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Image Reconstruction and Restoration: Overview of 
Common Estimation Structures and Problems 

GUY DEMOMENT 

Abstract-Developments in the theory of image reconstruction and 
restoration in the past 20 or 30 years are outlined. Particular attention 
is paid to common estimation structures in the field and to practical 
problems not properly solved yet. 

I. INTRODUCTION AND OUTLINE 
ESTORATION and reconstruction of images can be FL efined as the general problem of estimating a two- 

dimensional (2-D) object from a degraded version of this 
object. The mathematical form of the degradation process 
depends on the problem at hand. In image restoration, the 
unknown object and its degraded observed version, re- 
ferred to as the image, are both scalar functions defined 
on FI2 or Z2. In image reconstruction, observations result 
from the interaction between the unknown object and 
some scattering wave. The 2-D object must be recon- 
structed from a finite set of “projections,” i.e., scalar 
functions defined on I;;) or 2. 

This problem has been extensively studied for its ob- 
vious practical importance as well as its theoretical inter- 
est. Literature on the subject is abundant and highly var- 
ied since the problem arises in almost every branch of 
engineering and applied physics. It is, for instance, fre- 
quently encountered in various fields of application such 
as optics, X-ray or diffraction tomography, radioastron- 
omy , biomedical engineering, machine vision, nonde- 
structive evaluation, geophysics, etc. The variety of ref- 
erence sources quoted in this paper is evidence for this 
fact. 

Hence, the aim of the paper is not to give an exhaustive 
overview of the literature, which would be too ambitious, 
but to stress two major points. 

First, most existing image reconstruction and restora- 
tion methods have a common estimation structure in spite 
of their apparent variety. This can be assumed from the 
literature [8], [ 121, [ 191, [24] and was clarified a few years 
ago in a series of seminal papers by Titterington [22], 
[23]. Everything was summed up in a single word: regu- 
larization. Since then, changes have occurred in the field. 
The common theoretical limitations presented by these 
methods have led to a broadening of their theoretical 
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foundations, comparable to other recent changes occur- 
ring in the whole signal processing field. The same phe- 
nomenon occurred recently in the area of image process- 
ing, particularly with the introduction of random Markov 
fields and related estimation methods [80]-[89]. How- 
ever, the same common structures are still present and can 
be used as a unifying framework for understanding this 
rather complex field, which is rapidly evolving through 
the influence of statisticians, electrical engineers, and ma- 
chine vision experts. 

Second, in addition to a common estimation structure, 
most image reconstruction and estimation methods pre- 
sent some common practical limitations. The most so- 
phisticated methods require the use of several tuning pa- 
rameters (referred to as hyperparameters) which should be 
estimated from the data. Methods are available to perform 
this task. Some of them are reputed to give correct results, 
others not, and a great effort should be made to clarify 
this aspect. 

In order to set the framework and make these points, 
the paper is organized as follows. 

In Section 11, the problem of image reconstruction and 
restoration is formulated. Although it reduces in most 
practical situations to solving a system of linear equa- 
tions, this special case is important because it provides an 
easy way of studying the ill-posed or ill-conditioned na- 
ture of these inversion problems. 

Section I11 describes some of the current regularization 
approaches used to solve this problem. The important 
concepts of a priori information and compound criterion 
are introduced. 

In Section IV, we give a Bayesian interpretation of these 
regularization techniques which clarifies the role of the 
tuning parameters and gives indications on how they could 
be estimated. 

Sections V and VI are devoted to the practical aspects 
of computing the solution, first when the hyperparameters 
are known, and second when they must be estimated. 

In Section VII, conclusions are drawn and points that 
still need to be investigated are outlined. 

The statistical approach taken in the paper allows us to 
cover most probabilistic methods, and a number of deter- 
ministic ones as well. However, due to the wide range of 
the subject and space limitations, some of them, although 
useful in some situations, have been left out. Justice is 
done to them in the references which are organized under 
nine subheadings roughly corresponding to the sections of 
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the paper. Although the division is somewhat arbitrary, 
we hope it will enable the reader to acquaint himself with 
results that could not be covered in this paper. 

11. THE ILL-POSED NATURE OF IMAGE 
RECONSTRUCTION AND RESTORATION 

An image is generally defined as a real or complex-val- 
ued function of two space variables belonging to some 
support region. Although this support may be continuous, 
it is commonly sampled on a rectangular grid. This de- 
fines a set of pixels, and the image is represented by a 
vector x of N pixel intensity values, N being typically a 
power of two and also a huge number. 

In image reconstruction and restoration problems, the 
original “object” cannot be directly measured and must 
be either reconstructed or restored from the observed data 
in order to remove the effects of the observation mecha- 
nism. 

In image restoration, the cause of degradation is some 
distortion which can be modeled as 

y = A ( x )  b (2.1) 
with the following interpretation: A ( * ) is a degradation 
mechanism, b denotes a corruptive noise process, and the 
symbol represents a pixel-by-pixel interaction. The dis- 
tortion mechanism often involves convolution or blurring 
of x by some point spread function and the addition of an 
independent Gaussian white noise, with zero mean and 
variance U;, thus leading to the following simpler model: 

y = A x + b .  (2.2) 
Sometimes, however, the distortion also involves a non- 
linear pixel transformation and a multiplicative noise. The 
problem of restoring x is then much more difficult [ 11 ,  [6], 
[99], [ 1 141, even though some methods developed in the 
previous case can still be formally applied. In model (2.2), 
matrix A and the statistical characteristics of the noise are 
implicitly assumed to be known. But this assumption is 
not always fulfilled, and these quantities may also have to 
be estimated [72], [95], [98], [ 1021. This is, for instance, 
a common situation in geophysics. In this paper, we will 
deal only with the linear, additive, and Gaussian case with 
a known distortion model. Although this is somewhat re- 
strictive, the corresponding problem is generic in the sense 
that its solution is the basis of many other ones. 

