sinogram, or even directly from
the individual detector singles rates, using various variance-reduction techniques (Casey and
Hoffman 1986, Mumcuoglu et al 1996).

The likelihood function (5), which uses the data model (3), also requires an estimate of the
mean of the scattered events in the data. A number of different approaches have been applied to
this problem, including convolution methods (Bailey and Meikle 1994), dual energy window
methods (Grootoonk et al 1996), Monte Carlo simulation (Levin et al 1995) and analytical
methods based on the Klein–Nishima formula (Ollinger 1996, Watson 2000). Among these,
the analytic and Monte Carlo are the more accurate, but also more time-consuming since they
require a preliminary reconstruction of the emission and attenuation images prior to computing
the scatter profile.

An alternative is to model the scatters as part of the system matrix and to estimate them
simultaneously with the reconstructed image. This will cause the projection matrix to be
non-sparse, which can significantly increase the computational cost. However, this approach
has attracted some interest in SPECT reconstruction since the scatter fraction is relatively high
and more closely follows the shape of the true events than does the scatter component in PET
(Beekman et al 2002).

4.3. The list-mode likelihood function

The above Poisson data model is based on histogrammed data, i.e. the data are the number of
events detected for each possible LOR in the sinogram. When the total number of detected
events in a particular study is far less than the number of possible LORs, the histogram format
is not efficient because most of the entries are zero. An alternative approach is to store
the data in ‘list mode’, i.e. recording the detector coordinates for each event. Rather than
rebinning the data into histograms, we can instead reconstruct images directly using list-mode
maximum likelihood, as first proposed for time-of-flight PET data by (Snyder and Politte
1983). With the development of high-resolution detectors for PET and SPECT, list-mode
approaches have recently received renewed interest (Barrett et al 1997, Reader et al 1998a,
1998b, Parra and Barrett 1998, Byrne 2001, Huesman et al 2000, Levkovitz et al 2001, Reader
et al 2002). A second advantage of list-mode acquisition is that the arrival times of each
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event can be recorded, offering the possibility of high temporal resolution in dynamic studies.
Traditionally, dynamic data are histogrammed into a set of contiguous time intervals with
images reconstructed independently for each interval or frame. The preselection of the frame
duration limits the achievable temporal resolution. The problem of temporal binning can be
avoided entirely by directly using the arrival times in the list-mode data to estimate a dynamic
image (Snyder 1984, Nichols et al 2002).

The list-mode likelihood function for static data can either be formulated from first
principles (Barrett et al 1997, Parra and Barrett 1998), or derived from the Poisson distribution
(5) of the sinogram data as described in (Huesman et al 2000). The only difference lies in the
treatment of the total number of detections K, which does not affect the ML estimate of the
image. We denote the list-mode data by {ik}Kk=1, where ik is the index of the LOR of the kth
event. The likelihood function of the list-mode data is

p
({ik}Kk=1

∣∣f) = 1

z

[
K∏

k=1

ȳik

]
N∏

j=1

e−εj fj , εj =
M∑
i=1

pij , (7)

where z is a normalization factor that makes p
({ik}Kk=1|f

)
a valid pdf, and εj is the overall

sensitivity of the system to events emitted from the j th voxel. Note that in this expression, K
itself is still a Poisson random variable. The corresponding log-likelihood function is

L
({ik}Kk=1

∣∣f) =
K∑

k=1

ln
(
ȳik

)−
N∑

j=1

εjfj . (8)

Despite the difference in data format, the likelihood functions for histogrammed and list-mode
data contain identical information, and consequently most image reconstruction algorithms
developed for histogrammed data can be modified to accommodate list-mode data and retain
their convergence properties.

4.4. Properties of the ML estimate

The ML estimate corresponds to the tracer distribution that maximizes the probability of
producing the measured data y. The requirements for a local maximum of the function are
determined by the Kuhn–Tucker conditions described below. A local maximum will also be
a global maximum if the function is also concave (Luenberger 1984).

For the linear Poisson model (5), the first- and second-order derivatives of the log-
likelihood function are

∂L(y|f)

∂fj

=
∑

i

pij

(
yi∑

k pikfk + ri + si

− 1

)
(9)

∂2L(y|f)

∂fj ∂fl

= −
∑

i

pijpilyi(∑
k pikfk + ri + si

)2 . (10)

A necessary and sufficient condition for the function to be concave is that the Hessian, i.e.
the matrix of second derivatives, is negative semidefinite for all allowed images (Luenberger
1984), i.e.,

N∑
j=1

N∑
l=1

cj cl

∂2L(y|f)

∂fj ∂fl

� 0 (11)

for any vector c = {c1, c2 . . . cN } and any non-negative image f � 0. By substituting (9) in
(11) it is straightforward to show that this inequality is satisfied and hence the log-likelihood
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function is concave. Similarly, one can also show that the shifted Poisson log-likelihood
function (6) is concave.

Necessary and sufficient conditions for an image f ∗ to be a maximizer of L(y|f) subject
to f � 0 are given by the Kuhn–Tucker conditions:

∂

∂fj

L(y|f)

∣∣∣∣
f=f∗

{=0, f ∗
j > 0

�0, f ∗
j = 0

j = 1, . . . , N. (12)

Direct solution of (12) is intractable. Instead, iterative algorithms are used that
converge towards an image satisfying these conditions, as we describe in section 6. It is
interesting to note that in the special case that y = Pf + r + s has an exact solution, that
solution is an ML estimate. In general, the equations are inconsistent, but an ML solution will
still exist.

Maximum-likelihood estimators have attractive properties including asymptotic
unbiasedness and efficiency, i.e. achieving the lowest variance among all unbiased estimators.
The variance of an unbiased ML estimator is bounded by the Cramer–Rao inequality, which
states that the variance of any unbiased estimator cannot be lower than the diagonal entries
of the inverse of the Fisher information matrix, F (Sorenson 1980). The Fisher information
matrix is defined as the inverse of minus the expected value of the Hessian matrix, given in (10)
for the ECT Poisson model. Rewriting (10) in matrix form, it then follows that the variance
of the ML estimate of the j th voxel is bounded by

varj � [F −1]jj =
[
P ′diag

[
1

ȳi

]
P

]−1

jj

(13)

where the subscript jj denotes the j th diagonal element of the matrix.
The attractive properties of the ML estimator are asymptotic ones, and for finite data the

ML estimator may not be unbiased and may exhibit high variance. This is often the case in
ECT where unregularized ML image estimates are often noisy. The Cramer–Rao inequality
provides a tool to investigate variance, and a clue to the noisy nature of ML images is contained
in the ill-conditioning or even singularity of the Fisher information matrix. Using a sequence
of approximations (Fessler 1996, Qi and Leahy 1999), the Cramer–Rao bound in (13) can be
approximated by

varj ≈
∑

i p
2
ij

N
∑

i p
2
ij

/
ȳi

N−1∑
i=0

1

λi

(14)

where λi are the Fourier coefficients of the j th column of the system response P ′P . The
operator P ′P corresponds to forward projection followed by backprojection and its j th
column is the point spread function of the combined forward- and backprojection operators
centred at the j th voxel. From Radon transform theory we know that in 2D, the combination
of forward and backprojection produces a point spread function whose Fourier transform has
the form 1/r , where r is the radial frequency. With finite detector resolution in real imaging
systems, the λi drop off faster than a 1/r rate in 2D. As the number of image voxels increase,
mini λi → 0, and hence varj → ∞.

