
Chapter 4

Numerical Computation

Machine learning algorithms usually require a high amount of numerical compu-
tation. This typically refers to algorithms that solve mathematical problems by
methods that update estimates of the solution via an iterative process, rather
than analytically deriving a formula to provide a symbolic expression for the
correct solution. Common operations include optimization (finding the value of an
argument that minimizes or maximizes a function) and solving systems of linear
equations. Even just evaluating a mathematical function on a digital computer can
be difficult when the function involves real numbers, which cannot be represented
precisely using a finite amount of memory.

4.1 Overflow and Underflow

The fundamental difficulty in performing continuous math on a digital computer
is that we need to represent infinitely many real numbers with a finite number
of bit patterns. This means that for almost all real numbers, we incur some
approximation error when we represent the number in the computer. In many
cases, this is just rounding error. Rounding error is problematic, especially when
it compounds across many operations, and can cause algorithms that work in
theory to fail in practice if they are not designed to minimize the accumulation of
rounding error.

One form of rounding error that is particularly devastating is underflow.
Underflow occurs when numbers near zero are rounded to zero. Many functions
behave qualitatively differently when their argument is zero rather than a small
positive number. For example, we usually want to avoid division by zero (some

78

CHAPTER 4. NUMERICAL COMPUTATION

software environments will raise exceptions when this occurs, others will return a
result with a placeholder not-a-number value) or taking the logarithm of zero (this
is usually treated as −∞, which then becomes not-a-number if it is used for many
further arithmetic operations).

Another highly damaging form of numerical error is overflow. Overflow occurs
when numbers with large magnitude are approximated as ∞ or −∞. Further
arithmetic will usually change these infinite values into not-a-number values.

One example of a function that must be stabilized against underflow and
overflow is the softmax function. The softmax function is often used to predict
the probabilities associated with a multinoulli distribution. The softmax function
is defined to be

softmax()x i =
exp(xi)n
j=1 exp(xj)

. (4.1)

Consider what happens when all the xi are equal to some constant c. Analytically,
we can see that all the outputs should be equal to 1

n
. Numerically, this may

not occur when c has large magnitude. If c is very negative, then exp(c) will
underflow. This means the denominator of the softmax will become 0, so the final
result is undefined. When c is very large and positive, exp(c) will overflow, again
resulting in the expression as a whole being undefined. Both of these difficulties
can be resolved by instead evaluating softmax(z) where z = x− maxi xi. Simple
algebra shows that the value of the softmax function is not changed analytically by
adding or subtracting a scalar from the input vector. Subtracting maxi xi results
in the largest argument to exp being 0, which rules out the possibility of overflow.
Likewise, at least one term in the denominator has a value of 1, which rules out
the possibility of underflow in the denominator leading to a division by zero.

There is still one small problem. Underflow in the numerator can still cause
the expression as a whole to evaluate to zero. This means that if we implement
log softmax(x) by first running the softmax subroutine then passing the result to
the log function, we could erroneously obtain −∞. Instead, we must implement
a separate function that calculates log softmax in a numerically stable way. The
log softmax function can be stabilized using the same trick as we used to stabilize
the function.softmax

For the most part, we do not explicitly detail all the numerical considerations
involved in implementing the various algorithms described in this book. Developers
of low-level libraries should keep numerical issues in mind when implementing
deep learning algorithms. Most readers of this book can simply rely on low-
level libraries that provide stable implementations. In some cases, it is possible
to implement a new algorithm and have the new implementation automatically

79

CHAPTER 4. NUMERICAL COMPUTATION

stabilized. Theano (, ; ,) is an exampleBergstra et al. 2010 Bastien et al. 2012
of a software package that automatically detects and stabilizes many common
numerically unstable expressions that arise in the context of deep learning.

4.2 Poor Conditioning

Conditioning refers to how rapidly a function changes with respect to small changes
in its inputs. Functions that change rapidly when their inputs are perturbed slightly
can be problematic for scientific computation because rounding errors in the inputs
can result in large changes in the output.