The problem of image reconstruction is a little more 
complicated since the true object x is no longer a measure 
of light intensity over some scene, but a mapping of some 
physical property, e.g., a density of matter in a physical 
object, an acoustical impedance, a complex permittivity 
[3], [5], etc. The true object must be reconstructed, i.e., 
decoded from wave interaction results that are not im- 
ages. These data are commonly called “projections,” 
even when, because of diffraction effects, for instance, 
they are not projections of the object in a geometrical 
sense, i.e., line integrals, or when they are simply object 
samples in the space or frequency domains. In most ex- 
isting methods, the image reconstruction problem is also 

modeled as that of solving a system of linear equations. 
When the object is illuminated by a radiating source with 
a very short wavelength, as in X-ray tomography, the data 
y are explicit and linear functions of the object x. But 
when diffraction effects cannot be neglected, this is only 
a rough approximation which corresponds to a first-order 
expansion of the solution to the corresponding wave prop- 
agation equations. 

The whole set of data is obtained by rotating the object 
in the incident radiated field and by measuring its projec- 
tions at various incidence angles belonging to a discrete 
finite set. All the data are then concatenated in a single 
vectory, thus leading to a model similar to (2.2): 

y = A x + b .  (2.2) 
In both cases, our image processing problem is to ob- 

tain an estimate P of the true object x from the data vector 
y .  Under our assumptions, a solution which emerges im- 
mediately is the least squares one with minimum norm, 
which is 

P, = ( A ‘ A ) - ’ A ‘ ~  ( 2 . 3 )  

io = A’y. (2.4) 

when the normal matrix A‘A is regular or else the gen- 
eralized inverse solution 

This seems to be a reasonable choice, from a statistical 
standpoint at least, since under our assumptions, Po is an 
unbiased and minimum variance solution. 

Although the effective computation of Po can be made 
computationally tractable in actual problems with huge 
dimensions, this solution is usually unacceptable since A 
is most often ill conditioned. The noise component am- 
plification exceeds any acceptable level. 

The ill conditioning is a direct consequence of the ill 
posedness of the initial continuous-data problem which is 
approximated by (2.2). In the restoration problem, the 
image is a convolution integral 

which is a particular case of a Fredholm equation of the 
first kind. The kernel of this integral equation h is the 2-D 
impulse response or point spread function (PSF) of the 
imaging system. Since the data are erroneous or noisy, 
we cannot expect to solve this equation exactly and the 
true solution must be approximated in some sense. The 
concept of distance between images is then a natural way 
of evaluating the quality of an approximation, which ex- 
plains why x and y are often assumed to belong to Hilbert 
spaces. This continuous-data problem can then be rewrit- 
ten as 

y = A x  (2.6) 
where y and x are now elements of infinite dimension 
function spaces X and Y,  respectively, and A is a linear 
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operator corresponding to an integral equation of the first 
kind. To be acceptable, the solution must satisfy three 
conditions: the usual mathematical conditions of exis- 
tence and uniqueness, and the less usual physical condi- 
tion of stability or continuity with respect to the data since 
these data are inevitably noisy. These are the so-called 
Hadamard conditions for a problem to be well posed 191- 
1181. 

Let y and x belong to the same Hilbert space and let the 
PSF be square integrable. This assumption is fulfilled by 
most physical PSF's. The direct problem, i.e., the cal- 
culation of the imaging system response y to the true ob- 
ject X, is then well posed in the Hadamard sense: a small 
error 6x on the data leads to a small error Sy on the solu- 
tion. However, this condition is not satisfied in the cor- 
responding inverse problem where the true object x is to 
be computed from the response y: 

x = A - l y .  (2.7) 

In fact, the necessary and sufficient conditions of exis- 
tence, uniqueness, and stability of the solution are, re- 
spectively, 

Y E Im ( A )  (2.8) 

Ker(A) = ( 0 )  (2.9) 

Im ( A )  = Im ( A )  (2.10) 

where Im ( A )  and Ker ( A )  are the range and the null space 
of A ,  respectively, and where Im ( A )  is the closure of Im 
( A ) .  When the PSF h is square integrable, the Riesz- 
Frechet theorem indicates that the operator A is bounded 
and compact [ 121. But the range of a compact operator is 
not closed (except in the degenerated case where its di- 
mension is finite, which corresponds to a separable PSF). 
This means that the inverse operator A - '  is unbounded, 
its range Im ( A  ) is unclosed, and the third Hadamard con- 
dition is not met for the inverse problem. 

These difficulties remain unchanged in the symmetric 
problem 

A * y  = A*Ax (2.11) 

where A * is the adjoint operator of A ,  i.e., ( A x ,  y ) = 
( x ,  A *y ) for all x E X and y E Y. ( . , ) represents the 
scalar products used in the image and object spaces. 

Additional light can be shed on these problems using a 
spectral approach. Equation (2.11) is used since A * A  is 
a self-adjoint, nonnegative definite operator, and hence 
has an eigensystem. 

Let { A, } denote the eigenvalues of A * A  (and of AA *) 
ordered and counted with their multiplicity: X I  I h2 2 
- . . X, I . . - 0. According to the Hilbert-Schmidt theo- 
rem 1121, A, goes to zero as n -+ 03, and the alternative 
is either the limit is reached for n = no or the limit is never 
reached for any finite value of n .  Let E be the set of in- 
dexes n such that A, # 0, and let { U,,  U,;  U, } be a sin- 
gular system of operator A .  The singular vectors U,, U, 
and the singular values U, satisfy the following condi- 

tions: 
n E E  02, = A, 

M*u, = X,U, A*Av,  = X , U ,  

Au, == U,U, A*un = UnUn. (2.12) 

Equation (2.11) has a solution for a given image y E Y if 
and only if 

(2.13) 

Condition (2.13) is derived from Picard's criterion for 
solvability of an integral equation of the first kind [12]. 
In order for (2.13) to be fulfilled, components ( y, U, ) of 
the image expansion on the set of eigenfunctions { U , }  

have to decrease faster than the eigenvalues U: when n -+ 

03. Since, in practice, these functions are rapidly oscillat- 
ing when n increases, this condition can be intuitively in- 
terpreted as a limitation on the high-frequency content of 
the perfect image y. 