In practice, the variance of an ML estimator is often controlled by starting with a smooth
initial estimate and terminating an ML search before convergence (Veklerov and Llacer 1987,
Coakley 1991, Johnson 1994) or post-smoothing of the reconstruction (Llacer et al 1993,
Silverman et al 1990). An alternative approach is to regularize the likelihood function as
we describe below. In that case, we can again derive approximations to the variance of the
estimator analogous to (14) but which are now stabilized so that the variance is finite (Fessler
1996, Qi and Leahy 1999).
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4.5. Relation to other objective functions

It is interesting to note that the log-likelihood function (5) can be justified as a cost criterion
without consideration of the Poisson model. For instance, the Kullback–Leibler cross entropy
distance (Byrne 1993, 1995, 1997) is given by

KL(y, ŷ) =
M∑
i=1

yi log(yi/ŷi) + ŷi − yi, (15)

where ŷi =∑k pkjxj + si + ri . This expression differs from the negative log likelihood (5) by
an additive constant independent of the image f . Consequently, minimizing the cross entropy
(15) is equivalent to maximizing the Poisson likelihood. Equation (15) is also referred to as
the I-divergence in (Csiszar 1991). Formulation with respect to general entropy considerations
rather than use of the Poisson likelihood function serves as a justification for using the methods
reviewed later in this paper for a wider class of problems in which the data are not Poisson
distributed.

An alternative to the Poisson log likelihood is the weighted least-squares (WLS) criterion

LWLS(y|f) = −1

2

M∑
i=1

(ȳi − yi)
2

σ̂ 2
i

(16)

where σ̂i is an estimate of the variance of each measurement. This function was proposed
for use with randoms corrected data in PET (Fessler 1994), where the variance should equal
ȳi + 2ri + si . Since the true mean is unknown, the variance can be approximated using the
observed data as yi + 2r̂i + ŝi , where r̂i and ŝi are estimates of the mean of the randoms and
scatters, respectively. This quadratic approximation of the Poisson likelihood function has
advantages in reducing computation cost in coordinate-ascent algorithms (see section 6).

A variation of weighted least-squares is model-weighted least-squares (Anderson et al
1997)

−1

2

M∑
i=1

(ȳi − yi)
2

ȳi

. (17)

This function is applicable to Poisson data where the variance equals the mean ȳi yet avoids
the log function in the true likelihood. Unlike the WLS function (16), (17) is not quadratic;
however it is convex. Although minimizing this function may result in some computational
savings relative to maximum likelihood, the result will be negatively biased and some form of
compensation is required to alleviate this problem (Anderson et al 1997).

As discussed earlier in the paper, the cost of iterative reconstruction is dominated by
forward- and backprojection. A clever approach to reducing the computational cost in fully
3D PET while still using an iterative algorithm is to first rebin the data into a set of stacked 2D
sinograms and then reconstruct each 2D slice separately (Comtat et al 1998). In order to apply
Fourier rebinning, the data must first be corrected for attenuation and detector sensitivity. As
a result, the stacked 2D sinograms will have quite different statistical noise properties than the
original data. Approaches to dealing with this issue include use of a weighted least-squares
function of the form (16) or reweighting of the stacked 2D data using the attenuation factors
combined with use of the Poisson likelihood function (Comtat et al 1998, Lee et al 2004,
Alessio et al 2003).

Each of the objectives described above is a measure of the fit of the estimated image to
the observed data. Consequently, without regularization they will exhibit ill-conditioning, and
hence high variance behaviour, similar to that of maximization of the Poisson likelihood.
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5. Bayesian formulations and image priors

Here we consider explicit regularization procedures in which a prior distribution on the
image, p(f), is introduced through a Bayesian reformulation of the problem to resolve the
ill-conditioning in the likelihood function.

The likelihood function and image prior are combined through the Bayes rule to form the
posterior density

p(f |y) = p(y|f)p(f)

p(y)
. (18)

Bayesian formulations of the PET problem are usually reduced to computing a maximum a
posteriori (MAP) estimate of the image as the maximizer of the posterior. Taking the log of
the posterior and dropping constants, we have the basic form of the MAP objective function

�(f) = L(y|f) + ln p(f). (19)

Thus the MAP estimator maximizes the sum of the log likelihood and the log of the prior.
Some authors prefer to view this estimator as a penalized ML method, but the differences
between MAP and penalized ML are largely semantic, except in the case where the penalty
functions are explicit functions of the data, e.g. Fessler and Rogers (1996), and hence cannot
be viewed as true priors. A third viewpoint is that of Tikhonov regularization, in which the
objective function consists of the sum of a data fitting term (the log likelihood in (19)) and
a regularization term (the log prior). All three points of view can lead to the same objective
function and hence the same solution, but may differ in their interpretation of that solution and
in the manner in which any free parameters in the prior are selected.

5.1. Spatially independent priors

The simplest form of prior assumes statistical independence between voxels. The independent
Gaussian model (Levitan and Herman 1987, Huesman et al 2000) results in a simple quadratic
form with the log prior equivalent to the L2 norm on the image when zero mean is assumed.
The gamma prior (Lange et al 1987) is conjugate for the Poisson likelihood function3 so that
the posterior density is also gamma. Furthermore, the gamma distribution is in some ways a
more natural model for images since the prior allows only non-negative image values. A third
class of independent priors is based on the use of the maximum entropy criterion (Gullberg
1995, Liang et al 1989, Nunez and Llacer 1990, Lalush et al 2000). In this case the prior has
the form

p(f) = 1

Z

N∏
i=1

e−fi ln fi (20)

where Z is a normalizing constant. Taking the log of (20) and substituting in (19) results
in an entropy-regularized cost function. Since entropy is correctly computed with respect to
probabilities rather than actual image intensities, we can replace fi in (20) with the normalized
quantity fi

/∑
j fj , although in this case the normalization produces coupling between voxels

so that the prior is no longer spatially independent. The function is also readily modified to
allow use of cross entropy.

The key attraction of the independent models is that the prior does not introduce any
coupling between voxels. Hence we can often find closed form extensions of the EM ML

3 A prior distribution is said to be conjugate to a likelihood if the resulting posterior distribution belongs to the same
functional family as the prior.
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algorithm (see the next section). However, these priors require specification of the mean image
value, which can have a substantial effect on the estimated image and cause significant bias.
To reduce this effect, a number of researchers have investigated estimating the image mean
during reconstruction using either the median (Alenius and Ruotsalainen 1997, Alenius et al
1998, Alenius and Ruotsalainen 2002, Hsiao et al 2001a) or the mean (Hsiao et al 2001b) of
neighbouring voxels. However, in this case the priors are not truly independent. In (Hsiao
et al 2001a, 2001b) the coupling problem is solved by jointly estimating the image and the
median or mean field.

5.2. Spatial interaction models and Gibbs priors

Rather than simply using the prior to separately control deviation of each voxel from its
mean with the spatially independent models described above, we can instead capture the
locally structured properties of images using Markov random field models, also known
as Gibbs distributions. The Markovian properties of these distributions make them
theoretically attractive as a formalism for describing empirical local image properties, as
well as computationally appealing since the local nature of their density functions results in
computationally efficient update strategies (Besag 1974).

Let S = {1, 2, . . . , N} denote the ordered set of image voxel indices. The Gibbs
distribution is defined on a neighbourhood system which associates a set of sites N j ⊂ S with
each site j . The neighbourhood system must satisfy the property that i ∈ Nj if and only if
j ∈ Ni . The sites in Nj are typically the collection of voxels closest, up to some maximum
Euclidean distance, to site j . The Gibbs distribution has the general form

p(f |β) = 1

Z
e−βU(f ) (21)

where U(f) is the Gibbs energy function defined as a sum of potentials, each of which is a
function of a subset or clique ck ⊂ S. The cliques for a particular neighbourhood system must
satisfy the condition that each pair of sites in each clique ck are mutual neighbours (Geman
and Geman 1984).

