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Accuracy

87.8 % - 96.2 %

• Evaluated on Adder, Subtractor, and Multiplier Module Classification
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Significant success in identifying IP Cores using Convolutional Neural Networks
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Precision

84.6 % - 95.5 %

Recall

94.3 % - 99.1 %

Significant success in identifying IP Cores using Convolutional Neural Networks

Shows promise for applications in Trojan detection
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Main Findings

• CNNs can  successfully identify
know logic blocks in generated
binaries with an accuracy rate of 
over 87.8 %, high precision and 
high recall

There is a Need for Post-Development Integrity
Verification in FPGA Designs

Conclusion

Paper Presentation: IP Core Identification in FPGA Configuration Files using Machine Learning Techniques



23

Main Findings

• CNNs can  successfully identify
know logic blocks in generated
binaries with an accuracy rate of 
over 87.8 %, high precision and 
high recall

Implications

• Enable developers to scan their
designs for known malicious
logic

There is a Need for Post-Development Integrity
Verification in FPGA Designs

Conclusion

Paper Presentation: IP Core Identification in FPGA Configuration Files using Machine Learning Techniques



24

Main Findings

• CNNs can  successfully identify
know logic blocks in generated
binaries with an accuracy rate of 
over 87.8 %, high precision and 
high recall

Implications

• Enable developers to scan their
designs for known malicious
logic

Future Works

• Test the approach with complex
logic blocks

There is a Need for Post-Development Integrity
Verification in FPGA Designs

Conclusion

Paper Presentation: IP Core Identification in FPGA Configuration Files using Machine Learning Techniques



25

john.doe@polymtl.ca