In addition, when the existence and the uniqueness are 
assumed, a perturbation or noise Sy on the data gives the 
perturbed or noisy solution [ 121 

This shows that the error in each component of this ex- 
pansion is proportional to the inverse signal-to-noise ratio 
( Sy, U, ) / ( y, U, ) . This is a first source of degradation 
since this ratio may often be much greater than unity when 
the noise Sy and perfect image y have distinct spectral 
properties. However, even when the signal-to-noise ratio 
remains high over the whole spectrum { U , } ,  the error 
components ( Sy, U, ) are divided by the singular values 
which go to zero as n -+ 00. Hence, small errors in the 
image induce large errors in the solution. This explains 
why usual trial-and-error methods cannot be applied to 
solve these integral equations of the first kind since a small 
observation error would not ensure a small error on the 
solution 

(2.15) 

This situation frequently occurs in inverse problems in- 
volving different function spaces for the object and the 
observed data, and careless application of inverse filters 
may lead to unacceptable results. In reconstruction, the 
solution is even more complicated since the uniqueness of 
the solution may also become a difficult problem [3]. 

In the discrete case, x and y belong to finite dimensional 
spaces and the linear operator A is a matrix A. Equation 
(2.2) has a unique solution of minimal norm Po = A t y  
which depends continuously on y since the generalized 
inverse A t  is always bounded 1121. The problem is then 
well posed in the least squares sense. The advantage of 
adopting this generalized inverse solution is that an in- 
consistent finite system of linear algebraic equations will 
not be ill posed in this sense, while it is ill posed in the 
sense of Hadamard. 
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But even in this setting, the inversion problem has, from 
a numerical viewpoint, instability properties akin to those 
of ill-posed problems. The spectral decomposition (2.14) 
is still valid, with the only difference being that the num- 
ber of singular values of the normal matrix A‘A is now 
finite and equal to N .  These singular values cannot be ex- 
pressed in closed form, even when the normal matrix is 
Toeplitz. However, in the latter case, A‘A can be approx- 
imated by a circulant matrix whose eigenvectors are the 
columns of the discrete Fourier transform matrix [ 1081. 
The spectral decomposition (2.14) is then a Fourier spec- 
trum with the usual spatial frequency interpretation. In the 
circulant case, the eigenvalues of A‘A are the PSF Fou- 
rier transform values computed at regularly spaced fre- 
quencies. When the degradation is a low-pass filter, U,, 

take on very small values when n + N .  Even if we ex- 
clude the zero singular values, as in computing A +, there 
will still be singular values close to zero. The matrix A is 
ill conditioned. The weight U,,-’ ( a y ,  U ,  ) in (2.14) can 
thus become very large for those U, close to zero, even 
when 6y  is small. We are in a somewhat paradoxical sit- 
uation: the finer the pixel grid (or equivalently, the better 
the discrete approximation), the better the approximation 
of the singular values by the PSF, and the worse the con- 
ditioning of matrix A! 

Problems of this kind arise not only in image process- 
ing, but in the whole applied physics field. A general 
principle for dealing with the instability of the problem is 
that of regularization [9]-[18]. It consists mainly of 
changing our idea of what a solution is. Obtaining the true 
solution from imperfect data is impossible. When regu- 
ularizing the problem, this fact is acknowledged and the 
initial equation is considered to define, in fact, only a class 
of admissible solutions { P } : 

(2.15) 

among which an acceptable solution must be sought. But 
to do this, the problem must be stated more completely, 
which implies that some extra or a priori information be 
included. 

As mentioned in the Introduction, some methods do not 
fall into the regularization framework (e.g., homomor- 
phic filtering [l]). However, most of them do, and since 
regularization is conceptually very simple and intuitively 
natural, and since it can be given a conventional as well 
as a Bayesian statistical interpretation, it can be used as a 
unifying framework for this rather complex field of image 
processing. 

111. REGULARIZATION OF A N  ILL-POSED PROBLEM 
Numerous methods have been proposed for solving and 

regularizing various types of ill-posed problems [ 1]-[8], 
[12]. They can be separated into two categories: regular- 
ization in functional spaces, and control of dimensional- 
ity. The framework proposed here belongs to the first cat- 
egory. The basic feature is the introduction of a 
compromise between fidelity to the data and fidelity to 
some orior information about the solution. This comuro- 

mise is measured with a single optimality criterion and 
can be physically justified as follows. 

The least squares solution Po is the minimizer of the 
total energy of residual error between the model Ax and 
the data y. In this sense, it provides maximum fidelity to 
the data. But for a wide-band observation noise, the en- 
ergy of the restored or reconstructed object at high spatial 
frequencies is high, mainly due to the noise. In general, 
this solution Po, although unbiased, is rejected since the 
true image is expected to be significantly smoother. Thus, 
some infidelity to the data must be introduced in order to 
obtain a smoother solution. The question which immedi- 
ately arises is, how can we get a smoother solution? In 
order to succeed in suppressing the noise without distort- 
ing the original image too much, we need information on 
the spectral content of the image. A simple and very nat- 
ural way of performing such smoothing or regularization 
is to define two measures of “distance” J l ( x ,  2,) and 
J 2 ( x ,  a,) between x and two extreme pictures Po and 2,. 
Po is the ultrarough least squares solution, and P, corre- 
sponds to an a priori ultrasmooth object. We then balance 
the fidelity of the solution to the data, which is measured 
by J1 ,  and the fidelity to some prior information, which 
is measured by J 2 .  Usually, P, turns out to be a picture 
of uniform intensity, but it may also be some reference 
map based on prior knowledge [ I ] ,  [72]. A regularized 
solution P (  p ,  y )  is simply defined as the solution of the 
following problem: 

~ ( p ,  Y )  = arg minxGx { J~(x, 2 0 )  + p ~ 2 ( x ,  2 , ) ) .  

