	1 / 38	Motivati	on 2 / 38
Motivation Bases Voigt / Reuss Eshelby Diluée AC MT Performances Viscoélasticité	MEC6418 - NOTES DE COURS Homogénéisation analytique Par: Martin Lévesque professeur du département de génie mécanique	 Motivation Bases Voigt / Reuss Eshelby Diluée AC MT Performances Viscoélasticité 	$ \begin{array}{l} \rightarrow & \text{Le but de la démarche d'homogénéisation est de prédire le comportement mécanique d'un matériau hétérogène en utilisant des informations reliées à la microstructure. \\ \rightarrow & \text{Dans ce qui suit, } \sigma, \varepsilon \text{ et } C \text{ font référence aux contraintes, déformations et propriétés mécaniques des matériaux constituant le matériau hétérogènes (fibre, matrice, grains, etc.) \\ \rightarrow & \Sigma, E \text{ et } \tilde{C} font référence aux contraintes, déformations et propriétés mécaniques du matériau hétérogène considéré comme homogène pour fins de calculs. \\ \hline & & & & & \\ \hline & & & & & \\ \hline & & & &$
Motivati	on 3 / 38	Bases de	e l'homogénéisation 4 / 38
 Motivation Bases Voigt / Reuss Eshelby Diluée AC MT Performances Viscoélasticité 	 → On va donc chercher des modèles mathématiques qui permettent d'exprimer 	Motivation ▷ Bases Voigt / Reuss Eshelby Diluée AC MT Performances Viscoélasticité	 → L'homogénéisation se fait en suivant trois grandes étapes: Représentation Localisation Homogénéisation Représentation Homogénéisation Représentation Homogénéisation A Cette étape est la plus importante. Elle consiste en la description mathématique du matériau hétérogène. On décrira le comportement, la forme, la fraction volumique de chacune des phases. → De plus, outre les cas des structures périodiques, comme les tissus, on devra introduire des statistiques pour se représenter un matériau composé de plusieurs phases distribuées. → Dans la majeure partie des cas, il ne sera pas possible de fournir une description complète et exacte du matériau. Il faudra donc introduire des hypothèses simplificatrices.

Bases de l'homogénéisation

Localisation

Motivation	$\rightarrow~$ Une fois la définition du problème d'homogénéisation à résoudre
/ Dases	établie, on doit arriver à obtenir un lien entre les quantités à
voigt / Reuss	etablie, on doit arriver a obtenir un nen entre les quantités a
Eshelby	l'échelle microscopique ($\sigma_{\rm c}$) et colles à l'échelle
Diluée	rechene microscopique (0, 2) et cenes à rechene
AC	macroscopique (Σ, \mathbf{E}) .
МТ	

Performances Viscoélasticité

Supposons qu'un corps soit soumis à une contrainte homogène Σ sur ses bords. Alors, le corps sera soumis à des tractions

 $t = \Sigma \cdot n$ sur toute sa surface δV . Alors, on peut montrer que:

$$\langle \boldsymbol{\sigma} \rangle \equiv \frac{1}{V} \int_{V} \boldsymbol{\sigma}(\boldsymbol{x}) \mathrm{d}V = \boldsymbol{\Sigma}$$
 (2)

5 / 38

AC

мт

 $\rightarrow~$ Si un corps est soumis à une déformation ${\bf E}$ homogène sur son contour. on aura le résultat suivant:

$$\langle \boldsymbol{\varepsilon} \rangle \equiv \frac{1}{V} \int_{V} \boldsymbol{\varepsilon}(\boldsymbol{x}) \mathrm{d}V = \mathbf{E}$$
 (3)

(voir démonstrations au tableau)

Bases de	e l'homogénéisation 7 / 38	Bases d	le l'homogénéisation	8 / 38
Motivation ▷ Bases Voigt / Reuss Eshelby Diluée AC MT Performances Viscoélasticité	 Homogénéisation → L'étape d'homogénéisation a pour objectif d'établir le lien entre Σ et E. Pour ce faire, nous allons introduire le concept de <i>phase</i>. → Une phase va être définie comme un élément du matériau hétérogène qui a un ensemble de caractéristiques unique. Par exemple, une phase pourrait être toutes les fibres faites d'un matériau λ ayant une certaine orientation θ₁ tandis qu'une autre phase pourrait être toutes les fibres fabriquées du même 	Motivation ▷ Bases Voigt / Reuss Eshelby Diluée AC MT Performances Viscoélasticité	$\begin{array}{l} \displaystyle \frac{Homog\acute{e}n\acute{e}isation}{\rightarrow} & Avec \ les \ r\acute{e}sultats \ de \ l'\acute{e}tape \ de \ localisation, \ on \ aura \ que \\ \displaystyle \mathbf{\Sigma} = c_r \ \langle \boldsymbol{\sigma}(\boldsymbol{x}) \rangle_r \\ & = c_r \ \langle \mathbf{C}(\boldsymbol{x}) : \boldsymbol{\varepsilon}(\boldsymbol{x}) \rangle_r (lois \ de \ comportement \ locales \\ & = c_r \mathbf{C}_r : \ \langle \mathbf{A}(\boldsymbol{x}) : \mathbf{E} \rangle_r (localisation) \\ & = c_r \mathbf{C}_r : \ \langle \mathbf{A}(\boldsymbol{x}) \rangle_r : \mathbf{E} \\ & = \mathbf{\tilde{C}} : \mathbf{E} \end{array}$.) (6a)
	$\begin{array}{l} \text{matériau } \lambda \text{ mais qui ont une orientation } \theta_2. \\ \rightarrow \text{Alors, si on reprend l'équation de moyenne volumique des contraintes ou des déformations, on aura:} \\ \mathbf{\Sigma} = \langle \boldsymbol{\sigma}(\boldsymbol{x}) \rangle = c_r \langle \boldsymbol{\sigma}(\boldsymbol{x}) \rangle_r \\ \mathbf{E} = \langle \boldsymbol{\varepsilon}(\boldsymbol{x}) \rangle = c_r \langle \boldsymbol{\varepsilon}(\boldsymbol{x}) \rangle_r \end{array} \tag{5}$		$\begin{split} \mathbf{E} &= c_r \left\langle \boldsymbol{\varepsilon}(\boldsymbol{x}) \right\rangle_r \\ &= c_r \left\langle \mathbf{S}(\boldsymbol{x}) : \boldsymbol{\sigma}(\boldsymbol{x}) \right\rangle_r \text{(lois de comportement locales} \\ &= c_r \mathbf{S}_r : \left\langle \mathbf{B}(\boldsymbol{x}) : \boldsymbol{\Sigma} \right\rangle_r \text{(localisation)} \\ &= c_r \mathbf{S}_r : \left\langle \mathbf{B}(\boldsymbol{x}) \right\rangle_r : \boldsymbol{\Sigma} \\ &\tilde{\boldsymbol{\sigma}} &= \boldsymbol{\sigma}_r \mathbf{S}_r : \left\langle \mathbf{B}(\boldsymbol{x}) \right\rangle_r : \boldsymbol{\Sigma} \end{split}$) (6b)