The form of Gibbs distributions most commonly used in image processing is that for which
the energy function U(f) contains potentials defined on pairwise cliques of neighbouring
voxels:

U(f) =
N∑

j=1

∑
k∈Nj ,k>j

φjk(fj − fk). (22)

For a 3D problem, the neighbours of an internal voxel would be the nearest 6 voxels for a first-
order model, or the nearest 26 voxels for a second-order model (with appropriate modifications
for the boundaries of the lattice).

The potential functions φjk(fj − fk) are chosen to attempt to reflect the locally smooth
characteristic of tracer distributions within a specific organ or type of tissue while still allowing
abrupt changes as we move between different organs or tissue types. A wide range of functions
have been studied in the literature that attempt to produce local smoothing while not removing
or blurring true boundaries or edges in the image. All have the basic property that they are
monotonic nondecreasing functions of the absolute intensity difference |(fj − fk)|. Taking
the square of this function leads to a Gauss–Markov prior which produces smooth images with
very low probability of sharp transitions in intensity. In an attempt to increase the probability
of these sharp transitions, Bouman and Sauer (1996) propose using the generalized p-Gaussian
model where φ(f ) = |f |p, 1 < p < 2. An alternative function with similar behaviour, which
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derives from the literature on robust estimation, is the Huber prior in which the continuous
function φ(f ) switches from quadratic to linear at a user-specified transition point (Huber
1981). The function φ(f ) = log cosh(cf ), where c is a user-specified parameter, has similar
shape to that of the Huber prior but has the advantage that its derivatives are continuous (Green
1990). The potential functions mentioned so far are all convex and so is the corresponding
Gibbs energy function.

In an attempt to produce sharper intensity transitions, several nonconvex functions
have also been proposed. For example, Geman and McClure (1985), who were also the
first to specifically use Gibbs distributions in emission tomography, proposed the function
φ(f ) = f 2

f 2+δ2 . This and other nonconvex potentials have the property that the derivative of the
function decreases once the intensity difference exceeds some threshold. The limiting case of
this approach is found in the weak membrane model which is quadratically increasing up to
some threshold and then remains constant beyond this (Gindi et al 1993).

Higher order neighbourhoods are able to capture a more complex correlation structure
than the simple pairwise models (Chan et al 1995). Unfortunately, the problem of choosing
and justifying such a model becomes increasingly difficult with the size of the neighbourhood.
One example of a higher order neighbourhood is the thin plate spline model of (Lee et al
1995). This model uses a discrete approximation to the bending energy of a thin plate as the
Gibbs energy function. Since the thin plate energy involves second-order derivatives, higher
order cliques must be used in the model.

Rather than implicitly modelling region boundaries as in the examples above, the
compound MRFs include a second coupled random field, defined on a dual lattice of ‘line
sites’, which explicitly represents the boundaries in the image (Geman and Geman 1984). The
prior energy becomes

U(f) =
N∑

j=1

∑
k∈Nj ,k>j

[(1 − ljk)(fj − fk)
2] + ψ(l), (23)

where the line sites ljk are placed between voxels j and k in the image lattice and are set
to unity if there is an image boundary between that pair of voxels, otherwise they are set to
zero, and ψ(l) encourages the formation of connected boundaries (Geman and Geman 1984,
Johnson et al 1991, Leahy and Yan 1991, Yu and Fessler 2002, Feng et al 2003). For the
case where ψ(l) is the L2 norm of l the compound MRF is equivalent to the weak membrane
model (Lee et al 1995). It is interesting to note that most non-quadratic potential functions
can be converted into the form of (23) by allowing ljk to take continuous values between 0
and 1 (Geman and Reynolds 1992, Geman and Yang 1995, Idier 2001).

One of the primary attractions of the compound MRFs is that they serve as a natural
framework for incorporating anatomical information into the reconstruction process (Leahy
and Yan 1991, Gindi et al 1991, 1993, Sastry and Carson 1997, Wang et al 2004). Since
different anatomical structures have different physiological functions, we can expect to see
differences in tracer uptake between structures. This general observation is borne out in
high-resolution autoradiographic images in which functional images also clearly reveal the
morphology of the underlying structures (Gindi et al 1993). Because the anatomical modalities,
such MR and CT, have superior resolution to PET, accurate estimates of anatomical boundaries
can be formed from them. These can then be used to influence the formation of the boundary
process in the PET image estimation procedure.

In Bowsher et al (1996) a hierarchical MRF model for emission tomography is described
in which the image consists of regions of activity, each of which has an intensity that is
assumed to vary smoothly about its mean. The reconstruction procedure involves estimating
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the support of each of these regions and their mean intensities. These models can also be
extended to include anatomical prior information (Lipinski et al 1997, Rangarajan et al 2000,
Nuyts et al 2005).

5.3. The maximum a posteriori estimate

Substituting the log prior of the Gibbs distribution in (21) into the MAP objective function
(19) produces the objective:

�(f) = L(y|f) − βU(f). (24)

The log-likelihood functions in section 4 are concave so that �(f) will also be concave if the
Gibbs energy U(f) is convex. In this case, a global maximum can be found using standard
nonlinear optimization methods.

The Kuhn–Tucker necessary condition for f to be a maximizer of (24) is similar to (12)
with ∂

∂fj
L(y|f) being replaced by ∂

∂fj
L(y|f) − β ∂

∂fj
U(f). This condition is also sufficient

for convex priors.
If MRFs with nonconvex potential functions are used then local maxima will exist for the

MAP objective function. Global search techniques such as simulated annealing are typically
impractical for PET reconstruction because of the number of voxels in a typical image.
Furthermore, the non-local property of the forward and backward projection results in a fully
coupled posterior, i.e. the posterior density does not share the local neighbourhood system
of the prior. In practice, local searches for a stationary point of the objective function are
typically used to find a local maximum of �(f). In addition to the difficulty in computing
MAP estimates for nonconvex priors, it should be noted that the solutions are also inherently
discontinuous with respect to the data. This can result in high variance estimates. When using
compound MRFs, the reconstruction problem is further complicated by the need to estimate
the additional set of discrete variables that represent image boundaries.

A broader class of Bayesian estimators can be developed that minimize an expected loss,
computed over the posterior density, that is designed to optimize performance for a specific
task. One example of this broader view of Bayesian inference in ECT can be found in Bowsher
et al (1996). Several other researchers, e.g. Green (1996), Weir (1997), Higdon et al (1997),
have proposed alternative Markov chain Monte Carlo methods for image estimation. These
methods are attractive since they are better suited to more complex priors and the use of
hyperprior densities on unknown parameters; however, the high computational burden is a
major obstacle preventing their widespread use.

6. Optimization methods

To compute an ML or MAP image estimate we maximize the appropriate objective function
or, equivalently, solve the set of coupled nonlinear equations given by the Kuhn–Tucker
conditions. Since closed form solutions do not generally exist, iterative estimation algorithms
are used. The underlying principle of iterative optimization algorithms is as follows: starting
from an initial estimate, f 0, find a sequence of images, f k, k = 1, 2, . . . , that converges to
f ∗, a maximizer of the objective function, as k → ∞ (assuming the sequence converges). All
algorithms can be written in the following update form,

f k+1 = f k − αkak, (25)

where ak is a vector of the same dimension as the image and represents a search direction
and αk is a scalar step size. Different approaches to finding ak and αk give rise to different
algorithms, as we review below.
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6.1. Classical gradient-based and coordinatewise optimization methods

Gradient-based algorithms. Standard gradient-based algorithms have been used to solve
emission tomography problems since the early 1970s (Goitein 1972, Budinger and Gullberg
1974). As the name implies, the search direction is calculated from the gradient of the
objective function at the current iterate. The simplest method is that of steepest ascent,
which sets ak equal to the gradient and chooses the step size αk using a one-dimensional
(1D) line search algorithm, such as the Newton–Raphson method or the Armijo rule
(Luenberger 1984). Convergence of steepest ascent is slow but can be enhanced using positive-
definite preconditioning matrices, which are used to modify the search direction (Lewitt and
Muehllehner 1986, Kaufman 1987, Rajeevan et al 1992). Preconditioners alone have limited
effectiveness, but when combined with the conjugate-gradient algorithm, rather than steepest
ascent, they produce substantial gains in convergence rates (Kaufman 1993, Mumcuoglu
et al 1994, 1996, Qi et al 1998a, 1998b). A general form of the preconditioned conjugate-
gradient algorithm is

f (k+1) = f (k) + α(k)a(k) : α from line search
a(k) = d(k) + β(k−1)a(k−1)

d(k) = C(k)g(k)

β(k−1) = (g(k) − g(k−1))′d(k)

g(k−1)′d(k−1)

(26)

where g(k) is the gradient vector of the objective function at f = f (k),C(k) is the
preconditioning matrix, and α(k) is the step size found using a line search. For non-quadratic
functions, ak is not guaranteed to be an ascent direction so that it is necessary to check whether
this is the case at each iteration, i.e. g(k)′a(k) > 0. We reset ak to d(k) if the condition is violated
(Luenberger 1984).

