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A Generalized Gaussian Image Model for 
Edge-Preserving MAP Estimation 

Charles Bouman, Member, ZEEE. 

Absfrucf- We present a Markov random field model which 
allows realistic edge modeling while providing stable maximum 
a posteriori MAP solutions. The proposed model, which we refer 
to as a generalized Gaussian Markov random field (GGMRF), is 
named for its similarity to the generalized Gaussian distribution 
used in robust detection and estimation. The model satisifies 
several desirable analytical and computational properties for 
MAP estimation, including continuous dependence of the estimate 
on the data, invariance of the character of solutions to scaling 
of data, and a solution which lies at the unique global mini- 
mum of the U posteriori log-likeihood function. The GGMRF is 
demonstrated to be useful for image reconstruction in low-dosage 
transmission tomography. 

I. INTRODUCTION 
ANY important problems in image processing and M computer vision require the estimation of an image 

or other 2D field, X ,  from noisy data Y .  For example, 
tomographic reconstruction and 2D depth estimation are two 
seemingly dissimilar problems which fit into this structure. 
When the data is of good quality and sufficient quantity, these 
problems may be solved well by straightforward deterministic 
inverse formulas. However, when data are sparse or noisy, 
direct inversion is usually excessively sensitive to noise. If 
the data is sufficiently sparse, the inverse problem will be 
underdetermine or ill-posed. In such cases, the result can be 
significantly improved by exploiting prior information about 
the behavior of X .  

Bayesian estimation is a statistical approach for incorpo- 
rating prior information through the choice of an a priori 
distribution for the random field X .  While many Bayesian 
estimation techniques exist, a common choice for image 
estimation problems is the maximum a posteriori (MAP) 
estimator. The MAP estimate has the appealing attribute that 
it yields the most likely image given the observed data. In 
addition, it results in an optimization problem which may be 
approached using a variety of established techniques. 

The specific choice of prior distribution for X is, of course, 
a critical component in MAP estimation. The Markov ran- 
dom field (MRF) has been applied widely during the recent 
past [1]-[4], due to its power to usefully represent many 
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image sources, and the local nature of the resulting estimation 
operations. A variety of distinct models exist within the 
class of MRF’s, depending on the choice of the potential 
functions. Each potential function characterizes the interactions 
among a local group of pixels by assigning a larger cost to 
configurations of pixels which are less likely to occur. We 
will restrict our attention to potential functions p(A(zi  - z j ) ) ,  

which act on pairs of pixels. The shape of p(A), where A is 
the difference between pixel values scaled by A, then indicates 
the attributes of our model for X .  

One of the more troublesome elements of applying MRF’s 
to image estimation is coping with edges. Because most 
potential functions penalize large differences in neighboring 
pixels, sharp edges are often discouraged. This is especially 
true for the Gaussian MRF, which penalizes the square of local 
pixel differences. Many approaches to ameliorate this effect 
have been introduced. Geman and Geman [2], incorporated a 
“line process” into their MRF to describe sharp discontinuities. 
Others limited the penalty of any local difference at some 
prescribed threshold [SI, [6], or created other potential func- 
tions which become flat at large magnitudes of their arguments 
[7 ] - [9 ] .  Since such functions are nonconvex, the entire cost 
function may be nonconvex, unless relatively little weight is 
applied to the prior distribution portion of the cost. If the 
cost is nonconvex, the global optimization required in MAP 
estimation cannot be exactly computed, and an approximate 
MAP estimate must be used. We also show a second important 
liability to using MRF’s with nonconvex potential functions: 
the MAP estimate may not be a continuous function of 
the input data. This means that the position of the X with 
globally minimal cost may undergo a large shift due to a 
small perturbation in Y .  Therefore, the MAP estimator with a 
nonconvex potential function can be an unstable and ill-posed 
inverse operation. 

Several researchers have proposed the use of convex po- 
tential functions. Stevenson and Delp [lo] used the convex 
Huber function [ll], which is quadratic for small values 
of A, and linear for large values. The point of transition 
between the quadratic and linear regions of the function is 
a predetermined threshold, T .  Green [12] and Lange [13] 
included the strict convexity criterion, also for the sake of 
computational tractability. Green’s choice of log cosh(A) 
has a shape similar to that of the Huber function. Lange 
also derived several other potential functions in [13], each 
satisfying convexity and several other desired properties. 

The restriction to convex potential functions makes the 
computation of the exact MAP estimate feasible, but the effect 
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of the above approaches in MAP estimation is dependent on 
the scaling of X and Y .  The transition threshold for the Huber 
function, for example, should be related to the magnitude of 
edges expected in X .  If this magnitude is unknown, or edges of 
widely varying magnitudes are expected, then the smoothing 
of these edges may be inconsistent. Similar difficulties hold 
for the other nonquadratic functions mentioned. 

In this paper, we introduce an MRF model for Bayesian 
estimation, which is intended to ameliorate both of the prob- 
lems discussed above. The general form of the potential 
function is /Alp, with 1 5 p 5 2. The resulting form of the 
probability density function for X is similar to the generalized 
Gaussian distribution commonly used as a noise model in 
robust detection and estimation [14]. Due to this similarity, 
we use the name generalized Gaussian Markov random field 
(GGMRF) to describe these images. The parameter p controls 
the cost of abrupt edges. When p = 1 sharp edges are no 
more costly than smooth edges, and when p = 2 the familiar 
Gaussian assumption holds. 

The log of the GGMRF has two important properties. It 
is convex, and it scales with the data. Convexity makes 
minimization efficient, and is sufficient to guarantee stable 
MAP estimation. The scaling property leads to a homogeneous 
MAP estimator when the observation noise has the generalized 
Gaussian distribution with a corresponding form. We also 
give the canonical form for all distributions which have the 
convexity and scaling properties. 

We briefly explore the connection between median filtering 
and MAP estimation using the GGMRF prior together with 
the generalized Gaussian noise model. An operation very 
similar to the recursive weighted median filter results as the 
local update for computation of MAP estimate when p = 1. 
However, it is shown that the local median filter updates do not 
converge to the global MAP estimate. This connection is of 
interest since median filters are a useful class of homogeneous 
edge preserving nonlinear filters for image processing. 

In the experimental section of this paper, we first present 
examples illustrating some of the properties above in one- 
dimensional functions. We then apply the GGMRF to the 
problem of image reconstruction from integral projections. 
Bayesian techniques have been applied to similar problems, 
but most previous assumptions for prior distributions have 
been Gaussian [15]-[17]. We consider the transmission to- 
mographic case, with low X-ray dosage, and attendant high 
photon counting noise. Both a synthetic phantom, and actual 
data from nondestructive testing experiments are included. 
Photon noise is especially problematic in projection rays 
passing through highly absorptive regions; in the limit these 
regions are effectively radio opaque, and present the equivalent 
of the hollow projection (a.k.a. “bagel”) problem. Reconstruc- 
tions using the convolution backprojection algorithm suffer 
from a trade-off between excessive blurring and noise artifacts. 
A similar trade-off, with better results, can be made in using 
a Gaussian MRF as a prior density on X .  The GGMRF, 
however, with smaller values of p ,  allows the formation of 
sharp edges, while more effectively suppressing the photon 
counting noise in the estimate. The success of the GGMRF in 
regularization of the tomographic reconstruction offers hope 

that it will be useful in many other image restoration and 
reconstruction problems. 