où c_r est la fraction volumique de la phase r et où $<\cdot >_r$ indique que la moyenne volumique a été effectuée sur la phase

Motivation L'étape de localisation vise principalement à définir deux \rightarrow ▷ Bases tenseurs: Voigt / Reuss Eshelby - Le tenseur de localisation des déformations A(x)Diluée - Le tenseur de concentration des contraintes $\mathbf{B}(x)$ Performances qui permettent de faire les liens suivants: Viscoélasticité $\boldsymbol{\varepsilon}(\boldsymbol{x}) = \mathbf{A}(\boldsymbol{x}) : \mathbf{E}$ (4) $\sigma(x) = \mathbf{B}(x) : \Sigma$ \rightarrow Compte tenu de la complexité du problème, on n'arrivera jamais à définir de manière exacte les tenseurs A(x) et B(x). \rightarrow Ce sont les hypothèses que l'on va introduire qui nous permettront de définir ces tenseurs. Chaque modèle d'homogénéisation vise à définir ces deux tenseurs. $= \mathbf{S} : \boldsymbol{\Sigma}$ où on a supposé des propriétés mécaniques uniformes par phase.

6 / 38

Bases de l'homogénéisation

Localisation - suite

Bases de l'homogénéisation

9 / 38

Homogénéisation

- Les tenseurs A et B ont une propriété fort intéressante que l'on exploitera par la suite. Voigt / Reuss
 - Imaginons que le matériau hétérogène est soumis à E. On aura \rightarrow donc que:

$$\boldsymbol{\varepsilon}(\boldsymbol{x}) = \mathbf{A}(\boldsymbol{x}) : \mathbf{E}$$
 (7)

En utilisant le fait que $\langle \boldsymbol{\varepsilon}(\boldsymbol{x}) \rangle = \mathbf{E}$, on aura: \rightarrow

$$\langle \boldsymbol{\varepsilon}(\boldsymbol{x}) \rangle = \langle \mathbf{A}(\boldsymbol{x}) : \mathbf{E} \rangle = \langle \mathbf{A}(\boldsymbol{x}) \rangle : \mathbf{E}$$
 (8)

d'où l'on tirera que:

$$\langle \mathbf{A}(oldsymbol{x})
angle = \mathbf{I}$$

On peut appliquer un raisonnement similaire pour B qui nous \rightarrow conduira à:

$$\langle \mathbf{B}(\boldsymbol{x}) \rangle = \mathbf{I}$$
 (10)

Estimations de Voigt et Reuss

11 / 38

(9)

 \rightarrow Introduisons le contraste $\xi = k_0/k_1$ et calculons le rapport α^V/α^R , où α est le coefficient qui multiplie J pour un tenseur isotrope. Après calculs, on aura (voir démonstration):

$$\frac{\alpha^{V}}{\alpha^{R}} = 1 - 2\left(c_{0} - c_{0}^{2}\right) + \frac{\left(c_{0} - c_{0}^{2}\right)}{\xi} + \xi\left(c_{0} - c_{0}^{2}\right)$$
(12)

AC ΜТ Performances Viscoélasticité

▷ Voigt / Reuss

Motivation

Bases

Eshelby

Diluée

Motivation

▷ Bases

Eshelby

Diluée

AC

ΜТ

Performances

Viscoélasticité

- Dans un composite réel, un aura $\xi \sim 100$. Si les deux phases \rightarrow ont la même fraction volumique (i.e. $c_0 = 0.5$), on aura $\alpha^V/\alpha^R = 25.5$, ce qui est un encadrement qui n'est pas très serré.
- Cela montre que ces modèles, malgré qu'ils soient largement \rightarrow utilisés dans la pratique, et enseignés dans les cours de baccalauréat, proposent des encadrements très peu utiles.
- D'autres modèles plus précis existent.