Ideally, the preconditioner would be the inverse of the Hessian of the objective function.
Exact computation of the inverse of the Hessian is impractical and approximations are used
instead. A simple but effective diagonal preconditioner, inspired by the form of the EM ML
algorithm described below, is (Kaufman 1993)

C(k) = diag

{
f

(k)
j + δ∑

i pij

}
(27)

where δ is a small positive number to ensure that C(k) is positive definite. An alternative
diagonal preconditioner uses the inverse of the diagonal elements of the Hessian matrix
(Johnson et al 2000). More complicated approaches to approximating the inverse of the
Hessian have also been investigated and include Fourier-based methods (Clinthorne et al
1993, Fessler and Booth 1999) and matrix factorization (Chinn and Huang 1997).

One of the major challenges in the use of gradient-based methods in emission tomography
is inclusion of the non-negativity constraint. The simplest approach is to restrict the step size
in (25) so that all f

(k+1)
j are non-negative, but this restriction slows down or even prevents

convergence (Kaufman 1987). The bent line search overcomes the problem by allowing
a larger step size so that voxel values can take negative values; a truncation operator is
then applied to remove negative values before moving to the next iteration. A refinement
of the bent line search uses a second line search in the direction formed as the difference
between the truncated update and the image from the previous iteration (Kaufman 1993). A
similar method is the active set approach in which an unconstrained search is performed over
the subset of voxels identified as not belonging to the ‘active set’ of zero-valued voxels. The
active set is then updated based on the gradient at the current estimate (Mumcuoglu et al 1996).
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Penalty functions can be used to convert the constrained optimization to an unconstrained one
(Luenberger 1984) but care must be taken to modify the preconditioner to account for the
effect of active penalties on the Hessian (Mumcuoglu et al 1994). Primal-dual interior point
methods can also be used to handle the positivity constraint (Johnson et al 2000).

Coordinate-accent (CA) algorithms. Seeking easier means to deal with the non-negativity
constraint, researchers have also turned to coordinatewise algorithms. While there are a
number of variations on this basic theme (Fessler 1994, Bouman and Sauer 1996, Sauer and
Bouman 1993, Zheng et al 2000), the essence of these methods is to update each voxel in turn
so as to maximize the objective function with respect to that voxel. Given the current estimate
f (k), the update for voxel j = 1 + (k − 1) mod N is

f
(k+1)
j = arg max

f �0
�
(
f

(k)
1 , f

(k)
2 , . . . , f

(k)
j−1, f, f

(k)
j+1, . . . , f

(k)
N

)
,

f
(k+1)
l = f

(k)
l , l �= j.

(28)

The sequential update changes the multi-dimensional optimization problem into a series
of one-dimensional optimizations and makes the imposition of non-negativity constraints
straightforward. Although many algorithms can be used to solve the 1D maximization
problem, exact solution of (28) requires repeated computation of the derivative of the objective
function, which in turn involves forward- and backprojection and would greatly increase the
per iteration computational cost. To solve this problem, Gaussian approximations of the
log-likelihood function have been used (Sauer and Bouman 1993, Fessler 1994). Bouman
and Sauer (1996) approximate the log-likelihood function by a quadratic function at each
iteration using a Newton–Raphson approach. However, the Newton–Raphson update does not
guarantee monotonicity and convergence. A method to restore these desired properties is to
use functional substitution (Zheng et al 2000) (see section 6.2).

Coordinate-ascent algorithms can achieve fast convergence rates if given a good initial
image (e.g., a filtered backprojection reconstruction). However, when starting from a uniform
image, initial convergence can be very slow. This is because in CA algorithms high-frequency
components converge much faster than low-frequency components (Sauer and Bouman 1993,
Fessler 1994). In addition, if a CA algorithm updates voxels in a raster-scan fashion, then the
algorithm will exhibit a faster convergence rate in the scan direction than in the orthogonal
direction. Therefore, it is preferable to update the image voxels using either four different
raster-scan orderings or a random ordering. We should note that besides simultaneous update
and sequential update algorithms, there exist algorithms that update a group of voxels at a time
(Fessler et al 1997, Zheng et al 2000). These methods can potentially reduce reconstruction
time by grouping the voxels properly, but are more difficult to implement.

6.2. Functional substitution methods

As an alternative to the classical-gradient and coordinate-ascent methods described above,
many investigators have studied alternative approaches that exploit specific aspects of the
emission tomography problem such as the sparse nature of the projection matrix P or the
Poisson form of the likelihood function. Many of these approaches belong to a class referred
to as ‘functional substitution’ (FS) or ‘optimization transfer’ methods, which replace the
original cost function at each step with an alternative or surrogate function, which when
maximized, is guaranteed to also increase the value of the original function. By choosing the
substituting functions carefully, reductions in computation time and speed-up in convergence



Topical Review R559

0 5 10 15
−2

−1

0

1

2

3

4

5

f

Φ
(f

) 
or

 φ
(f

; f
(k

) )

Φ(f)

φ(f; f(k)=10)

Figure 1. A one-dimensional example of functional substitution where a non-quadratic function
�(f ) is substituted by a quadratic function φ(f ; f (k)) at f (k) = 10 (denoted by ‘*’).

can be realized. Two conditions are generally required for the substituting function φ(f ;f (k)):

�(f) − �(f (k)) � φ(f ;f (k)) − φ(f (k);f (k)), (29)

∇�(f)|f=f (k) = ∇fφ(f ;f (k))|f=f (k) . (30)

Condition (29) guarantees that any increase in the substituting function φ(f ;f (k)) will result
in at least the same amount of increase in the original objective function �(f); condition (30)
guarantees that f (k) will not be a maximizer of the substituting function φ(f ;f (k)) if it is not
also a maximizer of the original objective function �(f). These two conditions guarantee that
the original objective function can be monotonically increased by maximizing the substituting
function at each iteration

f (k+1) = arg max
f

φ(f ;f (k)). (31)

Figure 1 shows a one-dimensional example of functional substitution where a non-
quadratic function �(f ) is substituted by a quadratic function φ(f ; f (k)) at f (k) = 10. While
the maximizer of the substituting function φ(f ; f (k)) does not coincide with that of the original
function �(f ), maximizing φ(f ; f (k)) will guarantee an increase in �(f ) and applying the
FS scheme iteratively will converge to the maximizer of �(f ). A proof of convergence
of FS methods can be found in Fessler and Hero (1995). Readers can also find a nice
review in Lange et al (2000). A closely related method is the widely used Newton–Raphson
algorithm where a quadratic function is used to approximate the original function locally
at each iteration. However, the Newton–Raphson algorithm does not guarantee monotonic
increase of the objective function, so, strictly speaking, it is not a FS method as discussed here.