Consider the function f(x) = A−1x. When A ∈ Rn n× has an eigenvalue
decomposition, its condition number is

max
i,j


λi
λj

. (4.2)

This is the ratio of the magnitude of the largest and smallest eigenvalue. When
this number is large, matrix inversion is particularly sensitive to error in the input.

This sensitivity is an intrinsic property of the matrix itself, not the result
of rounding error during matrix inversion. Poorly conditioned matrices amplify
pre-existing errors when we multiply by the true matrix inverse. In practice, the
error will be compounded further by numerical errors in the inversion process itself.

4.3 Gradient-Based Optimization

Most deep learning algorithms involve optimization of some sort. Optimization
refers to the task of either minimizing or maximizing some function f(x) by altering
x. We usually phrase most optimization problems in terms of minimizing f (x).
Maximization may be accomplished via a minimization algorithm by minimizing
−f()x .

The function we want to minimize or maximize is called the objective func-
tion, or criterion. When we are minimizing it, we may also call it the cost
function, loss function, or error function. In this book, we use these terms
interchangeably, though some machine learning publications assign special meaning
to some of these terms.

We often denote the value that minimizes or maximizes a function with a
superscript . For example, we might say∗ x∗ = arg min ()f x .

80

CHAPTER 4. NUMERICAL COMPUTATION

− − − −2 0. 1 5. 1 0. 0 5 0 0 0 5 1 0 1 5 2 0.

x

−2 0.

−1 5.

−1 0.

−0 5.

0 0.

0 5.

1 0.

1 5.

2 0.

Global minimum at = 0.x
Since f () = 0, gradientx
descent halts here.

For 0, we havex < f () 0,x <
so we can decrease byf
moving rightward.

For 0, we havex > f () 0,x >
so we can decrease byf
moving leftward.

f x() = 1
2
x2

f () = x x

Figure 4.1: Gradient descent. An illustration of how the gradient descent algorithm uses
the derivatives of a function to follow the function downhill to a minimum.

We assume the reader is already familiar with calculus but provide a brief
review of how calculus concepts relate to optimization here.

Suppose we have a function y = f (x), where both x and y are real numbers.
The derivative of this function is denoted as f (x) or as dy

dx
. The derivative f  (x)

gives the slope of f(x) at the point x. In other words, it specifies how to scale
a small change in the input to obtain the corresponding change in the output:
f x  f x f(+) ≈ () + ()x .

The derivative is therefore useful for minimizing a function because it tells us
how to change x in order to make a small improvement in y. For example, we
know that f (x − sign(f (x))) is less than f(x) for small enough . We can thus
reduce f(x) by moving x in small steps with the opposite sign of the derivative.
This technique is called gradient descent (Cauchy 1847,). See figure for an4.1
example of this technique.

When f (x) = 0, the derivative provides no information about which direction
to move. Points where f (x) = 0 are known as critical points, or stationary
points. A local minimum is a point where f (x) is lower than at all neighboring
points, so it is no longer possible to decrease f(x) by making infinitesimal steps.
A local maximum is a point where f (x) is higher than at all neighboring points,

81

CHAPTER 4. NUMERICAL COMPUTATION

Minimum Maximum Saddle point

Figure 4.2: Types of critical points. Examples of the three types of critical points in one
dimension. A critical point is a point with zero slope. Such a point can either be a local
minimum, which is lower than the neighboring points; a local maximum, which is higher
than the neighboring points; or a saddle point, which has neighbors that are both higher
and lower than the point itself.

so it is not possible to increase f(x) by making infinitesimal steps. Some critical
points are neither maxima nor minima. These are known as saddle points. See
figure for examples of each type of critical point.4.2

A point that obtains the absolute lowest value of f (x) is a global minimum.
There can be only one global minimum or multiple global minima of the function.
It is also possible for there to be local minima that are not globally optimal. In the
context of deep learning, we optimize functions that may have many local minima
that are not optimal and many saddle points surrounded by very flat regions. All
of this makes optimization difficult, especially when the input to the function is
multidimensional. We therefore usually settle for finding a value of f that is very
low but not necessarily minimal in any formal sense. See figure for an example.4.3

We often minimize functions that have multiple inputs: f : Rn → R. For the
concept of “minimization” to make sense, there must still be only one (scalar)
output.