11. STATISTICAL FRAMEWORK 

We first define some basic notation. We will use uppercase 
letters for random quantities and lowercase letters for their 
deterministic realizations. A random field X will be defined 
on the set of N points S ,  and each pixel, X ,  for s E S ,  takes 
value in R. The neighbors of X ,  will be denoted by Xa,  
where ds c S. Further, the neighbors of each point must be 
chosen so that they have the property that V s , r  E S s $! 8s  
and r E 8s e s E dr. 

The maximum likelihood (ML) estimate of the image X 
from data Y is given by 

2 = argmaxp(y1z) X 

where p(y(z) is the conditional density of Y given X .  While 
the ML estimate accurately fits the data, it does not incorporate 
reasonable prior information about the image. In practice, 
this can produce excessive noise or nonuniqueness [18] of 
the result. Similar problems of underdetermined or ill-posed 
solutions occur in a wide variety of problems in motion 
estimation [19], surface reconstruction [20] and edge detection 

One approach to incorporating prior information is to adopt 
a Bayesian estimation approach such as maximum a posteriori 
(MAP) estimation. If we adopt g(z) as a prior distribution for 
the unknown image, then the MAP estimate is given by 

2 argmaxp(x(y) X 

= argmax(logp(y1z) E + logg(z)} 

= arg maxlogp(y, X x) (1) 

When the prior distribution of X is Gaussian, the log 
likelihood logg(z) will be a quadratic function of x.  If p(ylz) 
is also Gaussian, the MAP estimate corresponds to E { X I Y } ,  
and is therefore the minimum mean squared error estimate 
[22] .  When the prior distribution is not Gaussian, the MAP 
estimate is still optimal with respect to the zero/one loss 
function [22], but the appropriateness of this criterion in the 
general case is not clear [18]. However, MAP estimation is 
computationally direct and has experimentally been shown to 
work well in a variety of problems [1]-[4], [23]. 

A critical issue is the choice of prior distribution for X .  
We will use Markov random fields (MRF) since they restrict 
computation to be local but still include a very wide class 
of possible models. Gibbs distributions are used to explicitly 
write the distributions of MRF’s. A Gibbs distribution is any 
distribution which can be expressed in the form 

where Z is a normalizing constant, Vc( . )  is any function of 
a local group of points c, and C is the set of all such local 
groups. The key to the definition of the Gibbs distribution is 
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the specification of these local groups of points. A local set of 
points, c, is called a clique if V s ,  r E c, s, and r are neighbors. 
If Gibbs distributions are restricted to use functions of cliques 
induced by the neighborhood system 8.5,  the random field X 
will have the property that 
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This is the fundamental property of an MRF. In fact, the 
Hammersley-Clifford theorem states that if X has a strictly 
positive density function, then X is a MRF if and only if the 
distribution of X has the form of a Gibbs distribution [24], 
PI .  

111. EXISTING IMAGE MODELS 

A.  Gaussian Markov Random Fields 
A common choice for the prior model is a Gaussian Markov 

random field (GMRF) [15]-[17]. The distribution for a Gauss- 
ian random field has the form 

where B is a symmetric positive definite matrix, A is a 
constant, and xt is the transpose of 5. In order for this to 
correspond to a Gibbs distribution with neighborhood system 
ds, we also impose the constraint that Bsr = 0 when s dr  
and s # r. This distribution may then be rewritten to form 
the log likelihood 

+ constant 

where (L ,~ = CrES B,5r and b,, = -Bsr. Notice that the 
second sum is now over all distinct pairs of neighboring pixels. 
MAP estimation of X then results from minimization of the 
following cost function: 

While the GMRF prior has many analytical advantages, it 
generally results in estimates ? which are either excessively 
noisy or generally blurred. This is because the squared differ- 
ence of pixel values applies too high a penalty to edges that 
often occur in images. 

B. Nonconvex Log Prior Distributions 
Non-Gaussian MRF’s are interesting because they can po- 

tentially model both the edges and smooth regions of images. 
Initial approaches often used an additional unobserved random 
field called a line process which determines the location of 
edges [2], [26]. More recently, many approaches have focused 

p(A) = (min{ lAl, 0.5})2 
(a) 

0.8 Os9 t 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 

A = hlxS- X, I 
p(A) = Huber function 

( b) 
Fig. 1 .  Examples of functions used for p. p is a function of A, the scaled 
difference between neighboring pixel values. (a) A nonconvex cost function. 
(b) A convex cost function. 

on MRF’s with simpler Gibbs distributions of the general 
form 

logg(z) = - bsrp(Xlx, - z,l) + constant (3) 
{ s ,  I .  } E C  

where X is a scaling parameter, and p is a monotone increasing, 
but not convex function [7],  [SI, [5] ,  [6], [9], [12], [131, [271. 
A typical function used by Blake and Zisserman [SI is 

p ( A )  = min{lAl,T}2 

where T is a variable threshold parameter. This function is 
shown in Fig. l(a) for T = 0.5. Notice that the function 
is quadratic near zero, but the flat region beyond the value 
T allows sharp edges to form in the reconstructed image. 
Intuitively, if two pixels differ by a value greater than T/X, 
then it is likely that they lie on opposite sides of an edge, and 
therefore their values should not be required to be close. 
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Fig. 2. This figure illustrate how small changes in a nonconvex function can 
result in large changes in the location of the function's minimum value. 

For the purposes of modeling images, this distribution has 
some significant practical and theoretical disadvantages. Since 
the function is nonconvex it is generally impractical to globally 
minimize. The MAP estimate can only be approximated using 
a number of different techniques [2], [5], [6]. In fact, the 
solution achieved often depends substantially on the method 
used to perform the minimization. 

In addition to this computational issue, there is a disadvan- 
tage in the quality of reconstruction that results from such a 
nonconvex prior. The prior term p(A) in the cost functional 
does not increase with larger local pixel differences after 
the difference exceeds TIX. Therefore, any image edge of 
a given spatial configuration and of magnitude greater than 
this threshold incurs the same cost under this prior, and 
no preference is expressed among these edge magnitudes. 
Consequently, the MAP estimate may abruptly change as the 
magnitude of an edge in the input data Y increases from below 
the value T/X to above. This may lead to an unnatural quality 
in the reconstruction, in which reconstructed edges greater than 
T/X are sharp, yet those of lower magnitudes are smooth. 