10 / 38

12 / 38

Le problème d'Eshelby

Motivation Bases Voigt / Reuss ▷ Eshelby Diluée AC МТ Performances Viscoélasticité

Motiva

Bases

Diluée

AC

МТ

Viscoé

Figure 2: Problème d'Eshelby (selon N. Bourgeois, 1994). Matériau homogène et infini dans lequel une zone ellipsoïdale, appelée inclusion, est soumise à une déformation libre de contrainte ε^* (peut être assimilée à une déformation thermique). La matière autour de l'inclusion contraint cette dernière et la déformation résultante, ε^c est donnée par: $\varepsilon^c = \mathbf{S}^{\mathbf{E}} : \varepsilon^*$, où $\mathbf{S}^{\mathbf{E}}$ est appelé tenseur d'Eshelby.

 $\varepsilon^{c} = S \varepsilon^{*}$

Motivation

▷ Eshelby

Voigt / Reuss

Performances

Viscoélasticité

Bases

Diluée

AC

мт

- $\rightarrow\,$ Le principe de base de la méthode d'Eshelby (1957) est relativement accessible. La solution est plus complexe par contre.
- $\rightarrow~$ La déformation libre dans tout le matériau sera donnée par:

$$\boldsymbol{\varepsilon}^{\star}(\boldsymbol{x}) = \boldsymbol{\varepsilon}^{\star} H^{3D}(\boldsymbol{x}) \tag{13}$$

où ε^* est une constante, x est le vecteur position et $H^{3D}(x)$ serait l'équivalent d'une fonction d'Heviside 3D qui vaudrait 1 dans le domaine de l'inclusion et 0 partout ailleurs.

→ Imaginons que l'inclusion soit soumise à la fois à une contrainte mécanique ainsi qu'à une variation de température. La déformation totale s'exprimera par:

$$\varepsilon(x) = \varepsilon^{\star}(x) + \varepsilon^{\text{el}}(x)$$
 (14)

où $arepsilon^{
m el}(m{x})$ est la déformation d'origine mécanique.

→ Avec cette relation et celle de la déformation libre, on aura que la contrainte dans le matériau sera donnée par:

$$\boldsymbol{\sigma}(\boldsymbol{x}) = \mathbf{C} : \left[\boldsymbol{\varepsilon}(\boldsymbol{x}) - \boldsymbol{\varepsilon}^{\star}(\boldsymbol{x})\right]$$
(15)

Le problème d'Eshelby

15 / 38

- Motivation Bases Voigt / Reuss ▷ Eshelby Diluée AC MT Performances Viscoélasticité
- → Comme on a un milieu infini, les conditions aux rives à l'infini seront des forces et déplacements nuls (on rappelle ici que le chargement n'est d'autre qu'une déformation libre dans une zone de dimension finie).
- → Supposons que l'inclusion était soumise à une pression p sur sa surface. La contrainte serait exprimée par $pH^{3D}(\boldsymbol{x})$. Si on calcule la divergence de cette contrainte, on obtiendra $pn_j\delta_S$
- → Alors, le problème de l'équation (18) est analogue à celui où on aurait un milieu infini sur lequel serait appliqué une distribution de force donnée par $C_{ijkl} \varepsilon_{kl}^* n_j$.
- \rightarrow Les fonctions de Green permettent de résoudre ce genre de problème. Une fonction de Green relie le déplacement u à un point x provoqué par une force F en un point x'. Par exemple, $G_{pk}(x - x')$ donnera la composante au point x dans la direction x_p provoqué par une force au point x' dans la direction x_k .

 \rightarrow Par définition, la déformation est donnée par:

```
Motivation
Bases
Voigt / Reuss
▷ Eshelby
```

Eshelby Diluée

Performances

Viscoélasticité

Motivation

▷ Eshelby

Voigt / Reuss

Performances

Viscoélasticité

Bases

Diluée

AC

мт

AC

мт

 \rightarrow Comme C présente les symétries mineures, on pourra écrire que:

 $\varepsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_i} + \frac{\partial u_j}{\partial x_i} \right)$

$$egin{aligned} oldsymbol{\sigma}(oldsymbol{x}) &= \mathbf{C} : \left[oldsymbol{arepsilon}(oldsymbol{x}) - oldsymbol{arepsilon}^{\star}(oldsymbol{x})
ight] \ &= \mathbf{C} : \left[rac{\partial oldsymbol{u}}{\partial oldsymbol{x}} - oldsymbol{arepsilon}^{\star}(oldsymbol{x})
ight] \end{aligned}$$

→ En utilisant le fait que $\operatorname{div}(\sigma) = 0$ pour qu'il y ait équilibre des contraintes, on aura (voir démonstration):

$$C_{ijkl}\frac{\partial^2 u_k}{\partial x_l \partial x_j} + C_{ijkl}\varepsilon_{kl}^{\star}n_j\delta_S = 0$$
(18)

où n_j est la normale sortante de l'inclusion et δ_S est une impulsion de Dirac sur la surface de l'inclusion.

Le problème d'Eshelby

- 16 / 38
- → Dans notre cas, les forces sont imposées sur la surface de l'inclusion et on s'intéresse à calculer le champ de déplacement dans celle-ci. On aura donc:

$$\boldsymbol{u}(\boldsymbol{x}) = \int_{S} G_{ij}(\boldsymbol{x} - \boldsymbol{x'}) C_{jklm} \varepsilon_{lm}^{\star} n_{k}(\boldsymbol{x'}) \mathrm{d}S'$$
(19)

Si on applique le théorème de la divergence (connu aussi sous le théorème de Green...), on aura:

$$\boldsymbol{u}(\boldsymbol{x}) = C_{jklm} \varepsilon_{lm}^{\star} \int_{V} \frac{\partial G_{ij}}{\partial x_{k}'} (\boldsymbol{x} - \boldsymbol{x'}) \mathrm{d}V'$$
(20)

où V est le volume de l'inclusion. Comme G_{ij} ne dépend que de x - x', alors, on aura:

$$\frac{\partial G_{ij}}{\partial x'_k}(\boldsymbol{x} - \boldsymbol{x'}) = -\frac{\partial G_{ij}}{\partial x_k}(\boldsymbol{x} - \boldsymbol{x'})$$
(21)