( 3 . 1 )  
Note that f depends on y through io only. The choice of 
measures J1 and J2  defines a particular path between fo 
and f, in the set X of all possible objects [22]. This is a 
qualitative choice that determines the manner in which 
regularization is done. On the other hand, the choice of 
p ,  which is the regularization parameter, is quantitative 
and allows the user to decide how far to go along this path 
to achieve an appropriate degree of smoothing. Perfect 
fidelity to the data is achieved if p = 0, whereas perfect 
fidelity to the priors is achieved if p = 03. 

Mathematical conditions on J ,  and J2  are weak. Ac- 
tually, JI and J 2  do not even need to be true distances in 
the usual mathematical sense. They simply need to be 
positive measures which vanish only if their arguments 
are identical. They may not be symmetric. Since J1 and 
J2  measure different properties of the solution, they need 
not be the same and, in fact, they are usually different. 
But the surface mapped out by the compound criterion 
JI (x, Po) + p J 2 ( x ,  a,) has to be a straightfonvard con- 
vex bowl with a unique lowest point to yield a unique 
solution f (  p ,  y ) .  

Although the scheme presented above allows us to cover 
most stochastic and deterministic restoration and recon- 
struction methods, two popular approaches do not fit well 
into this framework. They are briefly outlined below. 

The first one belongs to the same functional regulari- 
zation category and uses compactness and a priori bounds. 
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For some problems, the prior information available on the 
object can be expressed as a set of constraints such as a 
priori bounds, each defining a convex set C, in the solu- 
tion space X .  An example of such a convex set is given 
by (2.16). It has long been known that restriction to a 
compact set ensures well posedness [ 121. Problems of this 
type are solved using the method of projections onto con- 
vex sets (POCS) 11171-11191, [121]. However, this 
method does not yield a unique solution since all elements 
of the intersection of all the constraints sets, when non- 
empty, are equally acceptable. An iterative search for the 
solution depends on initial conditions, which is hardly 
satisfactory. To remedy this drawback, and also to exploit 
the statistical properties of the noise, an alternative was 
recently introduced [ 1151 as a minimization of some dis- 
tance to the data, such as Jl under the set of previous 
constraints C,:  

P ( y )  = arg min,,,J,(x, Po) C = fI C,.  (3.2) 

This does yield a unique solution, but clearly differs from 
our scheme. 

The second family of methods is the well-known trun- 
cated singular value decomposition (TSVD) [ 11 where reg- 
ularization is performed through control of the dimen- 
sionality of the solution space. The summation in (2.14) 
is taken on a limited number of singular values A,, n r 
p ,  which significantly differ from zero, in order to avoid 
excessive noise contamination. This is equivalent to pro- 
jecting the solution onto a "significant" subspace spanned 

9 P .  by the remaining singular vectors U , ,  n = 1, 2, 
This method yields solutions that are numerically well 
conditioned. In most practical situations, the singular val- 
ues decrease slowly when n -, Nand the truncation order 
p must be chosen by comparing the norms of the noise 
and of the residual errors [cf. (2.16)]. But the fundamen- 
tal difference, and in some sense limitation, with other 
regularizing methods lies in the fact that the a priori in- 
formation depends on the distorting system and not on the 
solution itself. TSVD regularization means that the solu- 
tion is limited exclusively by the properties of the obser- 
vation device, more precisely, by the width of the sin- 
gular value spectrum. Such a conclusion clearly 
contradicts the principles of superresolution techniques. 
To remedy this, weighted singular value decompositions 
have been introduced [ 121, [ 181. However, these have no 
simple functional interpretation and are far less popular 
than TSVD. 

Despite the generality of (3. l ) ,  comparatively few dis- 
tance measures have been used in image reconstruction 
and restoration. To our knowledge, JI and J2  have always 
been chosen from the same limited set of candidates, 
which is listed below. 

I 

* 

A .  Quadratic (or Euclidean) and Weighted Quadratic 
Distances 

A Euclidian distance between two pictures xI and x 2  is, 
of course, 

N 

J Q ( x I ,  x 2 )  = ( X l r  - x 2 i ) 2  
r = l  

= ( X I  - X Z ) ' ( X I  - x 2 )  = I1 XI - X 2 1 l 2 .  

(3.3) 
This is a particular case of weighted quadratic distances 

N N  

JW&, x 2 )  = c c wr, (XI1 - X 2 r )  (XI, - x 2 , )  
r = l  ] = I  

= (XI - X 2 ) ' W ( X I  - x 2 )  = II XI - x2 11; 
(3.4) 

where W = diag { w,, } is a symmetric, positive definite 
matrix which is designed to outline certain special fea- 
tures of the desired proximity. 

A distance of this type is the common choice for J I  in 
most regularization schemes when noise b is assumed to 
be white, Gaussian, zero mean, and independent from x: 

= (X - P ~ ) ' A ' C - ~ A ( X  - a,) (3.5) 

where C = diag {a: 1 and W = A ' C - ' A .  

B. Kullback Distances 
A very important feature of X ,  the class of real world 

objects, is that in.many picture processing problems, the 
pixel intensity is mainly nonnegative. It is highly desir- 
able that this important physical property be preserved in 
the restored or reconstructed object. There is a variety of 
ways for achieving this, one of them being to consider 
that the object may be identified, after proper normaliza- 
tion, to a probability distribution, and then to use distance 
measures between such distributions. The Kullback dis- 
tance is often used 1641-1791: 

N 

J , ( X , ,  ~ 2 )  = .x xlilog ( x I i / x 2 i ) .  (3.6) 
r = I  

Note that this distance measure is nonsymmetric with re- 
spect to its arguments and, in this sense, pathological. 
This distance is the negative of the relative entropy of 
distribution xl with respect to prior distribution x 2 .  

C. Roughness Measures 
A simple way of measuring the roughness of an image 

is to apply some finite difference operator to it and then 
take the Euclidian norm of the resulting differentiated im- 
age. Since such a differentiation operation is linear with 
respect to the original image, the resulting measure of 
roughness is quadratic: 

Q ( x )  = I I V k ( X ) / 1 2  = 1 1  D k X  = x'D:Dkx (3.7) 

where k is the order of the difference operator V k (  * ) . 
Usually, k = 1 or 2 1261. Q ( x )  is minimized if all the 
components of x are equal. Clearly, this is a special case 
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of weighted quadratic distance where the second argu- 
ment x 2  is any uniform image and the weighting matrix 
is W = DLD,. 