Another undesirable quality in these reconstructions is due 
to the fact that the MAP estimate, 9, is not continuously 
dependent on the input, y [283. To illustrate this point consider 
the nonconvex functions shown in Fig. 2. Fig. 2(a) shows 
a function with two local minima at positions T I  and x2. 
Fig. 2(b) shows a small perturbation on the first function with 
the same two local minima. Notice that while the difference 
between the two functions is small, the difference between 
locations of the two global minima is large. 

The unstable behavior of the MAP estimate under the 
nonconvex prior of Blake and Zisserman is illustrated in 
Fig. 3. Fig. 3(a) shows two noisy pulses with amplitudes 4.2 
and 4.3 and additive white Gaussian noise of unit variance. 
Fig. 3(b) shows the two reconstructions of those pulses using 
the prior model 

49 

s=l 

min{51xs - .xs+ll. 1.75}2 + constant. 

A small perturbation in the signal causes two very different 
reconstructions. Intuitively, one reconstruction has determined 
the presence of an edge while the other has not. However, 
this type of behavior is unnatural in the reconstruction of 
continuous tone images. 

C. Convex Log Prior Distributions 

More recently, convex functions have also been considered 
for p( . )  [lo], [12], [13], [28]. Stevenson and Delp have 

-2b ij i o  i 5  io 25 i o  35 i o  45 40 
(a) 

UNSTABLE RECONSTRUCTIONS 

-1 t i 
-2 

0 5 10 15 20 25 30 35 40 45 50 

(b) 

Fig. 3. Unstable reconstruction of two noisy pulses. (a) Noisy square pulses 
with magnitudes 4.2 (#1) and 4.3 (#2) in the interval [2&29], and additive 
white Gaussian noise of unit variance. (b) Resulting MAP estimates using 
Blake and Zisserman function with T = 1.75, X = 5, and b, ,  = 1 for 
adjacent points. Optimization was performed using 10' iterations of simulated 
annealing. 

studied the use of an alternative convex energy function for the 
problem of surface reconstruction [lo]. They chose the Huber 
function first introduced in robust statistics [ l l ] .  

if [A(  5 T 
= { ,":+ 2TlA - 2' if [AI > T 

This function is shown in Fig. l(b) for T = 0.5. For values 
greater than T the linear region of this function also allows 
sharp edges, yet convexity makes the MAP estimate efficient 
to compute. 

In separate but related work, Green [12] employed a func- 
tion of the form 

(8 p ( A )  = 2T2 log cosh 

which produced useful Bayesian estimates of emission to- 
mograms, while providing the aforementioned computational 
advantages. This potential function is approximately quadratic 
for small A, and linear for large values, similar to the 
Huber function. Lange derived several other strictly convex 

1- T - - -  _. 
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potential functions in a study of convergence of the expectation 
maximization algorithm [13]. 

A disadvantage of these methods is that parameter choice 
for the potential functions requires knowledge of the edge 
magnitudes in the original images. Even if their values could 
be estimated accurately, it is not clear that a single value of, 
e.g., T can accurately describe edges in real images. In practice 
all edges in an image do not have a single size. 

IV. A STABLE SCALE INVARIANT APPROACH 
The conclusion of the previous sections is that it is desirable 

for the M A P  estimate to be stable, and not depend on an 
absolute parameter of scale such as T .  On first inspection, it 
may seem that these goals are incompatible with the require- 
ment of preserving image edges. However, many nonlinear 
operations such as median filters [29] and stack filters 1301 
have been developed which preserve edges without explicit 
prior knowledge of edge size. Since both of these nonlinear 
operations are homogeneous, any scaling of the input data 
results in a proportional scaling of the output image. Therefore, 
these edge preserving operations can not depend on any a 
priori knowledge of edge size. 

In the following two subsections, we give conditions which 
guarantee both stability and scale invariant behavior for the 
MAP estimate. 

a strictly convex function of x and a continuous function of 

Since in many physical problems - logp(y)z) is accurately 
modeled as a convex function of z, a strictly convex logg(x) 
will insure strict convexity of - logp(z, y) in z. Therefore, 
strict convexity of p (  . ) will generally insure stability of the 
MAP estimate when priors with the form of (3) are used. 
(In fact, simple convexity of p (  . )  may be sufficient to insure 
strict convexity of - logp(x, y).) 

(5, Y). 

B. Scale-Invariant MAP Estimation 

The objective of this section is to develop a prior model 
which does not depend on an explicit edge size parameter such 
as T .  To achieve this, we would like to find MAP estimators 
which are homogeneous operators. Specifically, scaling of the 
input y by any constant (Y should result in simple scaling of 
the resulting MAP estimator i by the same constant. The 
homogeneity property is insured if for all real constants N 
and for all inputs y 

arg maxlogp(cYy, X ax) = arg maxlogp(y, X x )  

Such an equality may be insured by requiring that 

A. Stable MAP Estimation 

its solution: (1) exists, (2) is unique, (3) depends cont~nuous~y 
on the data. Condition (3),  called stability, insures that small 

where P and y are functions of a and y. A reasonable method 

the likelihood of Y given X and the prior distribution have 
the form 

Hadamard originally defined a problem to be well posed if for assuring that (4) holds is to require that, for E IFt7 

perturbations in the data do not cause dramatic change in the 
solution. In Section 111-B, we showed that a typical nonconvex 
function for p( . )  did not result in a stable MAP estimator. 

The problem of regularizing ill-posed problems has been 
the subject of much research [18]-[21]. Tikhonov [31] has 
introduced methods for regularizing deterministic problems by 
introducing stabilizing functionals which play a role analogous 
to the log prior distribution of MAP estimation. In this work, 
Tikhonov also determined that these stabilizing functionals 
must meet certain conditions to guarantee that the resulting 
problem is well posed. In particular, the stabilizing function- 
als are required to be “quasi-monotone”. A quasi-monotone 
function is defined by Tikhonov to be one which contains 
no local minima other than the global minimum. Following 
the spirit of Tikhonov’s work, we prove in Appendix A the 
following theorem [32]: 

Theorem I :  Let f (.. .) be a continuous functional f : U x 
V + IR such that for all y E V f (., y) is strictly convex with 
a local minimum. Then 

These are the basic relations which we will use to enforce 
homogeneity in the MAP estimator. We will call functions 
such as p and g in (5) and (6) scalable due to the self-similar 
behavior of their respective logarithms. 