For functions with multiple inputs, we must make use of the concept of partial
derivatives. The partial derivative ∂

∂xi
f(x) measures how f changes as only the

variable xi increases at point x. The gradient generalizes the notion of derivative
to the case where the derivative is with respect to a vector: the gradient of f is
the vector containing all the partial derivatives, denoted ∇xf(x). Element i of the
gradient is the partial derivative of f with respect to xi. In multiple dimensions,

82

CHAPTER 4. NUMERICAL COMPUTATION

x

f
x(

)

Ideally, we would like
to arrive at the global
minimum, but this
might not be possible.

This local minimum
performs nearly as well as
the global one,
so it is an acceptable
halting point.

This local minimum performs
poorly and should be avoided.

Figure 4.3: Approximate minimization. Optimization algorithms may fail to find a global
minimum when there are multiple local minima or plateaus present. In the context of
deep learning, we generally accept such solutions even though they are not truly minimal,
so long as they correspond to significantly low values of the cost function.

critical points are points where every element of the gradient is equal to zero.

The directional derivative in direction (a unit vector) is the slope of theu
function f in direction u. In other words, the directional derivative is the derivative
of the function f (x+ αu) with respect to α, evaluated at α= 0. Using the chain
rule, we can see that ∂

∂α
f α(+x u) evaluates to u∇xf α()x when = 0.

To minimize f , we would like to find the direction in which f decreases the
fastest. We can do this using the directional derivative:

min
u u, u=1

u∇xf()x (4.3)

= min
u u, u=1

|| ||u 2||∇xf()x ||2 cos θ (4.4)

where θ is the angle between u and the gradient. Substituting in || ||u 2 = 1 and
ignoring factors that do not depend on u , this simplifies to minu cos θ. This is
minimized when u points in the opposite direction as the gradient. In other
words, the gradient points directly uphill, and the negative gradient points directly
downhill. We can decrease f by moving in the direction of the negative gradient.
This is known as the method of steepest descent gradient descent, or .

Steepest descent proposes a new point

x = x− ∇ xf()x (4.5)

83

CHAPTER 4. NUMERICAL COMPUTATION

where  is the learning rate, a positive scalar determining the size of the step.
We can choose  in several different ways. A popular approach is to set  to a small
constant. Sometimes, we can solve for the step size that makes the directional
derivative vanish. Another approach is to evaluate f (x− ∇xf())x for several
values of  and choose the one that results in the smallest objective function value.
This last strategy is called a line search.

Steepest descent converges when every element of the gradient is zero (or, in
practice, very close to zero). In some cases, we may be able to avoid running
this iterative algorithm and just jump directly to the critical point by solving the
equation ∇xf() = 0x for .x

Although gradient descent is limited to optimization in continuous spaces, the
general concept of repeatedly making a small move (that is approximately the best
small move) toward better configurations can be generalized to discrete spaces.
Ascending an objective function of discrete parameters is called hill climbing

(,).Russel and Norvig 2003

4.3.1 Beyond the Gradient: Jacobian and Hessian Matrices

Sometimes we need to find all the partial derivatives of a function whose input
and output are both vectors. The matrix containing all such partial derivatives is
known as a Jacobian matrix. Specifically, if we have a function f : Rm → Rn ,
then the Jacobian matrix J ∈ R

n m× of is defined such thatf J i,j = ∂
∂xj

f()x i.

We are also sometimes interested in a derivative of a derivative. This is known
as a second derivative. For example, for a function f : Rn → R, the derivative
with respect to xi of the derivative of f with respect to xj is denoted as ∂2

∂xi∂xj
f.