D. Local Energy Functions 
All previous distances measure some global property of 

an image which is implicitly considered as a homoge- 
neous field. But real images are often inhomogeneous, 
with nearly uniform regions separated by relatively sharp 
edges. To break off the homogeneity, local energy func- 
tions have been recently introduced [go]-[86]. In this ap- 
proach, the original image x is regarded as a pair x = (z,  
t )  where z is the vector of observable pixel intensities and 
t denotes a dual vector of unobservable additional features 
such as edges, textures, etc. To express local properties 
of the image, a neighborhood system { d j }  is defined 
where d j  is a collection of pixels that are assumed to in- 
teract directly with pixel i .  As an elementary example, let 
us suppose that the intensity values of x are discrete. A 
basic characteristic of most images is that intensity values 
at nearby locations are likely to be nearly the same. To 
express this property, we define 

V ( z j ,  z ,)  = -1 zi = zj j E d j  
= 1  z,  + z, j E d, 

= o  otherwise. (3 .8)  
These bond energies, computed among neighboring pix- 
els, are added to define the energy of the image: 

J ( z )  = c c V(Zi, Z j )  = c V J X )  (3 .9)  
! I  I 

where Vi is the potential of the ith set of neighbor pixels 
and where i ranges over the set of all sites which are pairs 
of neighbors. The idea is that J ( z )  is small for pictures 
consistent with the properties we wish to use to define our 
priors, in this example, pictures, for which neighboring 
pixels tend to have the same intensity value. 

Of course, the property of locally constant intensities is 
not sufficient, and we have to introduce additional prop- 
erties of other features such as edges. For this, we define 
a global energy of the form 

J G ( x )  = J,(z) + J 2 ( t )  + J ~ ( z ,  t )  (3.10) 
composed of three terms: an intensity energy JI (z )  , an 
edge energy J2  ( t )  , and a third term J3  ( z ,  t )  that describes 
the interaction between edges and pixels [81]-[83], 1861. 
These local energy functions are also in the form E;,  Vi.  
They have close connections to statistical physics and 
Gibbs distributions. This point will be discussed in the 
next section. The design of these potentials is generally 
arduous and still empirical. 

Having chosen the appropriate distances J ,  and J 2 ,  the 
regularized solution a (  p ,  y )  is obtained for a given value 
of p by minimizing the corresponding criterion. How- 
ever, this brings up some practical questions about the 
complexity of the calculations, the complication which 
arises from the positive character of the solution, and the 
possible existence of local minima of the criterion. 

The literature demonstrates that there is no satisfactory 
answer to these three questions simultaneously. As a rule, 
the calculations are easiest when JI and .I2 are quadratic: 

This corresponds to the classical regularization meth- 
ods of Phillips, Twomey, and Tykhonov [13], [15]-[16], 
who have dominated the image restoration literature for 
the past 15 years [24]-[29], [44]-[63]. The solution to 
(3.11) is unique, linear with respect to the data, and can 
be calculated explicitly: 

f = ( A ‘ C - ’ A  + p K ) - ’ A ‘ E - ’ y .  (3.12) 

But apart from the computational problems, which will 
be considered in Section V,  this solution is not guaranteed 
to be positive, a point which is unacceptable in many ap- 
plications. To remedy this deficiency, we can either di- 
rectly impose positivity on the solution by nonlinear pro- 
gramming or we can use another distance J 2 ,  e.g., 
Kullback distance. As the minimization of { JI (x,  io) + 
p J 2  (x, 2, ) } is equivalent to that of { J 2  (x,  2, ) + ( 1 / p  ) 
JI (x, Po) } , this yields the methods of reconstruction or 
restoration which are called “maximum entropy” meth- 
ods [64]-[79]. Unfortunately, it is no longer possible to 
obtain a closed-form solution, and minimization of the 
criterion must be carried out iteratively. 

When we wish to improve the description of the image 
by using contours and textures as well as the pixel inten- 
sity values, the difficulties in obtaining the solution are 
considerably increased. The criterion no longer presents 
a unique minimum and the global minimum must be 
sought by rather unwieldy techniques [80]-[86]. 

In addition to these computational difficulties, other dif- 
ficulties arise such as the choice of the value of the reg- 
ularization coefficient p and possibly of other parameters 
which characterize the distances J ,  and J 2 .  These are the 
hyperparameters of the problem. There is a large variety 
of methods for determining them, but before considering 
them in Section VI, it will be useful to study the Bayesian 
interpretation of regularization methods. 

IV. BAYESIAN INTERPRETATION OF REGULARIZATION 
PROBLEMS 

An important part of statistical inference methods is 
based on the use of a priori information on the parameters 
to be estimated, which is added to the information pro- 
vided by the data. It is thus not surprising, taking into 
account the profound nature of the regularization princi- 
ple described above, that there is a close relationship be- 
tween regularization and Bayesian estimation [30]-[43]. 
In a statistical context, the a priori information on the 
object x is expressed in the form of an a priori probability 
distribution p (x )  . Bayes’ rule allows us to combine it with 
the information contained in the data to obtain the a pos- 
teriori distribution 

(4.1 ) 
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In this relationship, p ( y / x )  denotes the probability 
distribution of the data conditioned on the real solution x. 
It is completely determined by the knowledge of models 
(2.1) or (2.2) and the noise distribution. The last term 

P(Y)  = ~ P ( Y / X ) P ( X )  (4.2) 

ensures the normalization of the a posteriori distribution. 
In a strict Bayesian sense, (4.1) is the solution to the 

inversion since it summarizes all the information on x. 
However, manipulation of probability density functions is 
cumbersome and very often intractable, and a decision 
must be made to attribute a value to each pixel. A popular 
choice is that of attributing to x the value which maxi- 
mizes the a posteriori (MAP) distribution 1301-[43] 

i = arg maxp(x/y) .  (4 .3)  
But this is only a special case since MAP estimation cor- 
responds to minimizing an average cost with a zero-one 
loss function. Recently, other cost functionals have gained 
interest in the context of Markov random fields modeling 
and lead to maximization of marginal probabilities 1801- 
1861. 