(16)

Le problème d'Eshelby

 \rightarrow On va donc tirer:

Motivation Bases Voigt / Reuss ▷ Eshelby Diluée AC мт Performances Viscoélasticité

$$\boldsymbol{u}(\boldsymbol{x}) = -C_{jklm} \varepsilon_{lm}^{\star} \int_{V} \frac{\partial G_{ij}}{\partial x_{k}} (\boldsymbol{x} - \boldsymbol{x'}) \mathrm{d}V' \qquad (22)$$

En appliquant la définition de la déformation, on aura:

$$\varepsilon_{in}(\boldsymbol{x}) = -\frac{1}{2}C_{jklm} \left[\int_{V} \frac{\partial G_{ij}}{\partial x_k \partial x_n} (\boldsymbol{x} - \boldsymbol{x'}) \mathrm{d}V' + \int_{V} \frac{\partial G_{nj}}{\partial x_k \partial x_i} (\boldsymbol{x} - \boldsymbol{x'}) \mathrm{d}V' \right] \varepsilon_{lm}^{\star} \quad (23)$$

Les fonctions de Green sont relativement complexes, mais se \rightarrow simplifient lorsque l'inclusion est isotrope et le milieu infini. Eshelby a solutionné ce problème, en montrant que la déformation dans l'inclusion est uniforme et se calcule par:

$$\boldsymbol{\varepsilon} = \mathbf{S}^{\mathbf{E}} : \boldsymbol{\varepsilon}^{\star} \tag{24}$$

où S^E est le tenseur d'Eshelby.

où ... (suite transparent suivant)

Le problème d'Eshelby

(26)

Dans le cas général, le tenseur d'Eshelby est donné en calculant \rightarrow l'intégrale de surface suivante (obtenue à partir du théorème de la divergence, de l'équation (23) et d'un changement de variable d'une surface elliptique à une surface sphérique (Gavazzi et Lagoudas, 1990):

 $S_{ijkl}^{E} = \frac{C_{mnkl}^{0}}{8\pi} \int_{-1}^{+1} \mathsf{d}\zeta_{3} \int_{0}^{2\pi} \left[G_{imjn} \left(\bar{\xi} \right) + G_{jmin} \left(\bar{\xi} \right) \right] \mathsf{d}\omega$

AC ΜТ Performances Viscoélasticité

Motivation

▷ Eshelby

Voigt / Reuss

Bases

Diluée

où:

$$G_{ijkl}\left(\bar{\xi}\right) = \bar{\xi}_k \bar{\xi}_l \frac{N_{ij}\left(\bar{\xi}\right)}{D\left(\bar{\xi}\right)} \quad ; \quad \zeta_1 = \sqrt{1 - \zeta_3^2} \cos \omega$$
$$\zeta_2 = \sqrt{1 - \zeta_3^2} \sin \omega \quad ; \quad \bar{\xi}_i = \frac{\zeta_i}{a_i} \quad ; \quad K_{ik} = C_{ijkl}^0 \bar{\xi}_j \bar{\xi}_l \quad (27)$$
$$N_{ij}\left(\bar{\xi}\right) = \frac{1}{2} \epsilon_{ikl} \epsilon_{jmn} K_{km} K_{ln}$$
$$D\left(\bar{\xi}\right) = \epsilon_{mnl} K_{m1} K_{n2} K_{l3} = \det(K)$$

Le problème d'Eshelby

 \rightarrow Le tenseur d'Eshelby dépend uniquement des propriétés de la matrice. Pour une matrice isotrope et une inclusion sphérique, il est aussi aussi isotrope et est donné par:

Bases Voigt / Reuss ▷ Eshelby

мт

Motivation

Diluée AC

Performances Viscoélasticité

 \rightarrow

- $\mathbf{S^{E}} = \frac{3k_0}{3k_0 + 4\mu_0} \mathbf{J} + \frac{6(k_0 + 2\mu_0)}{5(3k_0 + 4\mu_0)} \mathbf{K}$ D'autres expressions analytiques existent pour des inclusions de
- rapport de forme différents. Pour des matrices qui ne sont pas isotropes, des méthodes numériques doivent être développées.

Le problème d'Eshelby

20 / 38

Motivation Bases Voigt / Reuss ▷ Eshelby Diluée AC

МТ Performances Viscoélasticité \rightarrow ... où a_i sont les axes principaux de l'ellipsoïde (on rappelle que l'équation d'un ellipsoïde est donnée par:

 $\left(\frac{x}{a_1}\right)^2 + \left(\frac{y}{a_2}\right)^2 + \left(\frac{z}{a_3}\right)^2 = R$) et où ϵ_{ijk} est le tenseur de permutation exprimé par:

$$\epsilon_{ijk} = \begin{cases} 0 & \text{si } i = j, i = k, j = k \\ 1 & \text{si } (i, j, k) \in \{(1, 2, 3), (2, 3, 1), (3, 1, 2)\} \\ -1 & \text{si } (i, j, k) \in \{(1, 3, 2), (3, 2, 1), (2, 1, 3)\} \end{cases}$$
(28)

(25)

	Le problème d'Eshelby		21 / 38	Le problème d'Eshell		
	Motivation Bases	→ L'intégrale (26) ne peut être calculée analytiquement certains cas particuliers. La majeure partie du temps, être calculée numériquement.	que dans elle doit	Motivation Bases	\rightarrow Les valeur divers algo et al. – d	

→ Gavazzi et Lagoudas (1990) ont proposé une méthode d'intégration de Gauss pour calculer cette intégrale de sorte que:

$$S_{ijkl}^{E} = \frac{C_{mnkl}^{0}}{8\pi} \times \sum_{p=1}^{P} \sum_{q=1}^{Q} \left[G_{imjn} \left(\omega_{q}, \zeta_{3_{p}} \right) + G_{jmin} \left(\omega_{q}, \zeta_{3_{p}} \right) \right] W_{pq} \quad (29)$$

où P est le nombre de points de Gauss pour la variable ζ_3 et Q est le nombre de points de Gauss pour la variable ω . W_{pq} sont les pondérations de Gauss.