In a single dimension, we can denote d2

dx2
f by f (x). The second derivative tells

us how the first derivative will change as we vary the input. This is important
because it tells us whether a gradient step will cause as much of an improvement
as we would expect based on the gradient alone. We can think of the second
derivative as measuring curvature. Suppose we have a quadratic function (many
functions that arise in practice are not quadratic but can be approximated well
as quadratic, at least locally). If such a function has a second derivative of zero,
then there is no curvature. It is a perfectly flat line, and its value can be predicted
using only the gradient. If the gradient is , then we can make a step of size1 

along the negative gradient, and the cost function will decrease by . If the second
derivative is negative, the function curves downward, so the cost function will
actually decrease by more than . Finally, if the second derivative is positive, the
function curves upward, so the cost function can decrease by less than . See

84

CHAPTER 4. NUMERICAL COMPUTATION

x

f
x(

)

Negative curvature

x
f

x(
)

No curvature

x

f
x(

)

Positive curvature

Figure 4.4: The second derivative determines the curvature of a function. Here we show
quadratic functions with various curvature. The dashed line indicates the value of the
cost function we would expect based on the gradient information alone as we make a
gradient step downhill. With negative curvature, the cost function actually decreases
faster than the gradient predicts. With no curvature, the gradient predicts the decrease
correctly. With positive curvature, the function decreases more slowly than expected and
eventually begins to increase, so steps that are too large can actually increase the function
inadvertently.

figure to see how different forms of curvature affect the relationship between4.4
the value of the cost function predicted by the gradient and the true value.

When our function has multiple input dimensions, there are many second
derivatives. These derivatives can be collected together into a matrix called the
Hessian matrix. The Hessian matrix is defined such thatH x()(f)

H x()(f)i,j =
∂2

∂xi∂xj
f .()x (4.6)

Equivalently, the Hessian is the Jacobian of the gradient.

Anywhere that the second partial derivatives are continuous, the differential
operators are commutative; that is, their order can be swapped:

∂ 2

∂xi∂xj
f() =x

∂2

∂xj∂xi
f .()x (4.7)

This implies that Hi,j =H j,i, so the Hessian matrix is symmetric at such points.
Most of the functions we encounter in the context of deep learning have a symmetric
Hessian almost everywhere. Because the Hessian matrix is real and symmetric,
we can decompose it into a set of real eigenvalues and an orthogonal basis of

85

CHAPTER 4. NUMERICAL COMPUTATION

eigenvectors. The second derivative in a specific direction represented by a unit
vector d is given by dHd. When d is an eigenvector of H , the second derivative
in that direction is given by the corresponding eigenvalue. For other directions of
d, the directional second derivative is a weighted average of all the eigenvalues,
with weights between 0 and 1, and eigenvectors that have a smaller angle with
d receiving more weight. The maximum eigenvalue determines the maximum
second derivative, and the minimum eigenvalue determines the minimum second
derivative.

The (directional) second derivative tells us how well we can expect a gradient
descent step to perform. We can make a second-order Taylor series approximation
to the function around the current pointf()x x(0):

f f() x ≈ (x(0)) + (x x− (0))g +
1

2
(x x− (0))H x x(− (0)), (4.8)

where g is the gradient and H is the Hessian at x(0). If we use a learning rate
of , then the new point xwill be given by x(0) − g . Substituting this into our
approximation, we obtain

f(x(0) − ≈g) f(x(0)) − gg +
1

2
2gHg. (4.9)

There are three terms here: the original value of the function, the expected
improvement due to the slope of the function, and the correction we must apply
to account for the curvature of the function. When this last term is too large, the
gradient descent step can actually move uphill. When gHg is zero or negative,
the Taylor series approximation predicts that increasing  forever will decrease f
forever. In practice, the Taylor series is unlikely to remain accurate for large , so
one must resort to more heuristic choices of  in this case. When gHg is positive,
solving for the optimal step size that decreases the Taylor series approximation of
the function the most yields

∗ =
gg

gHg
. (4.10)

In the worst case, when g aligns with the eigenvector of H corresponding to the
maximal eigenvalue λmax, then this optimal step size is given by 1

λmax
. To the

extent that the function we minimize can be approximated well by a quadratic
function, the eigenvalues of the Hessian thus determine the scale of the learning
rate.

