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Basics

A scalar is a number.

A vector is a 1-D array of numbers. The set of vectors of length n
with real elements is denoted by Rn.

Vectos can be multiplied by a scalar.
Vector can be added together if dimensions match.

A matrix is a 2-D array of numbers. The set of m× n matrices
with real elements is denoted by Rm×n.

Matrices can be added together or multiplied by a scalar.
We can multiply Matrices to a vector if dimensions match.

In the rest we denote scalars with lowercase letters like a, vectors
with bold lowercase v, and matrices with bold uppercase A.
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Norms

Norms measure how “large” a vector is. They can be defined for
matrices too.

The `p-norm for a vector x:

‖x‖p =

[∑
i

|xi|p
] 1

p

.

The `2-norm is known as the Euclidean norm.
The `1-norm is known as the Manhattan norm, i.e., ‖x‖1 =

∑
i |xi|.

The `∞ is the max (or supremum) norm, i.e., ‖x‖∞ = maxi |xi|.
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Dot Product

Dot product is defined as v · u = v>u =
∑

i uivi.

The `2 norm can be written in terms of dot product: ‖u‖2 =
√

u.u.

Dot product of two vectors can be written in terms of their `2
norms and the angle θ between them:

a>b = ‖a‖2 ‖b‖2 cos(θ).
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Cosine Similarity

Cosine between two vectors is a measure of their similarity:

cos(θ) =
a · b
‖a‖ ‖b‖

.

Orthogonal Vectors: Two vectors a and b are orthogonal to
each other if a · b = 0.
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Vector Projection

Given two vectors a and b, let b̂ = b
‖b‖ be the unit vector in the

direction of b.

Then a1 = a1 · b̂ is the orthogonal projection of a onto a straight
line parallel to b, where

a1 = ‖a‖ cos(θ) = a · b̂ = a · b

‖b‖

Image taken from wikipedia.
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Trace

Trace is the sum of all the diagonal elements of a matrix, i.e.,

Tr(A) =
∑
i

Ai,i.

Cyclic property:

Tr(ABC) = Tr(CAB) = Tr(BCA).
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Multiplication

Matrix-vector multiplication is a linear transformation. In other
words,

M(v1 + av2) = Mv1 + aMv2 =⇒ (Mv)i =
∑
j

Mi,jvj .

Matrix-matrix multiplication is the composition of linear
transformations, i.e.,
(AB)v = A(Bv) =⇒ (AB)i,j =

∑
k Ai,kBk,j .
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Invertibality

I denotes the identity matrix which is a square matrix of zeros
with ones along the diagonal. It has the property IA = A
(BI = B) and Iv = v

A square matrix A is invertible if A−1 exists such that
A−1A = AA−1 = I.

Not all non-zero matrices are invertible, e.g., the following matrix
is not invertible: [

1 1
1 1

]
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Transposition

Transposition is an operation on matrices (and vectors) that
interchange rows with columns. (A>)i,j = Aj,i.

(AB)> = B>A>.

A is called symmetric when A = A>.

A is called orthogonal when AA> = A>A = I or A−1 = A>.
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Diagonal Matrix

A diagonal matrix has all entries equal to zero except the diagonal
entries which might or might not be zero, e.g. identity matrix.

A square diagonal matrix with diagonal enteries given by entries of
vector v is denoted by diag(v).

Multiplying vector x by a diagonal matrix is efficient:

diag(v)x = v � x,

where � is the entrywise product.

Inverting a square diagonal matrix is efficient

diag(v)−1 = diag
(

[
1

v1
, . . . ,

1

vn
]>
)
.
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Determinant

Determinant of a square matrix is a mapping to scalars.

det(A) or |A|

Measures how much multiplication by the matrix expands or
contracts the space.

Determinant of product is the product of determinants:

det(AB) = det(A)det(B)

∣∣∣∣a b
c d

∣∣∣∣ = ad− bc
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List of Equivalencies

Assuming that A is a square matrix, the following statements are
equivalent

Ax = b has a unique solution (for every b with correct
dimension).

Ax = 0 has a unique, trivial solution: x = 0.

Columns of A are linearly independent.

A is invertible, i.e. A−1 exists.

det(A) 6= 0
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Zero Determinant

If det(A) = 0, then:

A is linearly dependent.

Ax = b has infinitely many solutions or no solution. These cases
correspond to when b is in the span of columns of A or out of it.

Ax = 0 has a non-zero solution. (since every scalar multiple of
one solution is a solution and there is a non-zero solution we get
infinitely many solutions.)
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Matrix Decomposition

We can decompose an integer into its prime factors, e.g.,
12 = 2× 2× 3.

Similarly, matrices can be decomposed into product of other
matrices.

A = Vdiag(λ)V−1

Examples are Eigendecomposition, SVD, Schur decomposition, LU
decomposition, . . . .
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Eigenvectors

An eigenvector of a square matrix A is a nonzero vector v such
that multiplication by A only changes the scale of v.

Av = λv

The scalar λ is known as the eigenvalue.

If v is an eigenvector of A, so is any rescaled vector sv. Moreover,
sv still has the same eigenvalue. Thus, we constrain the
eigenvector to be of unit length:

||v||2 = 1
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Characteristic Polynomial(1)

Eigenvalue equation of matrix A.