→ En fonction des propriétés de la matrice et de la forme de l'inclusion, les auteurs ont utilisé P = 2 et Q aussi grand que 1000. Plus les inclusions sont élancées et pour des matrices anisotropes, plus le nombre de points de Gauss nécessaire est grand

Le problème d'Eshelby - Cas de l'inhomogénéité

Motivation Bases Voigt / Reuss Deshelby Diluée AC MT Performances Viscoélasticité

Voigt / Reuss

▷ Eshelby

Diluée AC

MT Performances Viscoélasticité

- → La solution d'Eshelby peut être appliquée au cas de l'inhomogénéité, qui est en fait une inclusion de propriété mécanique différente dans un milieu infini soumis à un chargement non nul.
- $\label{eq:constraint} \begin{array}{l} \rightarrow & \mbox{Imaginons que la déformation macroscopique \mathbf{E} est imposée. Si} \\ \mbox{le matériau était homogène, la contrainte résultante serait} \\ \mathbf{\Sigma} = \mathbf{C} : \mathbf{E}. \end{array}$
- $\to\,$ Comme le matériau n'est pas homogène (inclusion de propriété mécanique différente), la contrainte $\sigma(x)$ sera donnée par:

$$\boldsymbol{\sigma}(\boldsymbol{x}) = \boldsymbol{\Sigma} + \boldsymbol{\sigma}^{\mathbf{pt}}(\boldsymbol{x}) \tag{30}$$

où $\sigma^{\rm pt}(x)$ est une contrainte de perturbation par rapport à la contrainte macroscopique.

 $\begin{tabular}{ll} & \rightarrow & \mbox{lci, comme pour l'inclusion précédente, on aura doit avoir que } & \mbox{div}(\pmb{\sigma}^{\rm pt}(\pmb{x})) = \pmb{0} \mbox{ pour l'équilibre et } \pmb{\sigma}^{\rm pt}(\pmb{x}) = 0 \mbox{ à l'infini pour rencontrer les conditions aux rives. On remarque que cela ressemble beaucoup au problème d'inclusion. \end{tabular}$

\rightarrow Les valeurs de ω_p , ζ_{3_p} et W_{pq} peuvent être obtenues selo	'n
Motivation Bases Voigt / Reuss D Eshelby Diluée AC MTdivers algorithmes (voir Numerical Recipes in Fortran de et al. – disponible gratuitement sur le web). Pour une intégrale à deux dimensions, les $W_{pq} = w_p w_q$, et w_q sont les poids pour une fonction uni-dimensionnell intégrée par rapport à ω ou ζ_3 . Performances Viscoélasticité \rightarrow Ces notions seront appliquées en exercice.	Press où w_p e

Le problème d'Eshelby - Cas de l'inhomogénéité

Dans chaque phase, la contrainte sera donnée par:

Motivation Bases Voigt / Reuss D Eshelby Diluée AC

Performances

Viscoélasticité

мт

$$\boldsymbol{\sigma}(\boldsymbol{x}) = \begin{cases} \mathbf{C}^{i} : \left(\mathbf{E} + \boldsymbol{\varepsilon}^{\mathbf{pt}}(\boldsymbol{x})\right) & \boldsymbol{x} \in \Omega\\ \mathbf{C} : \left(\mathbf{E} + \boldsymbol{\varepsilon}^{\mathbf{pt}}(\boldsymbol{x})\right) & \boldsymbol{x} \in V - \Omega \end{cases}$$
(31)

24 / 38

où \mathbf{C}^i est la rigidité de l'inclusion, \mathbf{C} est la rigidité du milieu infini, $\varepsilon^{\mathbf{pt}}(x)$ est la déformation de perturbation induite par la présence de l'inclusion, Ω le volume de l'inclusion et V le volume total du matériau moins celui de l'inclusion.

→ Considérons maintenant le cas d'un milieu uniforme, ayant une inclusion soumise à une déformation libre ε^* soumis à une déformation macroscopique E. On peut résoudre ce problème par superposition: (inclusion uniforme sans déformation libre soumise à E) + (inclusion uniforme soumise à ε^* sans chargement à l'infini). Pour le premier problème, la déformation sera égale à E. Pour le second problème, on aura que $\varepsilon = S^E : \varepsilon^*$. On rappelle que ε est la déformation totale et que la déformation mécanique ε^{el} (i.e. celle utilisée pour calculer les contraintes) est donnée par $\varepsilon^{el} = \varepsilon - \varepsilon^*$.