The EM and GEM algorithms. The best known example of a functional substitution method
in ECT is the EM algorithm of Dempster et al (1977), which was first applied to maximum-
likelihood PET reconstruction by Shepp and Vardi (1982) and Lange and Carson (1984). The
EM algorithm is a general framework for computing maximum-likelihood estimates through
specification of a ‘complete’ but unobserved data set. Each iteration consists of an E-step—
computing the conditional expectation of the log likelihood of the complete data, and an
M-step—maximization of this conditional expectation with respect to the image. While the
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EM method of (Dempster et al 1977) was originally developed from the statistical relationship
between the probability densities for the complete and incomplete data, in the context of
ECT the method can be more easily viewed as a functional substitution method in which the
conditional expectation of the E-step forms the surrogate function at each iteration.

The complete data for the ECT reconstruction problem is the set of unobservable random
variables w = {{wij }Nj=1

}M
i=1 with each wij representing the total emissions from voxel j

detected at LOR i (Lange and Carson 1984, Vardi et al 1985). The complete data were
selected so that if observed, the maximum-likelihood problem is readily solvable. The two
steps of the EM algorithm are then

E-step : φ(f ;f (k)) = E[L(w|f)|y;f (k)]

=
∑

j

[
f

(k)
j

∑
i

pij yi(∑
l pilf

(k)
l + ri + si

) log(pijfj ) − fj

∑
i

pij

]
,

M-step : f (k+1) = arg max
f

φ(f ;f (k)) = f
(k)
j ej (f

(k))
/∑

i

pij ,

(32)

where

ej (f
(k)) =

∑
i

pij yi(∑
l pilf

(k)
l + ri + si

) . (33)

The E-step calculates a surrogate function φ(f ;f (k)) which can be shown to satisfy the two
conditions in (29) and (30). Because the surrogate function in the EM algorithm is separable,
the M-step can be solved in a closed form, as shown in (32). It is interesting to note that
φ(f ;f (k)) can also be derived directly, using the concavity of the log-likelihood function and
Jensen’s inequality, without involving the complete data concept (De Pierro 1993).

The EM algorithm is shown above for the Poisson data model that includes randoms, ri ,
and scatter, si . Setting these to zero in (33) results in the original update equation derived in
Shepp and Vardi (1982). Vardi et al (1985) showed that the EM algorithm is equivalent to the
alternating I-divergence minimization of Csiszar and Tusnady (1984). It is also interesting
to note that the same update equation (32) (without ri and si) was earlier developed for
restoration of astronomy images without explicit recourse to either the EM algorithm or
functional substitution methodology (Richardson 1972, Lucy 1974).

The EM algorithm (32) converges monotonically to a global maximizer of the likelihood
function (Vardi et al 1985) and guarantees non-negativity. When initialized with a positive
image, the following relations hold at each iteration k:

Non-negativity: f (k) � 0, j = 1, . . . , N. (34)

Monotonicity: L(y|f (k+1)) > L(y|f (k)), unless f (k+1) = f (k). (35)

Count preservation (r = s = 0) :
∑

i

∑
j

pijf
(k)
j =

∑
i

yi . (36)

The simple update equation (32) together with these properties make the EM algorithm an
attractive approach. Unfortunately its converge rate is very slow; an issue we return to below.

The EM algorithm can be directly extended to MAP reconstruction where it is generally
refereed to as generalized EM (GEM). Using the same set of complete data, the E-step remains
the same. However, the M-step now has to maximize the expected value of the log posterior
density function:

f (k+1) = arg max
f�0

∑
j

(
f

(k)
j

∑
i

pij yi log(pijfj )(∑
l pilf

(k)
l + ri + si

) − fj

∑
i

pij

)
− βU(f). (37)
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The difficulty of solving (37) is highly dependent on the form of the prior energy function
U(f). In the case of spatially independent priors, such as the gamma (Lange et al 1987, Wang
and Gindi 1997) or independent Gaussian prior (Levitan and Herman 1987, Huesman et al
2000), the objective function in (37) is again separable and the M-step can be solved directly.
However, for the coupled MRFs described in section 5 the surrogate function is not separable
and direct solution is generally not possible. Instead one or more iterations of gradient or
coordinate ascent are performed during the M-step (Hebert and Leahy 1989).

One approach to achieving a direct solution to the M-step in (37) is the ‘one-step-late’
method (Green 1990) where the partial derivatives of U(f) are evaluated at the current estimate
f (k), resulting in the closed form update equation

f
(k+1)
j = f

(k)
j∑

i pij + β ∂
∂fj

U(f)|f=f (k)

∑
i

pij yi∑
l pilf

(k)
l + ri + si

. (38)

Unfortunately this method does not share the nice properties of the EM algorithm: in general it
does not converge to a MAP solution and the non-negativity constraint needs special handling.
Lange (1990) modified OSL by introducing a one-dimensional line search so that it has better
convergence properties; however, in that case, a closed form update equation no longer exists.

An alternative approach is to apply the functional substitution methodology to the prior
term U(f) as well as the log likelihood (De Pierro 1995). For example, for the pairwise MRF
model,

U(f) =
N∑

j=1

1

2

∑
l∈Nj

1

2
κjl(fj − fl)

2, (39)

an appropriate surrogate function is

Us(f ;f (k)) = 1

2

N∑
j=1

∑
l∈Nj

1

2
κjl

(
2fj − f

(k)
j − f

(k)
l

)2
. (40)

If we replace U(f) in (37) with Us(f ;f (k)), the M-step can now be solved directly because the
cost function is again separable. This algorithm retains some of the nice properties of the ML
EM algorithm, such as guaranteeing non-negativity, and monotonically increases the objective
function. Interestingly, a closed form update equation is possible even for non-quadratic Gibbs
energies (Chang et al 2004).

SAGE algorithms. To accelerate the EM and GEM algorithms, and to avoid the difficulty
in solving the M-step for the GEM algorithm, the space-alternating generalized EM (SAGE)
algorithms (Fessler and Hero 1995) update the parameters sequentially using a sequence of
smaller ‘hidden’ data spaces. The hidden data spaces introduced are less informative than the
complete data space of the EM algorithm, resulting in faster convergence.

The SAGE surrogate function for the Poisson log likelihood is

φ(fj ;f (k)) = (f (k)
j + z

(k)
j

)
ej (f

(k)) log
(
fj + z

(k)
j

)− (fj + z
(k)
j

)∑
i

pij (41)

where φ(fj ;f (k)) is a one-dimensional function of fj . Introduction of the variable z
(k)
j reduces

the curvature of φ(fj ;f (k)) while ensuring that φ(fj ;f (k)) satisfies conditions (29) and (30).
The optimal value of z

(k)
j is (Fessler and Hero 1995)

z
(k)
j = min

i:pij �=0




ri + si +

∑
l �=j

pilf
(k)
l


/pij


 . (42)
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The SAGE algorithm uses sequential update, which makes the M-step a one-dimensional
optimization problem and imposition of non-negativity constraints trivial. For an ML estimate,
the update equation can be found by setting the derivative of (41) to zero for the closed form
solution,

f
(k+1)
j =

[(
f

(k)
j + z

(k)
j

)
ej (f

(k))
/∑

i

pij − z
(k)
j

]
+

, (43)

where [x]+ ≡ max{0, x}. For MAP reconstruction with a log-quadratic prior of the form in
(39), the SAGE update again has a closed form,

f
(k+1)
j =


−Bj +

√√√√B2
j +
(
f (k)

j + z
(k)
j

)
ej (f

(k))

/(
β
∑
l∈Nj

κjl

)
− z

(k)
j




+

, (44)

where

Bi =

∑

i

pij − β
∑
l∈Nj

κjl

(
f

(k)
l + z

(k)
j

)
/
2β

∑
l∈Nj

κjl


 . (45)