The form of the function logp(y(x) is usually determined 
by the physics of a problem. However, the restriction that it be 
scalable is not unreasonable. To see this, consider the random 
vector, 2, of independent and identically distributed random 
variables, Z,, with the generalized Gaussian distribution [ 141, 
P I  

(7) 

parameterized by q. When q = 2 the components of Z 
have a Gaussian distribution. When q = 1 they have a 

arg min f(x. y)  Laplacian distribution, and for 1 < q < 2 the distribution has 
intermediate behavior. This noise model is commonly used in 
robust statistical estimation since it captures the heavy-tailed 
behavior that is often exhibited by real noise distributions. If 
Y has the form 

X E U  

is a unique and continuous function of y. 
This theorem may be directly applied to MAP estima- 

tion of finite dimensional images by choosing f ( z , y )  = 
- l ogp(x ,  y). The MAP estimate is then guaranteed to be well 
posed (and therefore stable) by choosing - logp(z, y) to be Y = A X  + D-lZ  (8) 
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where A and D are matrices, then logp(y1x) is a scalable 
function according to (5) and is given by 

logp(y1x) = -IlD(Y - AX)lli +constant (9) 

where 1 1 .  1 I q  is the 1, norm. 
If, in addition to p(ylx), g(x) is scalable with the same 

constants a and p, then the MAP estimator will be homo- 
geneous. Also, we argued in Section 111-B that the logg(z) 
should be a strictly convex function in order to insure stability 
of the solution to perturbations of the data. Enforcing these 
two requirements leads to the following theorem, proved in 
Appendix B. 

Theorem 2: The function g : RN + R is a scalable density 
function having a convex function - log g(x) if and only if 

- logg(z) = l l z l l P  + c 

for some norm 1 1  . 1 I q  and constants p 2 1, and c. 
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C. Generalized Gaussian MRF 
Theorem 2 leaves available a wide variety of possible 

choices for g(x).  However, we propose a simple generalization 
of Gaussian MRF’s based on the concept of generalized 
Gaussian noise. This model has the functional form similar 
to (3),  but uses p(A) = lAJp, 

) logg(z) = - XP as lzs lp  + 1 bs,rIxs - xrIp 
{s,r lEC 

(10) 
L 

+ constant 

where 1 5 p 5 2, and X is a parameter which is inversely 
proportional to the scale of x. We call the class of random 
fields with this distribution generalized Gaussian Markov 
random fields (GGMRF) since this model is contained within 
the more general class of MRF’s and includes all Gaussian 
MRF’s when p = 2. We also note that Besag [34] suggested 
a model similar to the GGMRF model with p = 1 which he 
referred to as the “median pixel prior.”’ More recently, DeVore 
and Lucier have argued that the optimization problem resulting 
from the use of the GGMRF prior can be motivated based on 
approximation smoothness [45]. 

As in the case of the GMRF, not all values of the parameters 
a ,  and b,,r will lead to a consistent model. In fact, g(x) will be 
well defined only if - logg(x) is a strictly positive function of 
x. A sufficient condition for positive definiteness is that a ,  > 0 
and bs,r > 0. This condition also insures that - logg(z)  is 
convex. In practice, we may choose a ,  = 0, which results in 
an ill defined density. However, this is not a practical difficulty 
since the function logp(y1x) causes the MAP estimate to be 
unique. 

The choice of p is critical in determining the character of 
the model. Larger values of p discourage abrupt discontinuities 
while smaller values of p allow them. Fig. 4(a) shows the 
function p ( A )  = lA11.2. The derivative of p( . )  is also 

‘This approach modeled the unknown field S as the additive combination 
of the median pixel prior with an independent Gaussian MRF. The relative 
smoothness of the model was then controlled by the relative mixture of the 
Gaussian MRF and median pixel prior. 
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A = XIS- X, I 
= influence function 

(b) 
Fig. 4. (a) An example of the proposed scale invariant convex cost function 
when p = 1.2.  p is a function of A the difference between neighboring pixel 
values. (b) The derivative of p represents the attraction between two points 
separated by A. 

shown in Fig. 4(b). This function determines the tendency of 
neighboring pixels to be attracted and plays a role analogous 
to the influence function of robust statistics [ l l ] ,  [35]. 

The one-dimensional case with p = 1 provides insight into 
edge reconstruction. The prior distribution then has the form 

N-1 

logg(z) = -A ~z, - x,+11+ constant (11) 

As long as x is a monotone (increasing or decreasing) function, 
then 

s=l 

N - 1  

s=l 

Therefore, the total cost is simply the difference between the 
starting and ending values. This means that abrupt edges in the 
reconstruction have no greater cost than smooth edges. Fig. 5 



302 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 2, NO. 3, JULY 1993 

I I 

I I 

Fig. 5.  When p = 1, any monotone functions which are equal at the 
beginning and end must have the same total cost. Therefore, both the sharp 
edge and the smooth edge have the same cost. 

illustrates this fact and indicates that nonconvex functions are 
not required for the reconstruction of sharp edges. 

We can experimentally illustrate the properties of the 
GGMRF prior with p = 1 by computing the MAP estimate 
of a noisy pulse. Fig. 6(a) shows 6 noisy pulses of widely 
varying amplitudes. Each signal is formed using the same 
noise and pulse shape as in the previous example of Fig. 3(a). 
Fig. 6(b) shows the corresponding MAP estimates using the 
GMRF prior of (11) with X = 5. The solutions exhibit the 
continuous dependence on data guaranteed by Theorem 1. 
Note that although the prior term is not strictly convex when 
p = 1, the sum of the prior with - logp(y1x) for the Gaussian 
noise is a strictly convex function of x. 

Theorem 1 can also be used to show that the MAP solution 
under the GGMRF is a continuous function of p .  To see this 
consider the joint density of (x,y) given the parameter p .  
Since the logarithm of this function is strictly convex in x, 
and a continuous function of (x, y, p )  for p 2 1, the MAP 
estimate must be a continuous function of the parameter p .  
This property is illustrated in Fig. 7 which shows the MAP 
estimate for various p and fixed X = 5 .  The input signal is 
the same noisy pulse used in previous examples with a fixed 
amplitude of 4.0. The parameter p ranges from 1.01 to 2.0, 
with reconstructions varying in character from the smoothing 
of the Gaussian prior, to the relatively abrupt-edge estimate 
for p = 1.01. 

Let us assume that the observed distortion has the general- 
ized Gaussian noise form of (9) and the prior distribution is 
from a GGMRF. Then both g(x), and p(ylx) will be scalable. 
If in addition, p = q then the cr and /3 parameters for both 
distributions will be the same, and the MAP estimator will 
be a homogeneous operation. More generally, if we write the 
MAP estimate, 2, explicitly as a function of the input data, 9, 
and the prior scale parameter, X, it is easily shown that 

When p = q ,  the relation 2(ay. A) = cr?(y. A) holds for all 
cr, and the MAP estimator is homogeneous. When p # q, the 
MAP estimator is not homogeneous, since the distributions for 
the prior and observation noise no longer coincide. However, 
(12) indicates the qualitative behavior of the MAP estimate 
would not be expected to change as the input is scaled since 
the result is proportional to a MAP estimate using a different 
regularization constant, c x - q l p ~ .  