The second derivative can be used to determine whether a critical point is
a local maximum, a local minimum, or a saddle point. Recall that on a critical
point, f (x) = 0. When the second derivative f (x) > 0, the first derivative f (x)

86

CHAPTER 4. NUMERICAL COMPUTATION

increases as we move to the right and decreases as we move to the left. This means
f (x −) < 0 and f (x + ) > 0 for small enough . In other words, as we move
right, the slope begins to point uphill to the right, and as we move left, the slope
begins to point uphill to the left. Thus, when f (x) = 0 and f (x)> 0, we can
conclude that x is a local minimum. Similarly, when f (x) = 0 and f (x) < 0, we
can conclude that x is a local maximum. This is known as the second derivative
test. Unfortunately, when f  (x) = 0, the test is inconclusive. In this case x may
be a saddle point or a part of a flat region.

In multiple dimensions, we need to examine all the second derivatives of the
function. Using the eigendecomposition of the Hessian matrix, we can generalize
the second derivative test to multiple dimensions. At a critical point, where
∇xf(x) = 0, we can examine the eigenvalues of the Hessian to determine whether
the critical point is a local maximum, local minimum, or saddle point. When the
Hessian is positive definite (all its eigenvalues are positive), the point is a local
minimum. This can be seen by observing that the directional second derivative
in any direction must be positive, and making reference to the univariate second
derivative test. Likewise, when the Hessian is negative definite (all its eigenvalues
are negative), the point is a local maximum. In multiple dimensions, it is actually
possible to find positive evidence of saddle points in some cases. When at least
one eigenvalue is positive and at least one eigenvalue is negative, we know that
x is a local maximum on one cross section of f but a local minimum on another
cross section. See figure for an example. Finally, the multidimensional second4.5
derivative test can be inconclusive, just as the univariate version can. The test
is inconclusive whenever all the nonzero eigenvalues have the same sign but at
least one eigenvalue is zero. This is because the univariate second derivative test is
inconclusive in the cross section corresponding to the zero eigenvalue.

In multiple dimensions, there is a different second derivative for each direction
at a single point. The condition number of the Hessian at this point measures
how much the second derivatives differ from each other. When the Hessian has a
poor condition number, gradient descent performs poorly. This is because in one
direction, the derivative increases rapidly, while in another direction, it increases
slowly. Gradient descent is unaware of this change in the derivative, so it does not
know that it needs to explore preferentially in the direction where the derivative
remains negative for longer. Poor condition number also makes choosing a good
step size difficult. The step size must be small enough to avoid overshooting
the minimum and going uphill in directions with strong positive curvature. This
usually means that the step size is too small to make significant progress in other
directions with less curvature. See figure for an example.4.6

87

CHAPTER 4. NUMERICAL COMPUTATION



󰤓  


󰤓












󰤓





Figure 4.5: A saddle point containing both positive and negative curvature. The function
in this example is f (x) = x2

1 − x22. Along the axis corresponding to x1, the function
curves upward. This axis is an eigenvector of the Hessian and has a positive eigenvalue.
Along the axis corresponding to x2, the function curves downward. This direction is an
eigenvector of the Hessian with negative eigenvalue. The name “saddle point” derives from
the saddle-like shape of this function. This is the quintessential example of a function with
a saddle point. In more than one dimension, it is not necessary to have an eigenvalue of 0
to get a saddle point: it is only necessary to have both positive and negative eigenvalues.
We can think of a saddle point with both signs of eigenvalues as being a local maximum
within one cross section and a local minimum within another cross section.