In the case of interest here, it is clear that regularizing 
according to the general scheme given in the previous sec- 
tion is equivalent to choosing the optimal image maxi- 
mizing the a posteriori distribution under the condition 
that this distribution is expressed in the following way: 

P ( X l Y >  = exp { - t [ J , ( . ,  i o )  + PJ*(X, & ) I ]  
(4 .4)  

The probability distribution expressed in (4.4) is only one 
possible choice. Any strictly monotone function would be 
suitable. However, choice of an exponential function is 
adequate here since with a linear model (2.2) and with the 
usual hypotheses of normality and independence on the 
noise, the conditional distribution p ( y / x )  is truly 

P(Y/X) = exp { - t J k  i o ) }  (4 .5)  

as long as J ,  = J,, with W = A ' C - I A  are chosen. To 
complete the analogy, the a priori distribution must also 
be written as follows: 

p ( x >  exp i - f . ( x ,  a,> 1 . (4 .6)  

Again, this is only one Bayesian interpretation of reg- 
ularization methods. It is also often considered as a jus- 
tification of regularization methods, although this is a 
controversial point which we shall not discuss here. Suf- 
fice it to say that, on the one hand, the Bayesian approach 
is, in fact, the framework in which the most recent res- 
toration methods have been introduced, and on the other 
hand, that it allows an appreciable extension of the range 
of hyperparameter estimation methods. 

In the case of regularization methods of the Phillips, 
Twomey, and Tykhonov type, the distance J 2  is a quad- 

ratic, definite positive form, and (4.6) shows that this re- 
verts to modeling the real object as a homogeneous ran- 
dom Gaussian field with mean i, and with covariance 
matrix W-I. The matrix W - '  can be chosen in the form 
( D ' D )  -I if the distance J 2  is a roughness measure of the 
type (3.7). More generally, it can be any positive definite 
matrix, but its structure must be specified beforehand. If 
this matrix is itself parameterized, these hyperparameters 
must be determined in the same manner as the regular- 
ization coefficient p ,  which is analogous to the inverse of 
a signal-to-noise ratio. 

In maximum entropy methods, the proximity measure 
J 2  is of the Kullback distance type. Therefore, the real 
object is modeled as a random field with a priori distri- 
bution 

(4.7)  

where S is the negative of the Kullback distance or the 
relative entropy of the image. This choice is often given 
as the only one which is statistically consistent with a pos- 
itive object 1711-1741. We should nonetheless note that in 
this fully Bayesian approach, the constant p should be 
specified by a "hyperprior" density. But in practice, this 
dimensional constant is not set a priori. Its choice is 
mainly empirical and depends on the quality of the data. 
However, apart from these more or less philosophical 
problems, the main drawback of these methods arises from 
the proximity measure which is used. The entropy of the 
whole image as defined in (3.6) is the sum of the entropies 
of each pixel, which implicitly assumes an a priori in- 
dependence between the pixels since their joint a priori 
distribution (4.7) is the product of their marginal distri- 
butions: 

P ( X )  = rI P(Xl ! ) .  (4.8) 

This no doubt explains why they give very good results 
in problems where the objects have supports which are of 
very limited dimensions a2d almost pinpoint, and why 
they differ only slightly from quadratic methods (with or 
without a positivity constraint) in the other cases. 

In the case of local energy functions, the a priori dis- 
tribution can be expressed in the following form: 

(4.9) 

which is a Gibbs distribution. A physical system with such 
an associated distribution is such that the lower energy 
configurations have higher expectation. However, it must 
be noted that because of the strong nonlinearity of the 
Gibbs potentials and because of the large number of pos- 
sible configurations for an image ( M N ,  M being the pos- 
sible number of states, levels of gray, for example), it is 
impossible to compute all the distributions which are de- 
fined by (4.9) [80]-[86]. The marginal distributions 
p ( x i  ) , for example, cannot be calculated. Only condi- 
tional distributions p ( x , / x j ,  j E d, ) where d j  indicates a 
neighborhood of pixel i can be simply and easily com- 
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puted from the local description leading to the choice of 
local energies. This difficulty has a strong influence on 
the computation of the solution, as we shall see in the 
following section. The assignment of these energy func- 
tions JG ( x )  also defines a Markov random field (MRF) 
image model since an MRF has the property that the prob- 
ability distribution of the configuration of the field can 
always be expressed in the form of a Gibbs distribution 
[82]. The MRF-Gibbs equivalence is exploited for com- 
puting the solution. In order to partly overcome the com- 
putational problems, the fact that the a posteriori distri- 
bution is again Gibbsian with approximately the same 
neighborhood system as that of the original object is ex- 
ploited and a sampling method called “Gibbs sampler” 
is used. However, the computational complexity in- 
creases rapidly with the neighborhood dimension, which 
is a major drawback in restoration problems with large 
PSF. 

V .  PRACTICAL PROBLEMS IN COMPUTING THE 
SOLUTION 

Practical problems in computation of the reconstructed 
or restored image play an important role in the final choice 
of a particular method because of the very high dimen- 
sions of the real images. These problems arise even when 
the two distances J ,  and J2 are quadratic and when a 
closed-form solution can be obtained since the use of the 
relation (3.12) requires the inversion of a very large ma- 
trix. 

When the object has a limited support and when the 
corresponding hypotheses of uniformity of the image 
edges and circulant structure of the covariance or weight- 
ing matrix can be made, the matrix to be inverted is cir- 
culant in the case of a space-invariant degradation. It can 
then be rapidly diagonalized by FFT, which considerably 
simplifies its inversion [26]-[27]. 