NOISY SIGNALS-VARYING AMPLITUDE 
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Fig. 6.  MAP estimates using GGMRF prior with p = 1, X = 5 .  (a) Noisy 
square pulses with amplitudes of 0, 1, 2, 3, 4, and 5.  Each contains additive 
white Gaussian noise of unit variance. (b) Resulting MAP estimates using 
GGMRF prior with p = 1, X = 5 ,  and b,, = 1 for adjacent points. 
Optimization was performed using lo4 full iterations of simulated annealing. 

methods are of fundamental importance for two reasons. 
First, they provide basic intuition for understanding MAP 
estimation using the GGMRF prior. Second, the minimization 
techniques connect the area of MAP estimation to the literature 
in weighted median filtering [29], [36], [37]. Since median 
filtering has been shown to be of broad practical importance 
in image filtering, we believe this suggests that methods based 
on the GGMRF prior can also be practically useful in a variety 
of image estimation applications. 

We shall adopt a simplified problem for illustrating the 
issues of minimization. Assume that Y is formed by adding 
white noise to X 

(13) Y = X + a Z  

where Z is defined in (7) and ~7 is a scale parameter (not equal 
to the standard deviation). We will also assume that the prior 
model is a homogeneous MRF (i.e., b S p r  = br-s  is used in 
place of b8,r) ,  and the coefficients n, = 0. The MAP estimate 

V. OPTIMIZATION TECHNIQUES 

In this section, we discuss the minimization techniques 
which we will use to compute the MAP estimator. These 
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Fig. 7. MAP estimates of square pulse of amplitude 4.0, using GGMRF prior 
with X = 5, and varying p .  Optimization was performed using 104iterations 
of simulated annealing. 

is then given by 

Since this cost function is convex for p ,  q 2 1, finding a global 
minimum will be computationally feasible. 

In general, (14) may be minimized using either global or 
local iterative techniques. Two examples of global iterative 
techniques are gradient descent and conjugate gradient [38]. 
Local minimization methods iteratively minimize the cost 
function at each pixel, xs, of x. Since X is a MRF, mini- 
mization of the cost function with respect to n:, results in the 
following simple local computation. 

This is equivalent to the local operation used in the method 
ICM proposed by Besag [3]. In fact, it is also closely related 
to a numerical algorithm called Gauss-Seidel (GS) which 
has long been used for solving partial differential equations 
[47]. The GS interpretation of (15) will be important to us 
because it has been shown [42], [43] that GS iterations have 
fast numerical convergence for the transmission tomography 
problem described in the following section. 

The discussion of minimization methods will be broken 
down into distinct cases depending on the values of p and 
q .  When p = q = 2 the well-known Gaussian case occurs. 
Here the reconstruction may be thought of as the best linear 
estimate with the resulting edge blurring and nonrobustness 
to noise. The local minimization operation reduces to a linear 

average of the observed value ys and the neighbors of 5, .  

A.  Optimization for p = q = 1 

When p = q = 1 the cost function is not strictly convex 
so Theorem 1 does not apply. However, this still represents 
an important limiting case as the distributions become heavy 
tailed. For p = q = 1 the cost function is a convex polytope 
in a high dimensional space. Along the edges of the polytope, 
the function is not differentiable. 

To illustrate the local updating equation of (15) we will first 
consider some special cases. If .qX*bT = 1, then the local 
minimization operation reduces to the median of the observed 
pixel value, ys, and the pixel’s neighbors 

9s  = median{ YS , z,, i xr, ’ ’ > xr, } 

where x,, , . . . xrr are the I neighbors of the pixel 2,. This 
replacement operation is similar to the recursive median filter 
except it uses the original data value in place of the previous 
value for x, in the median operation. This keeps the MAP 
estimate from drifting too far form the original data. 

In the most general case of arbitrary coefficients, the solu- 
tion of (15) with p = q = 1 is known as the weighted median. 
The weighted median is the value, 9, such that the total weight 
of pixels greater than 9 is as close as possible to the total 
weight of pixels less than 9. Since the weighted median has the 
flexibility to treat pixels differently as a function of position, it 
has attracted attention as a nonlinear filter for image processing 
[391, 1401. 

Median filters are known to be robust homogeneous filtering 
operations which preserve edges in practical image processing 
applications. So it is encouraging that they are similar to 
the local minimization operations of our MAP estimation 
problem. Surprisingly, however, MAP estimation and median 
filtering are actually quite distinct because the local operations 
generally do not converge to the global MAP estimate. This 
happens because the local operations become  tuck" on the 
edges of the nondifferentiable polytope. In fact, it is well 
known that the recursive median filter converges to a root 
signal (which is generally not constant) [36], [37]. 

Efficient numerical minimization for this case is a difficult 
problem which may depend on the specific application. How- 
ever, some general observations may be made. The global 
MAP estimate may be approximately computed for p = 1 
by alternating a complete pass of local minimization with a 
single iteration of a gradient-based method. Since the cost 
function is not differentiable, the gradient must be replaced 
by its generalization, the subgradient [48], which we choose 
according to 

1 x > o  
0 x = o .  

-1 x < o  dn: 

The efficiency of minimization can be further improved by 
updating larger groups of pixels of constant value [41]. This 

1 
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approach, which we refer to as segmentation based optimiza- 
tion, corresponds to moving along the discontinuous edges of 
the log likelihood function. Finally, multigrid [44] and wavelet 
[4S] techniques show promise for reliable and fast solution of 
this MAP optimization problem. 

B. Optimization for 1 < p , q  < 2 
When 1 < p ,  q < 2, the cost function is differentiable, and 

it may be easily shown that the iterative local minimization 
of (15) converges to the global MAP estimate. In this case, 
the global minimum is the only point for which the gradient is 
zero. This local operation is, of course, nonlinear. When p = q,  
it is also homogeneous (as is the entire MAP estimator). The 
operation of (15) has the form of a least powers M-estimator 
used in robust statistics [35], [46]. In practice, a value of 
q = 1.2 has been found to yield a good compromise between 
asymptotic efficiency and robustness for M-estimation in real 
data [35]. 

For low values of p and/or q ,  convergence is very slow, 
due to the nondifferentiability of the GMRF term in the limit 
as they approach 1. When p z 1 or q z 1, the numerical 
methods outlined in Section V-A may be used to accelerate 
convergence. 

Due to the physical nature of a problem, we may often 
have 1 < p # q < 2. In this case, the local operation 
for minimization is not homogeneous, but it does maintain 
a similar property, as described in Section IV-C. 

VI. STATISTICAL TOMOGRAPHIC RECONSTRUCTION 
In this section, we briefly describe the specific problem 

of statistical reconstruction of 2D cross-sections from inte- 
gral projections. This inversion problem has been approached 
within the Bayesian framework for both emission [16], [17], 
[7], [12] and transmission [42], [43] tomography. 