88

CHAPTER 4. NUMERICAL COMPUTATION

− − −30 20 10 0 10 20

x1

−30

−20

−10

0

10

20

x
2

Figure 4.6: Gradient descent fails to exploit the curvature information contained in the
Hessian matrix. Here we use gradient descent to minimize a quadratic function f(x) whose
Hessian matrix has condition number 5. This means that the direction of most curvature
has five times more curvature than the direction of least curvature. In this case, the most
curvature is in the direction [1, 1], and the least curvature is in the direction [1,−1].
The red lines indicate the path followed by gradient descent. This very elongated quadratic
function resembles a long canyon. Gradient descent wastes time repeatedly descending
canyon walls because they are the steepest feature. Since the step size is somewhat too
large, it has a tendency to overshoot the bottom of the function and thus needs to descend
the opposite canyon wall on the next iteration. The large positive eigenvalue of the Hessian
corresponding to the eigenvector pointed in this direction indicates that this directional
derivative is rapidly increasing, so an optimization algorithm based on the Hessian could
predict that the steepest direction is not actually a promising search direction in this
context.

89

CHAPTER 4. NUMERICAL COMPUTATION

This issue can be resolved by using information from the Hessian matrix to guide
the search. The simplest method for doing so is known as Newton’s method.
Newton’s method is based on using a second-order Taylor series expansion to
approximate near some pointf()x x(0) :

f f() x ≈ (x(0))+(x x− (0))∇xf(x(0))+
1

2
(x x− (0))H x()(f (0))(x x− (0)). (4.11)

If we then solve for the critical point of this function, we obtain

x∗ = x(0) −H x()(f (0))−1∇xf(x(0)). (4.12)

When f is a positive definite quadratic function, Newton’s method consists of
applying equation once to jump to the minimum of the function directly.4.12
When f is not truly quadratic but can be locally approximated as a positive
definite quadratic, Newton’s method consists of applying equation multiple4.12
times. Iteratively updating the approximation and jumping to the minimum of
the approximation can reach the critical point much faster than gradient descent
would. This is a useful property near a local minimum, but it can be a harmful
property near a saddle point. As discussed in section , Newton’s method is8.2.3
only appropriate when the nearby critical point is a minimum (all the eigenvalues
of the Hessian are positive), whereas gradient descent is not attracted to saddle
points unless the gradient points toward them.

Optimization algorithms that use only the gradient, such as gradient descent,
are called first-order optimization algorithms. Optimization algorithms that
also use the Hessian matrix, such as Newton’s method, are called second-order

optimization algorithms (Nocedal and Wright 2006,).

The optimization algorithms employed in most contexts in this book are
applicable to a wide variety of functions but come with almost no guarantees. Deep
learning algorithms tend to lack guarantees because the family of functions used in
deep learning is quite complicated. In many other fields, the dominant approach to
optimization is to design optimization algorithms for a limited family of functions.

In the context of deep learning, we sometimes gain some guarantees by restrict-
ing ourselves to functions that are either Lipschitz continuous or have Lipschitz
continuous derivatives. A Lipschitz continuous function is a function f whose rate
of change is bounded by a Lipschitz constant L:

∀ ∀ | − | ≤ L|| − ||x, y, f()x f()y x y 2. (4.13)

This property is useful because it enables us to quantify our assumption that a
small change in the input made by an algorithm such as gradient descent will have

90

CHAPTER 4. NUMERICAL COMPUTATION

a small change in the output. Lipschitz continuity is also a fairly weak constraint,
and many optimization problems in deep learning can be made Lipschitz continuous
with relatively minor modifications.

Perhaps the most successful field of specialized optimization is convex op-
timization. Convex optimization algorithms are able to provide many more
guarantees by making stronger restrictions. These algorithms are applicable only
to convex functions—functions for which the Hessian is positive semidefinite ev-
erywhere. Such functions are well-behaved because they lack saddle points, and
all their local minima are necessarily global minima. However, most problems in
deep learning are difficult to express in terms of convex optimization. Convex
optimization is used only as a subroutine of some deep learning algorithms. Ideas
from the analysis of convex optimization algorithms can be useful for proving
the convergence of deep learning algorithms, but in general, the importance of
convex optimization is greatly diminished in the context of deep learning. For
more information about convex optimization, see Boyd and Vandenberghe 2004()
or Rockafellar 1997().

