3D iterative helical targeted CT. Application to contrast-enhanced vascular imaging

D. Gendron[†], Y. Goussard[†], B. Hamelin[†], J.-P. Dussault[‡], G. Beaudoin^{*}, G. Cloutier^{*}, C. Chartrand-Lefebvre^{*}, S. Hadjadj^{*}, and G. Soulez^{*}

[†] Institut de génie biomédical, École Polytechnique de Montréal, Montréal, Québec, Canada

[‡] Département d'informatique, Université de Sherbrooke, Sherbrooke, Québec, Canada

* Centre de recherche du Centre hospitalier de l'Université de Montréal, Hôpital Notre-Dame, Montréal, Québec, Canada

Introduction

Clinical problem

- Patient follow-up after stent implantation (in-stent restenosis, precise assessment of lumen size)
- Use of 3D helical CT angiography as minimally invasive alternative to IVUS & conventional angiography

Major challenges

- High accuracy required for clinical applications
- Presence of highly attenuating objects (metal mesh of the stent)
- Size of the problem, volume of computations

Contribution

- Clinical size data, geometry and acquisition modes
- Implementation on PC-type computers
- High accuracy

Key features

- Algebraic CT reconstruction method
- Parsimonious representation of 3D helical projection operator
- Targeted reconstruction framework
- Efficient optimization solver

Polyenergetic data formation model

Method

Monoenergetic 3D CT reconstruction

• Data formation model: discretized approximation of Beer-Lambert law

 $y = A\mu + b$

y: projections; A: projection matrix; μ: unknown object; b: noise
Optimization problem:

$$\hat{\mu} = \operatorname{arg\,min}_{\mu} \quad \frac{1}{2} \| \boldsymbol{y} - \boldsymbol{A} \mu \|_{\boldsymbol{\Sigma}}^{2} + \lambda R(\mu)$$

subject to $\mu \ge 0$.

λR(μ): convex edge-preserving regularization term
 Very large, convex nonquadratic optimization problem

Targeted reconstruction

• Background / ROI decomposition

 $\boldsymbol{y} = \boldsymbol{A}^{bg} \boldsymbol{\mu}^{bg} + \boldsymbol{A}^{roi} \boldsymbol{\mu}^{roi} + \boldsymbol{b}$

• Simple approach: subtraction of contribution of coarse or previously es-

Projection operator

- Distance-driven: inadequate memory / computation trade-off
- Proposed representation
 - Thin-ray-driven operator
 - In 2D: efficient coding of segment end-points
 - 3D, helical MDCT extension
 - Efficient left and right matrix-vector products
 - Multiple thin rays per detector

Polyenergetic reconstruction

- Polyenergetic data formation model required in the presence of strongly attenuating objects
- Principle
 - Alvarez-Macovski decomposition: $\mu_e = \Phi(e)\phi + \Theta(e)\theta$
 - Heuristic analytic relationships from selected materials:

timated background (*e.g.*, FBP or scanner reconstruction) $\mathbf{y}^{\text{roi}} \stackrel{\text{def}}{=} \mathbf{y} - \mathbf{A}^{\text{bg}} \tilde{\mu}^{\text{bg}} = \mathbf{A}^{\text{roi}} \mu^{\text{roi}} + \tilde{\mathbf{b}}$

Optimization technique

- Characteristics of optimization problem: large, nonquadratic, convex
- Need for convergence control (accuracy). Rules out OS-type techniques
- Comparison of general purpose and specific convergent solvers
 Best all-around performance: L-BFGS-B

 $\phi = \phi(\mu_{70})$; $\theta = \theta(\mu_{70})$

• Parsimonious parameterization of the source spectrum

- Major hurdles
 - Complexity and difficulty of the optimization problem (non convexity, numerical conditioning, etc.)
 - Two projection / backprojection operations per iteration

Experimental results

Experimental setup

- Clinical MDCT: Siemens Somatom Sensation 16
- Acquisition protocol: 16 arrays, 672 detectors, 1160 views per rotation, angular FFS
- Physical multimodality vascular phantoms

Targeted reconstruction

Background: scanner reconstruction

Results

Computation times	, $128 \times 128 \times 94$ ROI	

	Monoenergetic	Polyenergetic
Total time	7 h 22 min	10 h 13 min
# iterations	96	61
# (proj. backproj.)	99	126

Quality: randomized statistical study

Better assessment of shape and size by iterative reconstruction
 Statistically significant advantage for polyenergetic reconstruction

• ROI: $128 \times 128 \times \approx 100$

Conclusion

- Improved accuracy, robustness to the presence of metallic objects
- Niche applications already possible (vascular and orthopedic imaging)
- Further improvements in progress for wider applicability

Acknowledgements