Paraboloidal surrogate methods. The EM and SAGE algorithms construct the surrogate
function based on statistical arguments. The surrogate functions can also be derived purely in
terms of function approximation, which can result in faster algorithms because of the greater
degree of freedom in choosing the surrogates. An early example of such an FS algorithm is
the MAP estimator of De Pierro (1995), where a separable function was used to approximate
the prior energy function in solving the M-step of the GEM algorithm. The paraboloidal
surrogate (PS) method (Fessler and Erdogan 1998) approximates the log-likelihood function
around f (k) using a non-separable quadratic surrogate φ(f ;f k),

φ(f ;f k) =
∑

i

hi

(
lki
)

+ ḣi

(
lki
)(

l − lki
)− 1

2ni

(
lki
)(

l − lki
)2

, (46)

where

hi(l) = yi log(l + ri + si) − (l + ri + si). (47)

ni(l) =



2

l2
[hi(l) − h(0) − lḣi(l)], l > 0

−ḧi(l), l = 0,

(48)

li = (Pf)i and lki = (Pf k)i . It is straightforward to verify that the surrogate function in (46)
satisfies conditions (29) and (30). Note that hi(l) exist only when ri + si > 0. Unlike the EM
surrogate, (46) is not separable, which means maximizing (46) (with an additional prior energy
for the MAP case) requires the use of gradient or coordinate-accent algorithms. However,
the non-separable substituting function can potentially approximate the original cost function
more closely and accordingly produce faster convergence rates. Combining the paraboloidal
surrogate function (46) with a coordinate-ascent algorithm produces a rapidly converging
algorithm that alternates between the two steps: (i) computing the surrogate function and (ii)
maximizing the new objective function (sum of the surrogate function and prior term) (Fessler
and Erdogan 1998).

Functional substitution in coordinate accent. In the algorithms described above, functional
substitution is used to decouple interaction between voxels through the selection of separable
surrogate functions (EM and GEM methods) or to find a quadratic approximation of the
log-likelihood function (paraboloidal surrogate method). Another application of functional
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substitution is to replace the one-dimensional Newton–Raphson algorithm, which is often
used in coordinate-ascent algorithms, to achieve monotonicity or convergence. For example,
in (Zheng et al 2000), a quadratic substitute functional φ(fj ;f k), which satisfies the conditions
in (29) and (30), was constructed to approximate the log-likelihood function around f k with
respect to fj . Compared to the Newton–Raphson quadratic approximation in (Bouman and
Sauer 1996), this FS method guarantees monotonic convergence to a MAP solution. In
addition, FS can also be used to derive group coordinate-accent algorithms (Zheng et al 2000),
i.e., to make coordinate-ascent algorithms parallelizable.

6.3. Acceleration using ordered subsets

All of the methods described so far update the image at each iteration using either the original
or a surrogate cost function which is computed from the entire data set. Methods based
on the use of subsets of the data can produce further increases in the convergence rate,
particularly at the earlier iterations. The best known among these is the ordered subsets EM
(OSEM) algorithm, which is now widely used in clinical applications. While the original
OSEM algorithm (Hudson and Larkin 1994) and earlier methods employing subsets of the
data (Hebert et al 1990, Holte et al 1990) are not convergent, convergent forms have since
been developed as we describe below.

Ordered subsets (OS) methods divide the objective function into a sum of sub-objective
functions as

�(f) =
Ns∑

q=1

�q(f), (49)

where each sub-objective function �q(f) is a function of a subset of the data. We use
{Sq} ⊆ {1, 2, . . . , M} to denote the collection of the indices of the projections in the qth subset
of the data. The subsets are defined so that {1, 2, . . . , M} =⋃Ns

q=1 Si , where Ns is the number
of subsets, and Si ∩ Sj = ø for i �= j . At each iteration, only one �q(f) is involved in the
calculation. Let k denote the index for a complete cycle and i the index for a sub-iteration,
and define f (k,0) = f (k−1), f (k,Ns) = f (k).

The OSEM algorithm applies the EM algorithm to each sub-objective function �q(f) in
turn. The update equation is given by

f
(k,q)

j = f
(k,q−1)

j∑
i∈Sq

pij

∑
i∈Sq

pij yi∑
l pilf

(k,q−1)

l + ri + si

, for j = 1, . . . , N, q = 1, . . . , Ns.

(50)

To avoid directional artefacts, the projections are usually chosen to have maximum
separation in angle in each subset. Hudson and Larkin (1994) further recommend that the
subsets are chosen so that an emission from each pixel has equal probability of being detected
in each of the subsets (subset balance), i.e.

∑
i∈Sq

pij is independent on q. In practice, this can
be difficult to achieve due to spatially varying attenuation and detector sensitivities.

The requirement of subset balance can be alleviated by reformulating the OSEM algorithm
in a gradient-ascent form and replacing

∑
i∈Sq

pij by a voxel-independent scaling factor
tq = maxj {

∑
i∈Sq

pij }. The resulting rescaled block iterative (RBI) EM algorithm (Byrne
1998) has update equation

f
(k,q)

j = f
(k,q−1)

j + t−1
q f

(k,q−1)

j

∑
i∈Sq

(
pijyi∑

l pilf
(k,q−1)

l + ri + si

− 1

)
,

for j = 1, . . . , N, q = 1, . . . , Ns. (51)
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The difference between (51) and (50) is that the scaling factor tq in the RBI-EM algorithm
depends only on the subset index q rather than the voxel index j . This rescaling makes the
RBI-EM algorithm less susceptible to unbalanced subsets.

OSEM produces remarkable improvements in convergence rates in the early iterations.
For a reasonable number of subsets (e.g., 32 in Hudson and Larkin (1994)), almost linear
speed-up with respect to the number of subsets can be achieved in the early iterations. For this
reason, OSEM is by far the most widely used iterative ECT algorithm in clinical and research
PET and SPECT studies. In the case of 3D PET, the data are usually first Fourier rebinned
into stacked 2D sinograms before application of a 2D OSEM algorithm (Comtat et al 1998,
Lee et al 2004).

The major drawback of the OSEM and RBI-EM algorithms is that they generally do not
converge if the number of subsets remains greater than 1. Reducing the number of sets as
the iterations proceed will resolve this problem but will result in the asymptotic convergence
rate of the original EM algorithm. In the special case of consistent data, i.e. when there exists
an image whose forward projection exactly matches the measurements, the OSEM algorithm
under subset balance and the RBI-EM algorithm have both been shown to converge to the
ML solution. For inconsistent data, OSEM has been observed to enter a limit cycle condition
when the number of subsets remains greater than 1 (Byrne 1997), but currently there has
been no proof of this behaviour. Both OSEM and RBI-EM can be extended to speed up the
GEM algorithms (Hudson and Larkin 1994, Lalush and Tsui 1998) but again, in general these
methods will not converge.

6.4. Making ordered subset methods convergent

Although OSEM does not converge, it is currently the most widely used iterative method for
statistically based reconstruction in emission tomography. This is primarily due to the resulting
improvements in image quality, compared to standard filtered backprojection methods, coupled
with its relatively low computational cost. This has spurred interest in searching for convergent
ordered subsets methods. These convergent methods fall into two categories: relaxed OS
methods and incremental OS methods.