Le problème d'Eshelby - Cas de l'inhomogénéité

25 / 38

Bases

AC

мт

Motivation

Voigt / Reuss

Performances

Viscoélasticité

Bases

Eshelby

Diluée

 \triangleright AC

МТ

 \rightarrow Alors, pour ce problème d'inclusion homogène soumise à une déformation à l'infini, on aura:

Motivation Bases Voigt / Reuss ▷ Eshelby Diluée AC мт Performances Viscoélasticité

- $oldsymbol{\sigma}(oldsymbol{x}) = egin{cases} \mathbf{C}: egin{pmatrix} \mathbf{E}+oldsymbol{arepsilon^{\mathrm{pt}}}-oldsymbol{arepsilon^{\star}}\ \mathbf{C}: egin{pmatrix} \mathbf{E}+oldsymbol{arepsilon^{\mathrm{pt}}}-oldsymbol{arepsilon^{\star}}\ \mathbf{X}\in\Omega\ \mathbf{C}: egin{pmatrix} \mathbf{E}+oldsymbol{arepsilon^{\mathrm{pt}}}-oldsymbol{arepsilon^{\star}}\ \mathbf{X}\in V-\Omega\ \mathbf{C}: egin{pmatrix} \mathbf{E}+oldsymbol{arepsilon^{\mathrm{pt}}}-oldsymbol{arepsilon^{\star}}\ \mathbf{X}\in V-\Omega\ \mathbf{C}: egin{pmatrix} \mathbf{E}+oldsymbol{arepsilon^{\mathrm{pt}}}\ \mathbf{C}: egin{pmatrix} \mathbf{E}+oldsymbol{arepsilon^{\mathrm{pt}}}\ \mathbf{X} & \mathbf{C} \ \mathbf{C}: egin{pmatrix} \mathbf{E}+oldsymbol{arepsilon^{\mathrm{pt}}}\ \mathbf{C}: egin{pmatrix} \mathbf{E}+oldsymbol{arepsilon^{\mathrm$ (32)où on peut voir que $\varepsilon^{pt} = S^{E} : \varepsilon^{\star} = \text{cte}$ dans l'inclusion avec ce qui a été écrit au transparent précédent. \rightarrow Si on veut que les contraintes soient égales dans le problème d'inclusion de propriétés différentes et celle soumise à une déformation libre et déformation à l'infini, on aura: $\mathbf{C}^{i}: (\mathbf{E} + \boldsymbol{\varepsilon}^{\mathbf{pt}}) = \mathbf{C}: (\mathbf{E} + \boldsymbol{\varepsilon}^{\mathbf{pt}} - \boldsymbol{\varepsilon}^{\star})$ dans Ω (33)
- \rightarrow Si on a que $\varepsilon^{pt} = S^{E} : \varepsilon^{\star}$, il faut que (demo):

$$\boldsymbol{\varepsilon}^{\star} = \left[\left(\mathbf{C} - \mathbf{C}^{i} \right) : \mathbf{S}^{\mathbf{E}} - \mathbf{C} \right]^{-1} : \left(\mathbf{C}^{i} - \mathbf{C} \right) : \mathbf{E}$$
 (34)

pour que les deux problèmes conduisent aux mêmes contraintes. On voit donc que l'on peut solutionner le problème d'un renfort dans un milieu infini avec la solution d'Eshelby.

Schéma en solution diluée

27 / 38

 \rightarrow Avec les relations d'homogénéisation, on avait obtenu que les propriétés effectives étaient définies par:

Motivation Bases Voigt / Reuss Eshelby ▷ Diluée AC ΜТ Performances Viscoélasticité

 $\tilde{\mathbf{C}} = c_r \mathbf{C}^r : \langle \mathbf{A}(\boldsymbol{x}) \rangle_r$ (37)

Ici, comme la déformation est constante dans l'inclusion, $\mathbf{A}(\mathbf{x}) = \mathrm{ct} = \mathbf{A}^r$. De cette manière, on aura que:

$$c_0 \mathbf{A}^0 + \sum_{r=1}^R c_r \mathbf{A}^r = \mathbf{I}$$
(38)

ce qui nous conduira à:

$$\tilde{\mathbf{C}} = c_0 \mathbf{C}^0 : \mathbf{A}^0 + \sum_{r=1}^R c_r \mathbf{C}^r : \mathbf{A}^r$$

$$= \mathbf{C}^0 + \sum_{r=1}^R c_r \left(\mathbf{C}^r - \mathbf{C}^0\right) : \mathbf{A}^r$$
(39)

Schéma en solution diluée 26 / 38 \rightarrow Le premier schéma d'homogénéisation présenté est celui de la solution diluée. Il suppose des renforts ellipsoïdaux distribués Motivation dans une matrice infinie en concentration très faible. On se Voigt / Reuss retrouve donc dans les conditions du problème d'Eshelby. Eshelby Pour une déformation imposée E, la déformation dans un ▷ Diluée renfort particulier r sera donnée par: Performances $\varepsilon^r = \mathbf{E} + \mathbf{S}^{\mathbf{E}} : \varepsilon^{\star r}$ Viscoélasticité $= \mathbf{E} + \mathbf{S}^{\mathbf{E}r} : \left[(\mathbf{C} - \mathbf{C}^r) : \mathbf{S}^{\mathbf{E}r} - \mathbf{C} \right]^{-1} : (\mathbf{C}^r - \mathbf{C}) : \mathbf{E}$ (35) $= \left[\mathbf{I} + \mathbf{S}^{\mathbf{E}r} : \left[(\mathbf{C} - \mathbf{C}^r) : \mathbf{S}^{\mathbf{E}r} - \mathbf{C} \right]^{-1} : (\mathbf{C}^r - \mathbf{C}) \right] : \mathbf{E}$ $= \mathbf{A}^r : \mathbf{E}$ \rightarrow Après quelques simplifications, **A**^{*r*} devient: (demo): $\mathbf{A}^{r} = \left[\mathbf{I} + \mathbf{S}^{\mathbf{E}r} : \mathbf{C}^{-1} : (\mathbf{C}^{r} - \mathbf{C})\right]^{-1}$ (36)