The 2-D Radon transform maps a function of two variables, 
which we denote by ~ ( ~ $ 1 .  s 2 ) ,  into a function indexed by (0,  t )  
according to 

x c c  

m(0. t )  = 1 .T(S1. s 2 )  
-m 

. S ( t  - s1 cos 0 - s 2  sin 0) d s l  d s 2  (16) 

where 6() is an impulse function. Fig. 8 illustrates the col- 
lection of projection data for a single value of 8. The value 
of m(8. t )  represents the integral of r ( s 1 ,  s 2 )  along the ray 
at orientation 0 + $, at a displacement t from the center of 
the field. 

In practice, reconstruction requires finite-dimensional rep- 
resentation of both the projection data, m, and the modeled 
image, r. The projections may be discretized by computing 
them for only a finite set of A 4  projection rays, {(O,t)}:LO. 
The zth projection is then written as m, = m(Q,,t,).  The 
Radon transform equations may now be written in the discrete 
form m = Ar where A is a sparse matrix whose (z.j)th 
entry indicates the contribution of modeled pixel J to the zth 
projection measurement. 

In transmission tomography the projections, m, are not mea- 
sured directly. Instead, raw data are in the form of the number 

4 ,  Y 

Fig. 8. Projection data for angle 8, resulting in the one-dimensional function 
p (  8. t ) .  

of photons, y,, detected after passing through an absorptive 
material. In [43], the following quadratic approximation is 
derived for the log likelihood of the photon counts y given 
the image 2: 

1 
2 

logp(vIz) z --(h - A ~ ) ~ D ~ ( r i z  - A X )  + c(y) (17) 

where mz and D are defined by 

fh = log(YT/&) 
D = diag{fi, 6,. . . , 6 1  

for input photon count IJT. 

While repeating the derivation of (17) is beyond the scope 
of this paper, general attributes of the approximation may 
be inferred from its structure. The matrix D more heavily 
weights errors corresponding to projections with large values 
of yz. These projections pass through less dense objects, and 
consequently have higher signal-to-noise ratio. In the limit 
of opaque projections where no photons pass through the 
material, the approximation simply applies no weight to the 
measurement. The expression of (17) is quite accurate for 
reasonable ranges of photon counts, and offers analytical 
advantages over the more precise Poisson distribution. 

In order to apply the MAP estimation techniques described 
above, we will require computationally efficient methods 
for implementing the minimization methods described in 
Section V. In fact, these methods have already been developed 
for the tomography problem in [42], [43], [41], [44]. A 
previous paper [43] describes how the GS update of (15) 
can be applied using the log likelihood function of (17). This 
work shows that the GS and gradient descent minimization 
methods require approximately equal amounts of computation 
per iteration through the data. However, when a Gaussian prior 
is used, the GS method is analytically shown to suppress high 
frequency error components more rapidly, while the gradient 
descent method suppresses low frequencies more rapidly. 

VII. EXPERIMENTAL RESULTS 
Under the approximation of the conditional log likelihood 

of the photon counts given in (17), we are restricted to 4 = 2 
for the present experimental work, and will show the character 
of the results' dependence on the choice of p in the GGMRF. 



305 BOUMAN AND SAUER: A GENERALIZED GAUSSIAN IMAGE MODEL FOR EDGE-PRESERVING MAP ESTIMATION 

Fig. 9. (a) Original phantom (left). (b) Convolution backprojection recon- 
struction in low photon dosage with 128 projections at each of 128 angles 
(right); all synthetic phantom images are presented at a resolution of 128 x 
128 pixels. 

The results presented here were achieved primarily using GS 
iterations [43], with pixel-by-pixel updates. For p FZ 1, the 
multigrid [44] and segmentation techniques [41] mentioned 
above substantially improved convergence. Convergence rates 
are discussed in detail in these previous papers. As mentioned 
in Section V, the GS iterations will in general not find the 
global minimum for p = 1, and will be slow in converging 
for other small values of p .  We cannot in general verify the 
precision of our results as MAP estimates, especially for small 
p .  However, we have made every effort, through large numbers 
of iterations where necessary, to assure that our results are very 
near the true MAP reconstructions. 

The synthetic test phantom, shown in Fig. 9(a), consists 
of two distinct densities, 0.22 cm-' and 0.48 cm-', both 
of which are within the range of human tissue in X-ray 
absorptivity. Increasing intensity in Fig. 9 represents higher 
absorptivity. The physical diameter is approximately 20 cm. 
Projections are collected using only y~ = 2000 photons per 
ray, far below typical clinical dosages, making the lighter 
regions nearly opaque to the X-rays. With these values for ~ J T  

and object composition, photon counting noise may dominate 
the corruption of the reconstruction if conventional techniques 
such as convolution backprojection (CBP) are used. The 
best (by visual inspection) CBP reconstruction resulted from 
relatively severe lowpass filtering of projection data before 
inversion, and can be seen in Fig. 9(b). 

This case is similar to the hollow projections problem, 
but note that our MAP reconstruction methods require no 
estimation of the dense regions' locations, or interpolation of 
projections. The algorithm can be applied directly to other 
limited data problems such as the limited-angle reconstruction. 

The GGMRF's used featured 8-pixel neighborhoods, with 
unity weighting of nearest horizontal and vertical neighbors, 
and 0.7 for diagonal neighbors. We present MAP estimates 
for X = 5 ,  10, and p = 2.0, 1.2, 1.05, 1 in Figs. 10 and 11. 
For the Gaussian prior, X = 10 is equivalent to a standard 
deviation for each pixel, given its neighbors, of 0.027 cm-l. 
The reconstruction using the Gaussian prior ( p  = 2) suffers 
from the smoothing of edges as a cost of noise suppression. 
Smaller values of X can sharpen object boundaries but at the 
expense of larger noise artifacts. 

Figs. 10(d) and l l (d)  show the results when a GGMRF prior 
is used with p = 1. Due to the property illustrated previously 

Fig. 10. Estimates with X = 5.0. (a) MAP estimate using Gaussian prior, 
1) = q = 2 (upper left). (b)-(d) MAP estimates using GGMRF, p = 1 .2 ,  
1.05, and 1.0, respectively. 

Fig. 11. Estimates with X = 10.0. (a) MAP estimate using Gaussian prior, 
p = q = 2 (upper left). (b)-(d) MAP estimates using GGMRF, 11 = 1.2, 
1.05, and 1.0, respectively. 

in Fig. 5 ,  edges are allowed to form freely in this image, 
and boundary definition in these is appreciably higher than 
the other examples. The influence function of the absolute 
value prior does not fall to zero in the neighborhood of the 
origin, which helps suppress the noise in these estimates much 
more effectively than the Gaussian model. The other values 
of p yield intermediate behavior, as predicted by continuity 
property in p mentioned earlier. The value of p = 1.2, as 
suggested by Rey [35], produces an improved reconstruction, 
with limited edge smoothing, but very good noise artifact 
suppression. Reconstructions with p = 1.05 have nearly the 
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Fig. 13. CBP reconstruction of concrete block from 1 5  x 313 projections. 
Resolution is 311 x 311 pixels. 