Relaxed OS methods. This group of methods uses a subset-independent step size and gradually
decreases the step size to zero. One example of this approach is the row-action maximum-
likelihood algorithm (RAMLA) of Browne and De Pierro (1996), which was motivated by the
row-action ART algorithms developed in the 1970s (Censor 1983). The update equation is

f
(k,q)

j = f
(k,q−1)

j + ηkf
(k,q−1)

j

∑
i∈Sq

(
pijyi∑

l pilf
(k,q−1)

l + ri + si

− 1

)
,

for j = 1, . . . , N, q = 1, . . . , Ns (52)

where ηk is a sequence of positive relaxation parameters such that

lim
k→∞

ηk = 0,

∞∑
k=0

ηk = +∞. (53)

Note that in (52), ηk is fixed throughout a complete cycle through the subsets. This subset-
independent step size is critical for convergence, although it has been shown recently that
convergence can also be achieved with step sizes that are asymptotically subset independent
(Helou Neto and De Pierro 2005). Browne and De Pierro (1996) proved that unlike the OSEM
algorithm, RAMLA in (52) converges to an ML solution if the log-likelihood function is
strictly concave. However, this guarantee of convergence is achieved at the price of slower
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convergence due to underrelaxation. In fact, its final convergence rate can be even slower than
that of the EM algorithm.

Recently, De Pierro and Yamagishi (2001) extended the RAMLA method to MAP
reconstruction. The method is called block sequential regularized expectation maximization
(BSREM). The prior term is treated as another subset of the objective function so that one
iteration of the algorithm consists of an ML RAMLA cycle using (52) followed by an update
in the gradient direction of the prior. The treatment of the prior as an additional subset added to
the likelihood function makes the proof of convergence of ML RAMLA directly extendible to
BSREM. However, an assumption that the sequence {f k} is positive and bounded is required
because of the addition of the prior term. This assumption is not automatically ensured in
the BSREM update. This problem was solved by Ahn and Fessler in (2001, 2003) in which
a projection operator is used to impose an upper bound and the likelihood function slightly
modified for ȳi close to zero, so that the sequence is guaranteed to satisfy non-negativity and
boundedness.

A general form for the relaxed OS algorithm can be written as (Ahn and Fessler 2003)

f
(k,q)

j = f
(k,q−1)

j + ηkf
(k,q−1)

j ∇�q(f
(k,q−1)), for j = 1, . . . , N, q = 1, . . . , Ns (54)

where �q(f) is the objective function for the qth subset and ηk satisfies (53). An open problem
in the use of relaxed OS algorithms is to find a sequence ηk that maximizes the convergence
rate while satisfying the convergence condition (53).

Incremental OS methods. Incremental OS methods achieve convergence through the
introduction of an augmented cost function (Ahn 2004). Consider a surrogate φq(f ; f̄)

for the sub-objective function �q(f) that satisfies

φq(f ;f) = �q(f), ∀f (55)

φq(f ; f̄) � �q(f), ∀f , f̄ . (56)

Then for all f̄ , maxf̄ φq(f ; f̄) = φq(f ;f) = �q(f). It follows that if we construct an
augmented cost function as

F(f ; f̄ 1, . . . , f̄Ns
) =

Ns∑
q=1

φq(f ; f̄ q) (57)

then the maximizer of �(f) can be found as

f̂ = arg max
f

�(f) = arg max
f

max
f̄ 1,...,f̄Ns

F
(
f ; f̄ 1, . . . , f̄Ns

)
. (58)

Incremental OS methods alternately update f and one f̄ q at each step, i.e.,

f (k+1,q) = arg max
f

F
(
f ; f̄ (k+1)

1 , . . . , f̄ (k+1)
q−1 , f̄ (k)

q , . . . , f̄ (k)
Ns

)
(59)

f̄ (k+1)
q = f (k+1,q)

for q = 1, . . . , Ns.
(60)

Using the EM surrogate function in (32) for each subset of the data, i.e.,

φq(f ; f̄) =
∑

j


f̄ j

∑
i∈Sq

pij yi∑
l pil f̄l + ri + si

log(pijfj ) − fj

∑
i∈Sq

pij


 , (61)
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we obtain the update equation of the convergent OSEM algorithm (COSEM) (Hsiao et al
2004, Khurd et al 2004),

f
(k+1,q)

j = 1∑
i pij

Ns∑
q ′=1

eq ′,j , (62)

where

eq ′,j =


∑

i∈Sq

pij yi∑
l pilf

(k+1,q′)
l +ri+si

, q ′ < q∑
i∈Sq

pij yi∑
l pilf

(k,q′)
l +ri+si

, q ′ � q.
(63)

Note that in emission tomography, the dominant cost of forward- and backprojection is
associated with the update of the surrogate functions φq(f ; f̄ q) as a result of changes in f̄ q . In
COSEM this corresponds to the evaluation of eq ′,j ; however, this quantity remains unchanged
at sub-iteration q for all q ′ �= q. Therefore, by updating only one sub-objective function
φq(f ; f̄ q) at a time, incremental OS methods reduce the computation cost by a factor similar
to conventional OS methods. Unfortunately, incremental OS methods, while faster than their
non-OS counterparts, are slower than the conventional OS methods at early iterations. Faster
convergence can therefore be achieved by starting with a conventional OS algorithm, but
switching to a convergent incremental OS algorithm at later iterations (Hsiao et al 2004,
Ahn 2004). This can be taken a step further by noting that, asymptotically, preconditioned
conjugate-gradient (PCG) methods converge faster than the OS methods and consequently
one could switch from incremental OS to PCG at later iterations (Li et al 2005).

As a final note on these algorithms, speed-up using OS method is most significant at early
iterations. Asymptotic convergence is only guaranteed for certain relaxed or incremental OS
algorithms. Even then, none of the existing OS algorithms guarantees monotonic increase of
the objective function.

6.5. Methods for nonconvex priors

For nonconvex priors, the log posterior may have multiple local maxima, which makes the
optimization far more difficult. All the algorithms described above converge, at best, to
a local maximum. When applied to nonconvex cost functions, the result is dependent on
the initial image and the choice of optimization algorithm. Stochastic searches employing
simulated annealing can guarantee convergence but are impractical for routine use in image
reconstruction. A compromise that may help to avoid local maxima, but which in general
does not guarantee convergence to a global maximum, is to use a deterministic annealing
scheme. These methods, which are also referred to as graduated nonconvexity approaches,
approximate the nonconvex prior with a sequence of smooth functions that converges uniformly
to the original function. One or more iterations of one of the algorithms described above can
be applied to each function in this sequence with the goal of avoiding local maxima of
the original function. Although, in general, no global convergence properties are known,
favourable behaviour has been observed by several authors (Geiger and Girosi 1991, Gindi
et al 1993, Mumcuoglu et al 1994, Yu and Fessler 2002).

7. Numerical examples

We conclude with a few illustrations based on a small scale problem in which we estimate
the intensities of two voxels from three measurements. By restricting the image space to
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(a) (b)

Figure 2. Illustration of a well-conditioned problem with system matrix P given in (64) with
source x = [10, 10]T . (a) The noiseless case: y = E(y) = [10, 10, 10]T where the ML solution
is [10, 10]T ; (b) the noisy case: y = [11, 11, 9]T and the ML solution is [11.4, 9.3]T . Shown in
each case are isocontours of the Poisson log-likelihood function L(y|x) and lines corresponding
to solutions of each of the three equations yi = Pix, i = 1, 2, 3.

two dimensions, we can illustrate the shape of the cost function for well- and ill-conditioned
problems and plot the trajectories of the different algorithms through this space.

Figure 2 illustrates a well-conditioned problem where the projection matrix is

P =

0.5 0.5

1 0
0 1


 , (64)

and the mean emission rates of the two source voxels are x = [10, 10]T . Shown in each figure
are the lines corresponding to solutions of each of the three equations yi = Pix i = 1, 2, 3,
where Pi represents the ith row of P , and the isocontours of the Poisson log-likelihood
function L(y|x) . The well-conditioning is reflected in the near circular isocontours of the
likelihood function. In the noiseless case (figure 2(a)) the equations are consistent so that the
three lines intersect, and the maximum-likelihood solution coincides with the exact solution
to the three equations y = Px. In practice, the photon-limited data are modelled as Poisson
random variables and an exact solution of y = Px will not exist in general. This case is
illustrated on the right of figure 2, where now the three lines yi = Pix, i = 1, 2, 3, do not
intersect. However, the log likelihood still has a unique maximum, which corresponds to the
ML solution and lies close to the three points of pairwise intersection of the three equations.