Inversion can also be performed recursively using Kal- 
man filtering techniques inspired by optimal statistical 
signal processing. A significant part of the literature on 
image restoration in recent years has been devoted to the 
development of these techniques [44]-[63]. Computa- 
tional savings are generally obtained by introducing a state 
vector of reduced dimension compared to that of the real 
image. Although Kalman filtering techniques have been 
successful in 1-D problems, their extension to 2-D is not 
trivial. Derivation of suitable 2-D recursive models, com- 
patible with a reasonable computational load, is a major 
difficulty. Image modeling with stationary 2-D random 
fields is an active research topic. But the study of these 
fields is not a simple extension of time series properties 
[8]. The lack of any Archimedean ordering in the plane 
raises new problems: existence of favored directions in 
lexicographically ordered ARMA processes, instability of 
finite memory inverse prediction filters, and impossibility 
to extend the 1-D stochastic realization theory to 2-D 
problems. The only state-space models for which a com- 
plete realization theory exists are those of Attasi [45] and 
Roesser [54]. Usually, additional assumptions, such as 

separability of covariance, are made in order to facilitate 
the identification of the image model. It should be noted 
that these ad hoc assumptions hardly reflect the true na- 
ture of the object. 

When the distance J2 is an entropy measure, things be- 
come more complicated since we no longer have a closed- 
form solution and we must proceed by iteration. The lit- 
erature on this subject most often deals with iterative 
methods of the first order, of the conjugate-gradient type, 
but they must be modified in order to ensure the positivity 
of the solution at each iteration [HI-[79]. Experience 
shows that the computational cost is 10-20 times greater 
than with former linear methods using quadratic dis- 
tances. 

When Markovian representations associated with Gibbs 
potentials are used, the main difficulty in computing the 
solution arises from the impossibility of calculating the a 
posteriori distribution. This difficulty was resolved by 
using stochastic techniques of the Monte Carlo type. The 
first idea consists of introducing an auxiliary distribution 

P T b l Y )  cc t P ( Y l x ) p ( x ) l l ’ T  (5.1) 
where T > 0 is an additional parameter called “temper- 
ature of the system.” Note that if T + 03, (5.1) tends to 
a uniform distribution, while if T + 0, the distribution 
(5.1) is concentrated on the maximum a posteriori esti- 
mate. The second idea consists of creating, in a stochastic 
way, a set of images by making random runs following a 
Gibbs distribution p ( x )  . Starting from an initial image 
x“), the change from x(”) to x(“+l)  only concerns one 
pixel, at the most, and is done randomly according to the 
local conditional distributions p ( x i / x , ,  j E di ) which can 
easily be calculated from p ( x )  . When n + 03, x(”) re- 
sembles a random configuration with distribution p ( x )  
whose empiric mean is the requested expectation. This is 
the “Gibbs sampler” [82]. When this technique is used 
with a distribution like the one defined in (5. l) ,  and when 
the temperature Tis  brought very slowly to zero, conver- 
gence takes place towards the minimum a posteriori en- 
ergy. This is “simulated annealing” [85]-[87]. The con- 
ditions to be fulfilled by the random set of images x“), 

ible and do not depend on how the object pixels are ex- 
plored. The only requirement is that all pixels be ex- 
plored. This flexibility and the particular form of the 
probability distribution p T  allow parallelization of the 
processing by using independent, and even asynchronous, 
processors, and thus should compensate for the impres- 
sive computational complexity of the method. Note that, 
in practice, the solution may not be unique and depends 
on the “cooling” schedule. 

2 , in order to achieve convergence are very flex- x( l )  . . . 

VI. PRACTICAL PROBLEMS I N  COMPUTING 
HY PERPARAMETERS 

All methods described above require the knowledge of 
the value of the regularization parameter p ,  and more gen- 
erally, of all the hyperparameters defining the distance 
measures J ,  and J2:  noise variances, correlation parame- 
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ters of the object, and parameters of local energy func- 
tions. Let 8 denote the set of all hyperparameters. Esti- 
mation of e is the most delicate part of image 
reconstruction and restoration methods, and it must be ad- 
mitted that this problem is not properly solved yet. 

It is obvious that vector 8, as the object x ,  should be 
calculated from the observed data y .  When 8 contains only 
parameter p ,  the most intuitive and oldest idea [ 131, [ 161, 
[26], [28] is to consider p as a Lagrange multiplier in the 
equivalent problem 

f ( p ,  Y )  = arg minxExJ2(x, a,), 
subject to J ,  ( x ,  Po) I c. (6.1) 

The degree of regularization is set by the value of c which 
can be considered as a statistics whose probability distri- 
bution can be deduced from p (  y / x )  . Since c now fol- 
lows a known distribution, its value can be easily chosen, 
and a common choice is that of its expected value. For 
example, in the frequent case when J ,  ( x ,  Po) is a quad- 
ratic form, c follows a x 2  distribution with N degrees of 
freedom and c = N is often chosen. 

Such a choice has been reported to lead to overregular- 
ization of the solution. The residuals are given by [ yi - 
( A P ) i ] / a j ,  i = 1, 2 ,  * * * , N .  With P equal to the true 
x ,  these residuals would be a sample of N standard normal 
variables. But as P ( p ,  y )  is inevitably biased, the residual 
errors used in the computation of JI (x,  Po) do not exactly 
follow any known distribution. 

To overcome this difficulty, we can consider that dis- 
tances such as J ,  and J ,  are, in fact, measures of loss of 
the form J { P ( p,  y )  , x } . The expectation conditioned on 
the data 

defines an average risk which depends on p ,  and the choice 
of the value of p which minimizes this criterion is surely 
acceptable. Unfortunately, this average risk also depends 
on the actual object which is unknown! As this risk is not 
calculable, we can try to estimate it, and this is done by 
cross-validation methods in the case of quadratic J dis- 
tances [91], [96]-[97]. The basic principle is very simple, 
and consists of removing a datum yi and of predicting it 
with the help of a regularized solution computed from the 
remaining data. The value of p which ensures the best 
average prediction over all the removed data is retained. 
Although this criterion presents good asymptotic proper- 
ties and is currently used in one-dimensional problems, it 
seems to have been seldom used in image processing [90]. 