Error Histogram with p=l 
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same effect on noise as p = 1.0 but produce slightly softer 
edges. 

The GGMRF MAP estimate with small values of p has 
substantially lower mean-squared error than the CBP image, 
or the MAP estimate with the Gaussian prior. But because 
the mean-squared error tends to be dominated by pixels at the 
edges of the high intensity regions, we have found it  to be 
a misleading measure of performance. Alternatively, Fig. 12 
shows a histogram of the absolute error in the reconstructed 
images for p = 1 and p = 2 ,  and X = 10. The pulses at the 
far right edge of each plot are the sum of all absolute errors 
above 0.05. Note the much greater concentration of errors at 
the lower magnitudes for the case p = 1. For phantoms with 
substantial constant-valued regions such as our example, error 
values may tend to cluster in magnitude with p = 1. The two 
large values in the p = 1 histogram on either side of the value 
0.02 represent the errors from the two larger dense regions 
of the phantom, which are reproduced as nearly constant. As 
illustrated in Fig. 5, it is only the total local rise in a function 
which is penalized by this prior. The dense disks are therefore 
attenuated in amplitude inversely to their border lengths. 

Many of the realistic settings for the tomographic problem 
at hand arise in nondestructive evaluation. One such example 
is shown in Figs. 13 and 14. The subject is a block of concrete, 
20 cm on each side, with four steel reinforcing rods. The data 
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for this case was collected by Lawrence Livermore National 
Laboratories, using a first-generation gamma-ray scanner, with 
an 19*Iridium source. Such a scanner effectively removes many 
scattering artifacts, but requires relatively long exposure to 
accumulate sufficient photon counts for reasonable signal-to- 
noise ratio. The CBP reconstruction of Fig. 13 is therefore 
degraded by noise artifacts somewhat similar to those in the 
previous example. 

The photon dosage, Y T ~ ,  is not available for this data. 
Since the weighting matrix D of (17) is proportional to 
YT, this represents an unknown scaling factor for the data 
component of the log posterior density function. Therefore, 
we cannot make a useful direct comparison across p of equal 
values of A, as with the synthetic phantom. But the form 
of the optimization for a given p is defined entirely by the 
ratio yT/AP, and we present these results using this ratio 
and p as the parameters. Reconstructions for p = 2.0 and 
p = 1.0 appear in Fig. 14, with the chosen p = 2.0 estimate 
qualitatively the best across a wide range of yT/A2. As in the 
previous example, Fig. 14(a) suffers from the tradeoff between 
noise suppression and smoothing. Figs. 14(b)-(d) illustrate 
the GGMRF estimates under the absolute value prior with 
yT/X ranging from 4 x lo4 to 4 x lo2. Because we have no 
original image of this cross section, we show MAP estimates 
over two orders of magnitude of YT/A. These estimates range 
from the apparently under-weighted prior of Fig. 14(b), to 
the excessively smoothed results in Fig. 14(d). We propose 
that Fig. 14(c) represents a useful approximation, with good 
retention of structural detail. Other examples of similar data 
are currently under study. 

VIII. CONCLUSION 

The GGMRF has demonstrated analytical properties and 
experimental results which offer promise for applications in 
many problems of image estimation. In particular, the GGMRF 
prior leads to a MAP estimator which may be uniquely 
computed. Moreover, when 1 < p 5 2 ,  this MAP estimator is 
guaranteed to be a continuous function of the input data. For 
any problem in which the noise parameter q equals the prior 
parameter p ,  the MAP estimator will be invariant to scaling 
of the data. This means that edge magnitudes need not be 
predetermined. When p # q ,  variations in the data scale are 
equivalent to variations in the signal-to-noise ratio, aqXP, used 
in the MAP estimate. 

The computed tomography simulations presented here have 
dealt with materials expected to have sharp transitions between 
densities. The suitability of the GGMRF with small values 
of p to more smoothly varying images is, as yet, unclear. 
However, it is promising that median filters, which have been 
successfully applied in image processing, are closely related to 
MAP estimation with the GGMRF prior. As noted earlier, the 
Bayesian approach has the advantage of retaining the original 
data in its recursions. 

The very slow convergence of the MAP estimate with 
small p is an impediment to the efficient application of these 
techniques. A major effort of our coming research will be 
directed toward speeding the MAP estimation process. 
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Fig. 14. MAP estimates of concrete block with (a) p = 2 and y r /X2  = 8 x l o3 .  (b)-(d) p = 1 with y r / X  = 4 X lo4, 4 X lo3,  and 4 X l o 2 ,  respectively. 
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APPENDIX A 

Our objective in this appendix is to prove Theorem 1 
by proving two lemmas which directly imply it. We first 
modify Tikhonov’s original definitions slightly and define the 
following. 

Definition I :  A local minimum of a function is any point 
which is the minimum on some local open neighborhood of the 
point. 

Definition 2: The functional h : U --f IR is called quasi- 
monotonic if h( . ) has a unique global minimum, h(:c,), at the 
point x, E U, h( . ) contains no other local minima, and there 
exists a number b > h(z , )  such that {x E U : h ( x )  5 b }  is 

Proof of Lemma I :  We will prove this lemma for f (.. .) 
defined on any general metric space, U x V. The appropriate 
induced metrjcs on U and V will be denoted by du(x,5) 
and d,(y, 5) respectively. This is equivalent to 112 - 211 and 
( )y  - yll when U and V are vector spaces. 

Choose any y E V. By assumption, there is a unique global 
minimum. 

5; = arg min f(x, r/) 
X E C  

c = f (? .y)  

Our objective is then to show that for any 
6 > 0, so that for all y with d,(y,?j) < 6 

> 0, there is a 

argmin f (x, 5) E E 
X E C  

where 

E = {x : du(x,2) < € }  . 
compact. 

IR such that for all y E V f (.. y) is quasimonotonic then 

By assumption, there exists a b > 0 such that Lemma I :  Let f (.. .) be a continuous functional f : U x V 4 

Ai = {X E U :  f ( z . y )  5 b + c }  

is a compact set. If we define the sequence of sets arg rnin f(.x. y )  
X E C  

is a continuous function of y. A ,  = { : E  E U : f(x. y) 5 b / n  + c }  
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then each A, contains h and must be compact since it is a 
closed subset of A l .  If denotes the closed set given by the 
complement of &, then 

0, = A , n Z  
is a sequence of compact sets none of which contain 2.  