Av = λv

λv −Av = 0

(λI−A)v = 0

If nonzero solution for v exists, then it must be the case that:

det(λI−A) = 0

Unpacking the determinant as a function of λ, we get:

PA(λ) = det(λI−A) = 1× λn + cn−1 × λn−1 + . . .+ c0

This is called the characterisitc polynomial of A.
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Characteristic Polynomial(2)

If λ1, λ2, . . . , λn are roots of the characteristic polynomial, they are
eigenvalues of A and we have PA(λ) =

∏n
i=1(λ− λi).

cn−1 = −
∑n

i=1 λi = −tr(A). This means that the sum of
eigenvalues equals to the trace of the matrix.

c0 = (−1)n
∏n
i=1 λi = (−1)ndet(A). The determinant is equal to

the product of eigenvalues.

Roots might be complex. If a root has multiplicity of rj > 1 (This
is called the algebraic dimension of eigenvalue), then the geometric
dimension of eigenspace for that eigenvalue might be less than rj
(or equal but never more). But for every eigenvalue, one
eigenvector is guaranteed.
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Example

Consider the matrix:

A =

[
2 1
1 2

]
The characteristic polynomial is:

det(λI−A) = det

[
λ− 2 −1
−1 λ− 2

]
= 3− 4λ+ λ2 = 0

It has roots λ = 1 and λ = 3 which are the two eigenvalues of A.

We can then solve for eigenvectors using Av = λv:

vλ=1 = [1,−1]> and vλ=3 = [1, 1]>
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Eigendecomposition

Suppose that n× n matrix A has n linearly independent
eigenvectors {v(1), . . . ,v(n)} with eigenvalues {λ1, . . . , λn}.

Concatenate eigenvectors (as columns) to form matrix V.

Concatenate eigenvalues to form vector λ = [λ1, . . . , λn]>.

The eigendecomposition of A is given by:

AV = Vdiag(λ) =⇒ A = Vdiag(λ)V−1
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Symmetric Matrices

Every symmetric (hermitian) matrix of dimension n has a set of
(not necessarily unique) n orthogonal eigenvectors. Furthermore,
all eigenvalues are real.

Every real symmetric matrix A can be decomposed into
real-valued eigenvectors and eigenvalues:

A = QΛQ>

Q is an orthogonal matrix of the eigenvectors of A, and Λ is a
diagonal matrix of eigenvalues.

We can think of A as scaling space by λi in direction v(i).
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Eigendecomposition is not Unique

Decomposition is not unique when two eigenvalues are the same.

By convention, order entries of Λ in descending order. Then,
eigendecomposition is unique if all eigenvalues have multiplicity
equal to one.

If any eigenvalue is zero, then the matrix is singular. Because if v
is the corresponding eigenvector we have: Av = 0v = 0.
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Positive Definite Matrix

If a symmetric matrix A has the property:

x>Ax > 0 for any nonzero vector x

Then A is called positive definite.

If the above inequality is not strict then A is called positive
semidefinite.

For positive (semi)definite matrices all eigenvalues are positive(non
negative).
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Singular Value Decomposition (SVD)

If A is not square, eigendecomposition is undefined.

SVD is a decomposition of the form A = UDV>.

SVD is more general than eigendecomposition.

Every real matrix has a SVD.
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SVD Definition (1)

Write A as a product of three matrices: A = UDV>.

If A is m× n, then U is m×m, D is m× n, and V is n× n.

U and V are orthogonal matrices, and D is a diagonal matrix (not
necessarily square).

Diagonal entries of D are called singular values of A.

Columns of U are the left singular vectors, and columns of V
are the right singular vectors.
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SVD Definition (2)

SVD can be interpreted in terms of eigendecompostion.

Left singular vectors of A are the eigenvectors of AA>.

Right singular vectors of A are the eigenvectors of A>A.

Nonzero singular values of A are square roots of eigenvalues of
A>A and AA>.

Numbers on the diagonal of D are sorted largest to smallest and
are non-negative (A>A and AA> are semipositive definite.).
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Matrix norms

We may define norms for matrices too. We can either treat a
matrix as a vector, and define a norm based on an entrywise norm
(example: Frobenius norm). Or we may use a vector norm to
“induce” a norm on matrices.

Frobenius norm:

‖A‖F =

√∑
i,j

a2i,j .

Vector-induced (or operator, or spectral) norm:

‖A‖2 = sup
‖x‖2=1

‖Ax‖2 .
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SVD Optimality

Given a matrix A, SVD allows us to find its “best” (to be defined)
rank-r approximation Ar.

We can write A = UDV> as A =
∑n

i=1 diuiv
>
i .

For r ≤ n, construct Ar =
∑r

i=1 diuiv
>
i .

The matrix Ar is a rank-r approximation of A. Moreover, it is the
best approximation of rank r by many norms:

When considering the operator (or spectral) norm, it is optimal.
This means that ‖A−Ar‖2 ≤ ‖A−B‖2 for any rank r matrix B.
When considering Frobenius norm, it is optimal. This means that
‖A−Ar‖F ≤ ‖A−B‖F for any rank r matrix B. One way to
interpret this inequality is that rows (or columns) of Ar are the
projection of rows (or columns) of A on the best r dimensional
subspace, in the sense that this projection minimizes the sum of
squared distances.
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