4.4 Constrained Optimization

Sometimes we wish not only to maximize or minimize a function f(x) over all
possible values of x. Instead we may wish to find the maximal or minimal
value of f (x) for values of x in some set S. This is known as constrained
optimization. Points x that lie within the set S are called feasible points in
constrained optimization terminology.

We often wish to find a solution that is small in some sense. A common
approach in such situations is to impose a norm constraint, such as .|| || ≤x 1

One simple approach to constrained optimization is simply to modify gradient
descent taking the constraint into account. If we use a small constant step size  ,
we can make gradient descent steps, then project the result back into S. If we use
a line search, we can search only over step sizes  that yield new x points that are
feasible, or we can project each point on the line back into the constraint region.
When possible, this method can be made more efficient by projecting the gradient
into the tangent space of the feasible region before taking the step or beginning
the line search (,).Rosen 1960

A more sophisticated approach is to design a different, unconstrained opti-
mization problem whose solution can be converted into a solution to the original,
constrained optimization problem. For example, if we want to minimize f(x) for

91

CHAPTER 4. NUMERICAL COMPUTATION

x ∈ R2 with x constrained to have exactly unit L2 norm, we can instead minimize
g(θ) = f ([cos sinθ, θ]) with respect to θ , then return [cos sinθ, θ] as the solution
to the original problem. This approach requires creativity; the transformation
between optimization problems must be designed specifically for each case we
encounter.

The Karush–Kuhn–Tucker (KKT) approach1 provides a very general so-
lution to constrained optimization. With the KKT approach, we introduce a
new function called the generalized Lagrangian or generalized Lagrange

function.

To define the Lagrangian, we first need to describe S in terms of equations
and inequalities. We want a description of S in terms of m functions g()i and n

functions h()j so that S = { | ∀x i, g()i (x) = 0 and ∀j, h()j (x) ≤ 0}. The equations
involving g()i are called the equality constraints, and the inequalities involving
h()j are called inequality constraints.

We introduce new variables λi and α j for each constraint, these are called the
KKT multipliers. The generalized Lagrangian is then defined as

L , , f(x λ α) = () +x


i

λi g
()i () +x



j

αjh
()j ()x . (4.14)

We can now solve a constrained minimization problem using unconstrained
optimization of the generalized Lagrangian. As long as at least one feasible point
exists and is not permitted to have value , thenf()x ∞

min
x

max
λ

max
α α, ≥0

L , ,(x λ α) (4.15)

has the same optimal objective function value and set of optimal points asx

min
x∈S

f .()x (4.16)

This follows because any time the constraints are satisfied,

max
λ

max
α α, ≥0

L , , f ,(x λ α) = ()x (4.17)

while any time a constraint is violated,

max
λ

max
α α, ≥0

L , , .(x λ α) = ∞ (4.18)

These properties guarantee that no infeasible point can be optimal, and that the
optimum within the feasible points is unchanged.

1
The KKT approach generalizes the method of Lagrange multipliers, which allows equality

constraints but not inequality constraints.

92

CHAPTER 4. NUMERICAL COMPUTATION

To perform constrained maximization, we can construct the generalized La-
grange function of , which leads to this optimization problem:−f()x

min
x

max
λ

max
α α, ≥0

−f() +x


i

λ ig
()i () +x



j

αjh
()j ()x . (4.19)

We may also convert this to a problem with maximization in the outer loop:

max
x

min
λ

min
α α, ≥0

f() +x


i

λig
()i ()x −



j

αjh
()j ()x . (4.20)

The sign of the term for the equality constraints does not matter; we may define it
with addition or subtraction as we wish, because the optimization is free to choose
any sign for each λi.