We will next show that for some N ,  AN c E or equivalently 
0.v is empty. To show this, assume that 0, is not empty for 
any n. Since 0 1  is compact, there is a sequence of points, 
x, E 0, c 01, with a subsequence, x,, that converges in 
01. Since f ( . .  y) is continuous and x, E A,, the limit of 
this subsequence must also be a global minimum of f ( . , g ) .  
This contradicts the assumption that there is a unique global 
minimum to the function f ( . ,  y). 

Define the following three subsets of A N .  

A s  = { X  E U : f ( x , g )  < b/N + C )  

I = the interior points of AN 
B = the boundary points of AN 

Then by the continuity of f ( . , g ) ,  it may be shown that 
A, c I. Therefore, 

AN - A x  3 AN - I  = B 

This implies that for all x E B,  f ( x ,  y) = b/N + c. 
Since f ( . ,  .) is a continuous function, it is uniformly con- 

tinuous on any compact set. Therefore, there exists a 6 > 0 
such that for all 6, with d,(y, y) < 6 

We will use this fact to show that for any choice of y, with 
d,(y. j j )  < S the global minimum of f ( . ,  5) is still a member 
of All’ c E .  Since AN is compact and f(.,y) is continuous, 
f ( . .  1J) must take on its minimum value at some point, 2 E AN. 
If we can show that the point 5 is in the interior of AN,  then 
it must be the global minimum since it is a local minimum 
and f ( . .  e) is assumed to have no local minima other than the 
global minimum. 

Using the uniform continuity property of (18), we know that 
for all boundary points z E B 

3b 
4 N  f ( x ,  5) 2 - + c 

and at the point i 

Therefore, f ( . . j j )  is less at the point i than at any point on 
the boundary of AN.  Since there is at least one point in the 
interior of A,\, which is less than any point on the boundary, 
the minimum of f ( . . j j )  must fall on the interior of A N .  

Lemma 2: Any strictly convex function f : RN --f R with a 
local minimum is quasi-monotonic. 

Proof of Lemma 2: Strict convexity implies that at most 
one local minimum of f exists. Without loss of generality, 
assume the minimum occurs at x = 0, and the minimum 
value is f (0) = 0. 

In order to show that C = { x  E RN : f ( x )  5 b }  is com- 
pact for any b > 0, we invoke the Heine-Bore1 Theorem, 
which states that in RN, every closed and bounded set is 
compact. 

Convexity implies continuity of f .  Since the mapping f : 
RN + IR is continuous, f - ’ ( S )  E RN is closed for every 
closed set S in R. Therefore, C = f - ’ ( (  -CO, b] )  is a closed 
set. 

By definition of the unique local minimum, there is an 
N-ball, B = { x  : 11z(( 5 l}, about 0 such that for z # 0 
with x E B, f ( x )  > 0. Given that f is continuous, the latter 
inequality holds on the surface of the ball, D = { x  : I(x11 = l}, 
a compact set. The continuous function f must attain a 
minimum in D, and we denote any point at which the 
minimum occurs as x,. If we choose b = f(x,) > 0, then 
C c B and C is compact. To see this assume that x, E C, 
but x, B. Then defining X = A, we have 

Xf(x0) + (1 - X ) f ( O )  > f(Xxo) = b 

and this implies the contradiction f(x,) > b. 

APPENDIX B 
DeJinition 3: A strictly positive function g(x) is called scal- 

able if for each constant Q: E IR, there exist two constants p 
and y so that for almost every x 

logg(az) = Plogg(x) + 7 .  

Proof of Theorem 2: (e) We must prove that (a) 
exp{-llxllP} defines a proper density function, (b) (lx)Ip is 
convex, and (c) scalable. 

a) Any norm has the property that in a finite dimensional 
space 

Therefore, this forms a proper probability distribution. 

1 . I P  to show that llxllp is convex. For all 0 < X < 1 
b) We may use the triangle inequality and the convexity of 

IPS  + (1 - 4 Y I I P  I (Xllxll + (1 - X)llYll)” 
I XIIx1JP + (1 - X)llYllP. 

(21) 
(22) 

c) X is scalable since 

logg(az)  = -1IQ:xIJP + c 
= -~Q:~”{logg(x)} - (1 - IQI”).. 

(+) We must determine that - logg(x) = (f(x))”fconstant 
where f has the properties (a) for all c 2 0, f ( c x )  = c f ( x ) ,  
(b) for all x, f ( x )  = 0 implies z = B where 0 is the zero 
vector, and (c) f ( x )  obeys the triangle inequality. 

a) Define the function C ( x )  = -logg(x). Since G(x)  is 
convex, it is a continuous function of x, and C(B) exits where 
0 is the vector of zeros. By assumption we have that for any 
Q there are p and y so that 

q a x )  = p q x )  - y . 

r- 
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If we define the new function, U(.) = G(x)  - .(e) then for 
all z 

u ( m )  = /?U(.). 

Choose any cy > 1. Since g ( x )  must integrate to 1, there must 
be an z such that U(.) = U ,  > 0. Consider the three points 
~ ( 0 2 )  = 0, U(.) = U ,  and u(ax )  = Pu,. Convexity implies 
that P 2 CY. Therefore, we can find a p 2 1 so that p = a P .  

Define f ( z )  = (u (x ) ) ’ / ” .  Then for all integers n 2 1, 
f ( a n z )  = o” f ( z ) .  Choose 6 = cy1/”, then similarly 

u(CY5) = u(6”x) = Pa“u(x) 

where P6 is chosen so that u(Sz) = / ? ~ u ( z ) .  From these 
relationships, we may infer that 

Since m and n are arbitrary integers and f is continuous, we 
have that for all c 2 1, f(u) = c f ( x ) .  Let 0 < c < 1, then 
( l /c)f(cx)  = f ( z ) ,  and therefore f ( c z )  = c f ( x ) .  Therefore, 
we have that for all c 2 0, f ( c x )  = c f ( x ) .  

b) Assume that there exists f (z,)  = 0 but x, # 8. For all y 

where the first inequality is by convexity, and the second by 
the fact that f ( 2 x o )  = 0. By continuity of f ,  we may define 
the set 

such that for all g E A,,  ~ ( y )  < 1. Using the above inequality, 
we have that 

c) first choose any x and y so that f ( z )  = f (y )  = c # 0. 
Then for any 0 < A < 1 

f(Xx + (1 - X)y) = cf ( tx + Vy) 

= c (Xu(x /c )  + (1 - X)u(y/c))P 

= c(-U(x)  x + ~ - x)U(y))p 

= c  

= xf(.) + (1 - X)f(Y). 

Now choose any z, y # 0, then f ( z ) ,  f (y )  # 0. Define 

and also define x‘ = x / A  and y‘ = y/(1 - A).  Then since 
f(d) = f(y’), we may apply the above result to yield the 
triangle inequality for f (  . ) 

f ( z  + y) = f (xx ’  + (1 - X)Y’) 

2 Af(.’) + (1 - W Y ’ )  
= f(.) + f (Y).  
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