Figure 3 shows an ill-conditioned problem, which is often the case in emission
tomography. The projection matrix P is

P =

0.5 0.5

0.6 0.4
0.4 0.6


 , (65)

and the source image is again x = [10, 10]T . In this case the ill-conditioning of P is reflected
in the small angles between each of the lines yi = Pix. Also note that the isocontours of the
likelihood function are elongated, indicating high variance in the ML solution in the direction
of the major axis of these approximate ellipsoids; i.e., small changes in the data can produce
large changes in the solution along this direction. This is illustrated in the right of the figure
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Figure 3. Illustration of the case where P is the ill-conditioned system matrix in (65). (a) The
noiseless case: y = E(y) = [10, 10, 10]T and again the ML solution is [10, 10]T ; (b) the noisy
case: y = [11, 11, 9]T and the ML solution is [5.2, 15.5]T .
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Figure 4. Illustration of the effect on the cost function of adding the prior smoothing term
β(x1 − x2)

2 to the log-likelihood function for the ill-conditioned problem shown in figure 3(b).
Shown are the isocontours of �(y, x) (equation (24)) for the cases (a) β = 0.001 and (b) β = 0.1.

where noisy data result in a substantial shift of the maximum of the likelihood function relative
to the noiseless case, where the maximum-likelihood solution coincides with the exact solution
to the three consistent equations. Also shown in the right figure are the set of solutions to
each of the equations yi = Pix. Note that the distances between points in the set of pairwise
intersections of these lines is larger than that for the well-conditioned case, again indicating
the increased sensitivity to noise of the ill-conditioned system.

In figure 4 we illustrate the effect of adding the smoothing term β(x1 − x2)
2 to the

log-likelihood function of the ill-conditioned problem in figure 3. This smoothing term has
the form of the Gibbs energy function defined in (22) with a quadratic potential function.
The regularizing effect of this prior is manifested through the reduced eccentricity of the
ellipsoidal isocontours. As the influence of the prior is increased, through increasing β,
the isocontours become increasingly circular, resulting in improved stability of the estimate
formed by maximizing the posterior density. The ML solution for this ill-conditioned example
gives the estimate [5.2, 15.5]T while the MAP solutions are = [7.8, 12.8]T for β = 0.001
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Figure 5. Trajectories representing the sequence of estimates of the image for (a) EM (b)
OSEM (c) RAMLA (d) PCG (e) ICA for the well-conditioned ML problem in figure 2.
(f)–(g) The convergence behaviour showing log likelihood versus iteration number for each
algorithm. Note that OSEM with three subsets (one sample per subset) quickly enters a limit
cycle ([11, 11]T → [11, 11]T → [9, 9]T ) and does not converge. EM converges, but slowly.
RAMLA initially converges rapidly but slows down due to underrelaxation.

and = [9.9, 10.8]T for β = 0.1. Since the true source values are [10, 10] we see that the
MAP solution does indeed produce an improved estimate compared to ML for this case. A
Monte Carlo simulation would also show that the variance of the ML estimate is considerably
higher than that of the MAP solution. However, it is important to note that this prior uses
the assumption that the two voxel values are similar. In cases where there is actually a large
difference between the two values, this prior would tend to introduce a substantial bias into
the estimate.

We now turn to the behaviour of the algorithms themselves. The convergence behaviour
of the algorithms is largely determined by the shape of the objective function, so that for those
algorithms that can be applied to both ML and MAP estimation, we expect similar behaviour
for well-conditioned ML estimates as for MAP estimates. Consequently, we illustrate the
behaviour of all methods for ML only, but for both the well-conditioned and ill-conditioned
cases. MAP algorithms are applied to these data by setting β = 0.
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Figure 5. (Continued.)

In figure 5 we show the convergence behaviours of several algorithms for the well-
conditioned problem of figure 2(b). To better visualize this behaviour we show a smaller
region of the search space than in figure 2(b). All algorithms were initialized with a uniform
estimate [10.3, 10.3]T . Because the objective function is well-conditioned, EM, PCG, and
ICA all effectively converge within a few iterations. OSEM with three subsets enters a
limit cycle after the first iteration as can be seen in the likelihood versus iteration plotted in
figure 5(f). This particularly poor performance of OSEM is partly because the subsets are
unbalanced (they cannot be balanced for this example). RAMLA, which uses a subset-
independent scaling and underrelaxation (here we use λk = 1/

√
k), avoids the need for subset

balance and does exhibit convergent behaviour, but also shows the non-monotonic behaviour
typical of OS methods. The relative performance of PCG, ICA and EM shown in figure 5(g)
is illustrative of larger scale problems. Typically both PCG and ICA produce substantially
faster convergence than EM; relative convergence rates of PCG and ICA are highly dependent
on the specific implementation and choice of preconditioner.

In figure 6 we show the behaviour of the same algorithms for an ill-conditioned problem.
To make the problem more realistic, and challenging, we also include an active non-negativity
constraint; i.e., the unconstrained maximum of the log likelihood contains a negative value for
voxel x2. The non-negativity constraint requires that we find the maximum of the log likelihood
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Figure 6. Trajectories representing the sequence of estimates of the image for (a) EM (b) OSEM
(c) RAMLA (d) PCG (e) ICA for an ill-conditioned ML problem with an active non-negativity
constraint in voxel x2. (f)–(g) The convergence behaviour showing log likelihood versus iteration
number for each algorithm. In this case OSEM and RAMLA use two balanced subsets. Again,
OSEM reaches a limit cycle while the convergence rate of RAMLA slows as the relaxation
parameter decreases. The convergence rate of ICA may be improved using a better initial estimate.

within the set of non-negative voxels only. The projection matrix P for this example is

P =




0.5 0.5
0.6 0.4
0.4 0.6
0.3 0.7


 , (66)

and the noisy data are y = [7, 10, 4, 8]T . One observation common to all methods is that
because the objective function is ill-conditioned, they take many more iterations to convergence
(or to enter a limit cycle). In this case EM converges slowly as does ICA. The PCG converges
rapidly, although this is in part because there are only two unknowns and conjugate-gradient
methods converge rapidly for low-dimensional problems. For the OS algorithms, we used
two balanced subsets. Both OSEM and RAMLA show their characteristic faster convergence
compared to EM in the earlier iterations. However, OSEM eventually enters a limit cycle
while RAMLA does converge, but increasingly slowly due to underrelaxation. We note that
situation here may not represent the best performance of ICA since when applied to real ECT
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Figure 6. (Continued.)

problems, ICA is typically initialized with a FBP image while here we start with a uniform
image. Empirically, the convergence rates of PCG and ICA algorithms are comparable and
both are significantly faster than EM. The convergence rate of RAMLA (and other convergent
OS methods) heavily depends on the underrelaxation sequence. As noted above, selection of
optimal relaxation schedules is an open problem.

8. Conclusions

We have provided a review of the many approaches to iterative image reconstruction for
emission tomography. These methods differ in two distinct ways: the objective function used
and the trajectory through the image space taken by the algorithm to maximize the objective
function. While our preference is towards the use of fast convergent algorithms for MAP or
penalized ML estimation, it is clear that although the OSEM ML method is nonconvergent
and unregularized, it still produces satisfactory results in practice. It is also the case that there
are far bigger differences between analytic reconstructions based on filtered backprojection
and those based on ML or MAP principles than there are between the different ML and MAP
solutions. However, as this field continues to mature and the cost of convergent regularized
methods approaches that of OSEM, the differences between these methods may warrant the
broader adoption of convergent and regularized methods in practical applications.
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