The two methods presented above are deterministic in 
nature, but it is obvious that if an a priori distribution 
could be attributed to x ,  a criterion depending on p alone 
could be obtained by averaging (6.2), which corresponds 
to a Bayes' risk. The main interest of a Bayesian inter- 
pretation of regularization probably lies at this level. In 
fact, we have seen in the previous section that, save in 
the very special case of an a priori Gaussian distribution, 
it is impossible to calculate explicitly the maximum a pos- 

teriori solution and that the solution has to be computed 
iteratively. The main benefit to be drawn from a Bayesian 
interpretation is essentially that of methodology. 

Another approach could be to estimate the hyperpara- 
meters and the object in the same way, by maximizing a 
joint a posteriori distribution. Since some of these quan- 
tities are random while others are deterministic, we may 
define a generalized likelihood function 

Y / O )  = P ( Y / X >  6) P ( X / O )  (6.3) 

(3, 8)  = arg max,,x.eEep(x, Y / o ) .  (6.4) 
Other functionals can be chosen (e.g., p ( x / y ,  e )  which 
is the a posteriori distribution of the object), but their 
evaluation generally involves computation of a normali- 
zation factor p (  y )  which is also a function of 8. This 
makes the estimation of 8 impracticable. On the other 
hand, p ( x ,  y / 8 )  is easier to compute. No convergence 
result can be established for x since the dimensions of the 
object and image grow accordingly. However, even 
though no such limitation applies to 8, the properties of 
this estimator have not been established yet. This is due 
to the complexity of the mathematical derivations in- 
volved in the general case. Some results [92] indicate that 
the MAP estimator does not always exhibit the desirable 
property of convergence, which makes its use questiona- 
ble. Alternative approaches have to be sought. 

The most commonly employed method consists of max- 
imizing a marginal likelihood which is obtained by inte- 
grating the object out of the problem: 

and maximize it over X and 8: 

P ( Y / 8 )  = j P ( Y / X ,  B ) P ( X / 8 )  h. (6.5) 

This can be considered as a special case of the EM algo- 
rithm which is a broadly applicable method for computing 
maximum likelihood estimates when the observations y 
are viewed as incomplete data [107]. The term "incom- 
plete data" implies the existence of two spaces X and Y 
and a mapping from X to Y.  The observed data y are a 
realization from Y and the corresponding x in X is not 
observed directly, but only indirectly through y = y ( x )  . 
The corresponding distributions p ( x / 8 )  and p (  y / 8 )  de- 
pend on parameters 8 that have to be estimated. The EM 
algorithm is an iterative process which consists of an ex- 
pectation ( E  ) step followed by a maximization ( M  ) step 
at each iteration. Assume that 8 ' " )  denotes the current 
value of 8 after n iterations of the algorithm. The next 
iteration can be described in two steps, as follows. 

E Step: Compute E{log p ( x / O ' " ' ) / y ,  e }  = 

M Step: Choose 8 ( " + ' )  = arg maxeEe Q ( e / e ( P ) ) .  
Equation (6.5) is the E step: conditional expectation 

given y and 8 = e ( " ) .  For the M step, we maximize this 
expectation or marginal log likelihood over 0. The cal- 
culation of the likelihood itself is simplified when the res- 
toration is made by a Kalman filter which performs a de- 
composition of the observed data into uncorrelated 

Q ( e ( " ) / e ) .  
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variables, the innovations. Nevertheless, the maximiza- 
tion of (6.5) with respect to 8 cannot be made explicitly 
and must be sought iteratively. 

In the case of Markovian models, the problem becomes 
more complicated since, as we saw before, it is incon- 
ceivable to calculate the exact likelihood. We then use a 
pseudolikelihood drawn from local conditional distribu- 
tions which are computable [80]-[83]: 

d Y / O )  = P ( Y / X >  0 )  s(x/e) (6.6) 
where q ( x / 8 )  is a product of local conditional distribu- 
tions: 

The maximization of the pseudolikelihood is performed 
by using an EM iterative algorithm, for example [81], 

(6 .8)  
and calculation of the expectation in this expression is 
carried out using a Gibbs sampler. 

Finally, we could also, in a fully Bayesian framework, 
attribute an a priori distribution to the hyperparameters 0 
and estimate them as the image x itself using an MAP 
technique. This solution was suggested recently for max- 
imum entropy methods, but it is still too soon to estimate 
its usefulness in these image restoration and reconstruc- 
tion problems. 

In general, regardless of the particular expression of J ,  
and J 2 ,  and whatever interpretation is adopted, the im- 
portant practical problem of the choice of regularization 
parameter p ,  and more generally of the hyperparameters 
8, remains open. 

arg maxeee E {  log q(  Y / O ( ~ ) ) }  e ( n + l )  = 

VII. CONCLUSIONS 
In the usual vision model, image restoration and recon- 

struction are low-level information processing tasks. Un- 
der the pressure of recent spectacular technological de- 
velopments that allow more and more complex data 
processing to be done, their traditional mathematical and 
statistical bases are being widened to rise toward higher 
information processing levels. 

In this rapid and inevitably superficial survey, we have 
tried to show that, in spite of their great diversity, image 
restoration and reconstruction methods have a common 
estimation structure which is not basically undermined by 
the recent appearance of methods based on Markov mod- 
eling. These methods are interesting, as they allow an im- 
provement in the description of an image, but they also 
present an impressive computational complexity. It thus 
becomes more necessary than ever to have at one’s dis- 
posal results of comparative studies of the performances 
of these different methods by using different models and 
different types of image. 

Computational and methodological complexity has to 
be balanced against the quality of results. Of course, this 
may depend on the later use of the processed image, but 
many papers report different restorations of the same stan- 

dard images with, indeed, few visual differences. It will 
be invaluable to carry out meaningful comparative studies 
of the performances of a variety of reconstruction and res- 
toration methods, using different regularization tech- 
niques on different types of images, to provide the user 
with objective elements of choice in a given practical sit- 
uation. 
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