The inequality constraints are particularly interesting. We say that a constraint
h()i (x) is active if h()i (x∗) = 0. If a constraint is not active, then the solution to
the problem found using that constraint would remain at least a local solution if
that constraint were removed. It is possible that an inactive constraint excludes
other solutions. For example, a convex problem with an entire region of globally
optimal points (a wide, flat region of equal cost) could have a subset of this
region eliminated by constraints, or a nonconvex problem could have better local
stationary points excluded by a constraint that is inactive at convergence. Yet the
point found at convergence remains a stationary point whether or not the inactive
constraints are included. Because an inactive h()i has negative value, then the
solution to minxmaxλ maxα α, ≥0 L(x λ α, ,) will have αi = 0. We can thus observe
that at the solution, α h (x) = 0. In other words, for all i, we know that at least
one of the constraints α i ≥ 0 or h()i (x) ≤ 0 must be active at the solution. To gain
some intuition for this idea, we can say that either the solution is on the boundary
imposed by the inequality and we must use its KKT multiplier to influence the
solution to x, or the inequality has no influence on the solution and we represent
this by zeroing out its KKT multiplier.

A simple set of properties describe the optimal points of constrained opti-
mization problems. These properties are called the Karush-Kuhn-Tucker (KKT)
conditions (, ;Karush 1939 Kuhn and Tucker 1951,). They are necessary conditions,
but not always sufficient conditions, for a point to be optimal. The conditions are:

• The gradient of the generalized Lagrangian is zero.

• All constraints on both and the KKT multipliers are satisfied.x

• The inequality constraints exhibit “complementary slackness”: α h (x) = 0.

For more information about the KKT approach, see Nocedal and Wright 2006().

93

CHAPTER 4. NUMERICAL COMPUTATION

4.5 Example: Linear Least Squares

Suppose we want to find the value of that minimizesx

f() =x
1

2
|| − ||Ax b 2

2. (4.21)

Specialized linear algebra algorithms can solve this problem efficiently; however,
we can also explore how to solve it using gradient-based optimization as a simple
example of how these techniques work.

First, we need to obtain the gradient:

∇xf() = x A () = Ax b− AAx A− b. (4.22)

We can then follow this gradient downhill, taking small steps. See algorithm 4.1
for details.

Algorithm 4.1 An algorithm to minimize f(x) = 1
2

|| − ||Ax b 2
2 with respect to x

using gradient descent, starting from an arbitrary value of .x

Set the step size () and tolerance () to small, positive numbers. δ
while ||AAx A− b||2 > δ do

x x← − 

AAx A− b



end while

One can also solve this problem using Newton’s method. In this case, because
the true function is quadratic, the quadratic approximation employed by Newton’s
method is exact, and the algorithm converges to the global minimum in a single
step.

Now suppose we wish to minimize the same function, but subject to the
constraint xx ≤ 1. To do so, we introduce the Lagrangian

L ,λ f λ(x) = () +x

xx− 1


. (4.23)

We can now solve the problem

min
x

max
λ,λ≥0

L ,λ .(x) (4.24)

The smallest-norm solution to the unconstrained least-squares problem may be
found using the Moore-Penrose pseudoinverse: x =A+b. If this point is feasible,
then it is the solution to the constrained problem. Otherwise, we must find a

94

CHAPTER 4. NUMERICAL COMPUTATION

solution where the constraint is active. By differentiating the Lagrangian with
respect to , we obtain the equationx

AAx A− b x+ 2λ = 0. (4.25)

This tells us that the solution will take the form

x A= (A I+ 2λ)−1Ab. (4.26)

The magnitude of λ must be chosen such that the result obeys the constraint. We
can find this value by performing gradient ascent on . To do so, observeλ

∂

∂λ
L ,λ(x) = xx− 1. (4.27)

When the norm of x exceeds 1, this derivative is positive, so to follow the derivative
uphill and increase the Lagrangian with respect to λ, we increase λ . Because the
coefficient on the xx penalty has increased, solving the linear equation for x
will now yield a solution with a smaller norm. The process of solving the linear
equation and adjusting λ continues untilx has the correct norm and the derivative
on is 0.λ

This concludes the mathematical preliminaries that we use to develop machine
learning algorithms. We are now ready to build and analyze some full-fledged
learning systems.

95