Schéma auto-cohérent

28 / 38

Le schéma auto-cohérent suppose que chaque inclusion est \rightarrow noyée dans le composite homogénéisé. On aura les mêmes équations qu'en solution diluée, mais où:

$$\mathbf{A}^{r} = \left[\mathbf{I} + \mathbf{S}^{\mathbf{E}r} : \tilde{\mathbf{C}}^{-1} : \left(\mathbf{C}^{r} - \tilde{\mathbf{C}}\right)\right]^{-1}$$
(40)

où le tenseur d'Eshelby est évalué pour la matrice de propriété $\tilde{\mathbf{C}}$

- On aura donc un problème implicite car les tenseurs \mathbf{A}^r vont \rightarrow dépendre du tenseur $\tilde{\mathbf{C}}$, qui lui va dépendre des tenseurs \mathbf{A}^r .
- Dans la majeure partie des cas, les propriétés effectives sont \rightarrow obtenues à l'aide d'un schéma numérique pour résoudre l'équation implicite.
- Considérons le cas d'un composite à renforts sphériques où la \rightarrow matrice a des modules k_0 et μ_0 , les renforts des modules k_1 et μ_1 en fraction volumique c_1 .
- \rightarrow Suite autre transparent...

 \rightarrow Voir exemple d'application au tableau.

Schéma auto-cohérent

Motivation Bases Voigt / Reuss Eshelby Diluée \triangleright AC мт Performances Viscoélasticité \rightarrow Le tenseur \mathbf{A}^1 sera donné par: $\alpha^{A^1} = \left[1 + \tilde{\alpha}^{S^E} \frac{1}{3\tilde{k}} (3k_1 - 3\tilde{k})\right]^{-1}$ $= \left[\frac{3\tilde{k} + \tilde{\alpha}^{S^{E}}(3k_{1} - 3\tilde{k})}{3\tilde{k}}\right]^{-1}$ $=\frac{\tilde{k}}{\tilde{k}+\tilde{\alpha}^{S^{E}}(k_{1}-\tilde{k})}$ (partie sphérique)

$$\beta^{A^{1}} = \left[1 + \tilde{\beta}^{S^{E}} \frac{1}{2\tilde{\mu}} (2\mu_{1} - 2\tilde{\mu})\right]^{-1}$$

$$= \left[\frac{2\tilde{\mu} + \tilde{\beta}^{S^{E}} (2\mu_{1} - 2\tilde{\mu})}{2\tilde{\mu}}\right]^{-1}$$

$$= \frac{\tilde{\mu}}{\tilde{\mu} + \tilde{\beta}^{S^{E}} (\mu_{1} - \tilde{\mu})} \text{ (partie déviatorique)}$$
(41b)

où.... suite autre transparent.

Schéma Mori-Tanaka

Motivation

Voigt / Reuss

Performances

Viscoélasticité

Bases

Eshelby

Diluée

⊳мт

AC

31 / 38

- \rightarrow Dans le schéma auto-cohérent, on avait supposé que l'inclusion était noyée dans le composite effectif. Certain auteurs interprètent le modèle auto-cohérent comme un modèle applicable au cas des polycristaux où il n'y a pas vraiment de phase 'matrice', mais un agencement de grains collés les uns sur les autres.
- Dans le modèle de Mori-Tanaka, on suppose que chaque \rightarrow inclusion est noyée dans la matrice du composite. Lorsqu'une contrainte Σ est appliquée sur le composite, une contrainte moyenne σ^0 se développe dans le composite, ce qui entraîne une déformation moyenne ε^0 .
- La contrainte moyenne dans la matrice sera influencée par les \rightarrow autres renforts, leur fraction volumique, etc. Donc, certain auteurs affirment de le modèle de Mori-Tanaka est bien adapté aux composites où il y a une phase importante (la matrice) dans laquelle sont novés des renforts.
- Le modèle de Mori-Tanaka sera donc très similaire au modèle \rightarrow auto-cohérent et à la solution diluée. Ici, le milieu infini sera assimilé à la matrice dans le composite.

Schéma	aut	o-cohérent	30 / 38
ivation 25 gt / Reuss elby ée cC	\rightarrow	où $\tilde{\alpha}^{S^E}$ et $\tilde{\beta}^{S^E}$ sont les parties sphériques et déviatorie du tenseur d'Eshelby où les propriétés de la matrice (k_0, μ) été remplacées par les propriétés effectives $(\tilde{k}, \tilde{\mu})$. En appliquant l'équation d'homogénéisation, on aura que modules de compressibilité et de cisaillement de $\tilde{\mathbf{C}}$ seront donnés par:	ques 50) ont les
ormances oélasticité		$\tilde{k} = k_0 + c_1 \frac{\tilde{k}(k_1 - k_0)}{\tilde{k} + \tilde{\alpha}^{S^E}(k_1 - \tilde{k})}$	(42a)
		$\tilde{\mu} = \mu_0 + c_1 \frac{\tilde{\mu}(\mu_1 - \mu_0)}{\tilde{\mu} + \tilde{\beta}^{S^E}(\mu_1 - \tilde{\mu})}$	(42b)
	\rightarrow	On peut voir que l'on a un système du type $f(x) = x$, où l'inconnue. Ce genre de problème peut se solutionner numériquement avec la méthode du point fixe. Cette mét itérative donne la prochaine itération avec la relation:	x est hode:
		$x^{n+1} = f(x^n)$	(43)

Les itérations s'arrêtent lorsque $x^{n+1} - f(x^n) \approx 0$. Cette technique peut facilement se généraliser aux vecteurs.

macroscopique E est en fait la déformation dans la matrice ε^0 ,

 $oldsymbol{arepsilon}^r = ig[\mathbf{I} + \mathbf{S}^{\mathbf{E}r} : \mathbf{C}^{-1} : (\mathbf{C}^r - \mathbf{C}) ig]^{-1} : oldsymbol{arepsilon}^0$

la déformation dans une inclusion r sera donnée par:

Schéma Mori-Tanaka

32 / 38 \rightarrow Comme pour la solution diluée, où cette fois-ci la déformation

(44)

Motivation Bases Voigt / Reuss Eshelby Diluée AC ⊳мт

Performances Viscoélasticité

Avec les relations de moyenne volumique des déformations, on aura que:

$$\mathbf{E} = \sum_{r=0}^{R} c_r \mathbf{T}^r : \boldsymbol{\varepsilon}^0 \tag{45}$$

 \rightarrow Comme ε^0 est une constante, on pourra obtenir

 $= \mathbf{T}^r \cdot \boldsymbol{\varepsilon}^0$

$$\boldsymbol{\varepsilon}^{0} = \left(\sum_{r=0}^{R} c_{r} \mathbf{T}^{r}\right)^{-1} : \mathbf{E}$$

$$= \mathbf{A}^{0} : \mathbf{E}$$
(46)

29 / 38

(41a)

Motivat

Bases

Voigt / Eshelby

Diluée

 \triangleright AC

Perform

Viscoéla

МТ

Schéma Mori-Tanaka

 \rightarrow Avec l'équation (44), on aura que:

Motivation
Bases
Voigt / Reuss
Eshelby
Diluée
AC
Performances
Viscoélasticité

$$\varepsilon^{r} = \mathbf{T}^{r} : \varepsilon^{0}$$

$$= \mathbf{T}^{r} : \mathbf{A}^{0} : \mathbf{E}$$

$$= \mathbf{T}^{r} : \left(\sum_{r=0}^{R} c_{r} \mathbf{T}^{r}\right)^{-1} : \mathbf{E}$$

$$= \mathbf{A}^{r} : \mathbf{E} \text{ pour } r > 1$$
(47)

Cela nous permettra de calculer le module effectif avec \rightarrow l'équation classique:

$$\tilde{\mathbf{C}} = \mathbf{C}^0 + \sum_{r=1}^R c_r \left(\mathbf{C}^r - \mathbf{C}^0 \right) : \mathbf{A}^r$$
(48)

33 / 38

(voir exemple au tableau pour un matériau bi-phasique).

Évaluation des performances des modèles

Motivation Bases Voigt / Reuss Eshelby Diluée AC ΜТ ▷ Performances Viscoélasticité

Figure 4: Rapport $\tilde{\mu}/\mu_1$ en fonction de la fraction volumique pour $\kappa_1 = \mu_1 = 1$ et $\kappa_2 = \mu_2 = 10$ pour un composite constitué de sphères aléatoirement distribuées. L'indice "1" fait référence à la matrice et l'indice "2" aux sphères. Les points "Outil de Validation" représentent la solution exacte obtenue par une méthode numérique.

Évaluation des performances des modèles

Figure 3: Rapport $\tilde{\kappa}/\mu_1$ en fonction de la fraction volumique pour $\kappa_1 = \mu_1 = 1$ et $\kappa_2 = \mu_2 = 10$ pour un composite constitué de sphères aléatoirement distribuées. L'indice "1" fait référence à la matrice et l'indice "2" aux sphères. Les points "Outil de Validation" représentent la solution exacte obtenue par une méthode numérique.

Évaluation des performances des modèles

36 / 38

Figure 5: Rapport $\tilde{\kappa}/\mu_1$ en fonction de la fraction volumique pour $\kappa_1 = \mu_1 = 1$ et $\kappa_2 = \mu_2 = 100$ pour un composite constitué de sphères aléatoirement distribuées. L'indice "1" fait référence à la matrice et l'indice "2" aux sphères. Les points "Outil de Validation" représentent la solution exacte obtenue par une méthode numérique.

Évaluation des performances des modèles

Motivation

Voigt / Reuss

Performances ▷ Viscoélasticité

Bases

Eshelby

Diluée

AC

МТ

Figure 6: Rapport $\tilde{\mu}/\mu_1$ en fonction de la fraction volumique pour $\kappa_1 = \mu_1 = 1$ et $\kappa_2 = \mu_2 = 100$ pour un composite constitué de sphères aléatoirement distribuées. L'indice "1" fait référence à la matrice et l'indice "2" aux sphères. Les points "Outil de Validation" représentent la solution exacte obtenue par une méthode numérique.

Homogénéisation en viscoélasticité

Homogénéisation

 → Si une des phases à homogénéiser est viscoélastique, l'homogénéisation se fait en appliquant le principe de correspondance viscoélastique.

 \rightarrow Si on note par f^* la transformée de Laplace-Carson de f, alors on aura avec les relations classiques:

$$\tilde{\mathbf{C}}^* = \left(\mathbf{C}^0\right)^* + \sum_{r=1}^R c_r \left(\mathbf{C}^r - \mathbf{C}^0\right)^* : (\mathbf{A}^r)^*$$
(49)

où $(\mathbf{A}^r)^*$ est obtenu en remplaçant les modules élastiques par les modules dans l'espace de Laplace-Carson

→ L'obtention des propriétés dans l'espace de Laplace-Carson est généralement facile à obtenir. C'est l'inversion (i.e., le retour dans le domaine temporel) qui est compliquée. Cela peut se faire avec la méthode des collocations vue dans le chapitre sur la viscoélasticité.