

Engineering Equation Solver

Notions de base

Septembre 2018

Introduction

- Le logiciel EES* (Engineering Equation Solver) a été développé par le professeur Sandy Klein de l'Université du Wisconsin à Madison
- Ce logiciel a pour but de permettre aux étudiants de se concentrent sur la mise en équation du problème et non sur la recherche des propriétés dans des tables ou sur la méthode de solution

* Prononcé « ease »

Mise en garde

Bien que EES puisse fonctionner avec la virgule (,) comme séparateur décimal et le point virgule (;) comme séparateur de listes, il est recommandé d'utiliser le point (.) comme séparateur décimal et la virgule (,) comme séparateur de listes.

C'est opération s'effectue à l'aide du panneau de configuration de Windows tel qu'indiqué sur la figure ci-contre.

Note: Il est conseillé de garder les 5 valeurs d'unité par défaut-> [kJ]/[C]/[kPa]/[kg]/[degrees] Ces valeurs s'appliquent pour toute la durée de la session de travail.

Ces préférences sont conservées lorsque le programme développé est sauvegardé.

Démarrage (suite)

Ces onglets donnent accès à des paramètres que l'on peut changer au démarrage et qui s'appliquent tout au long de la séance de travail.

EES Academic Commercial:
File Edit Search Options Calculate Tables Plots Windows Help Examples
Equations Window

Le systèmes d'équations à résoudre est écrit dans cette fenêtre

C'est la fenêtre la plus importante du logiciel !!

Equations Window (suite)

EES Academic Commercial:	
File Edit Search Options Calculate Tables Plots Windows Help Examples	
Equations Window	
m=1 a=2 F=m*a	
Exemple : Écrire ces 3 équations	Solution
Appuyer sur F2	Main Unit Settings: [kJ]/[C]/[kPa]/[kq]/[degrees]
Ou utiliser le menu Calculate-Solve	a=2 F=2 m=1
Ou utiliser l'icône	Calculation time = .0 sec
On obtient la solution suivante	

Equations Window (suite)

On peut aussi écrire ces équations de la façon suivante:

E _{ES} E	ES Ac	ademic	Commer	cial:						
File	Edit	Search	Options	Calculate	Tables	Plots	Windows	Help	Examples	
⊜	.		탁 <u>다</u>		si 🗸		⊾ <mark>⊻</mark> g			3
E _{ES}	Equat	ions Wir	ndow							
r	n=1									
2	2=a									
	/a=m	1								

.. et on aurait le même résultat:

EE8 Solu	tion	
Main]	
Unit a = 2	Settings: [kJ]/[C]/[kPa]/[kg]/[degree F=2 m=1	"s]
Calc	ulation time = .0 sec	

Formatted Equations

• Il est possible de visualiser les équations sous leur forme mathématique («formatter») :

EES Academic Commercial:
File Edit Search Options Calculate Tables Plots Windows Help Examples
Equations Window
m=1
2=a
a=F/m
Formatted Equations
m = 1
2 = a
m
8.1

Formatted Equations (suite)

.... et de copier/coller ces équations en utilisant le bouton droit de la souris)

🔣 EES Academic Commercial:	
File Edit Search Options Calculate Tables Plots Windows Help Examples	
ᅆᇢᇦᅀᆋᅟᄱᆕᅋᆥᅋᆋᅋᇳᆘᆘᅋᄧᅋᄦᄚᆝ	x=y •= 2
Equations Window	
m=1	
2=a	
Formatted Equations	
m = 1	
2 = a	
a = Jump to Equation Window	
Display Units for Constants	
 Display Units for Variables 	
Copy as LaTeX	
Copy as MathType	

Formatted Equations (suite)

• La fenêtre "Formatted equation" peut s'avérer très utile pour vérifier la saisie des équations complexes :

Fes Equations Window	<u> </u>
{Fonction G : Intégration par adaptation automatique du pas}	
p=1 z=1 {Fo}	
f_beta =((exp(-z*beta**2)-1)/((Bessel_J1(beta)**2)+(Bessel_Y1(beta)**2))*((Bessel_J0(p*beta)*Bessel_	Y1(beta))-(Bessel_J1(beta)*Bessel_Y0(p*beta))))/beta**2
G=(1/pi**2)*INTEGRAL(f_beta, beta,0.00001,500) {automatic step ; cf. tolérance}	
Experimental Equations	x
p = 1	
z = 1	
$\left[\operatorname{curr}(z, z^2), z^2\right]$	
$\frac{\exp\left(-2 \cdot \beta\right) - 1}{\left 1 - \frac{2}{2}\left(\alpha\right) + \left 1 - \frac{2}{2}\left(\alpha\right)\right } + \left(J_0\left(p \cdot \beta\right) \cdot Y_1\left(\beta\right) - J_1\left(\beta\right) \cdot Y_0\left(p \cdot \beta\right)\right)$	
$f_{\beta} = \frac{J_1(\beta) + Y_1(\beta)}{2}$	
β	
$G = \frac{1}{\pi^2} \cdot \int_{0.0001} (\tau_\beta) d\beta$	

Equations Window (suite)

Règles s'appliquant aux équations :

• Les opérateurs mathématiques utilisés dans les équations sont conformes aux règles utilisées dans

FORTRAN, C ou PASCAL : +, -, *, /, ^ (ou **)

- Le logiciel EES n'exige pas qu'une variable soit située à la gauche d'une équation. L'utilisateur n'est pas tenu d'isoler la variable inconnue avant de solutionner
- Les équations peuvent être écrites dans un ordre aléatoire car EES optimise lui-même la méthode de calcul
- Les équations s'écrivent en général sur une seule ligne et se termine par l'appuie de la touche « Enter »

Equations window (suite)

Règles s'appliquant aux variables :

- La longueur maximale des variables : 30 caractères
- EES ne fait pas la distinction entre les minuscules et les majuscules dans les variables (sauf pour l'alphabet grec voir ci-dessous)
- Les symboles à proscrire du nom des variables : (|) * / + ^ { } " : ;
- L'utilisateur doit s'assurer de choisir des noms de variables différents des fonctions utilisées par EES. Par exemple : pi, sinus et enthalpy sont des fonctions de EES et donc l'utilisateur ne doit pas utiliser ces noms comme noms de variables.
- L'utilisateur peut afficher la dérivée ou la valeur moyenne d'une variable en inscrivant « _dot » ou « _bar » à la suite de son nom.
- Les chaînes de caractères (variable String) doivent obligatoirement commencer par une lettre et se terminer par « \$ ».
- Il est possible d'utiliser l'alphabet grec.

delta ; DELTA ; DELTAT $\rightarrow \delta$; Δ ; Δ T

• Il est possible d'écrire des indices et des exposants :

A_1 ; A/2 ; A/2_i \rightarrow A₁ ; A² ; A_i²

Caractères spéciaux

• Variables avec caractères spéciaux :

EES Academic Commo	ercial: C:\Documents and Settings\mibern.MECA\Me	s documents\@
File Edit Search Option	s Calculate Tables Plots Windows Help Examples	
🗠 🔒 🚇 🛤 🗔	: 📰 📰 🖌 🔳 🔚 🗠 🔟 🕅 💹	2 🖂 📼 🕯
Equations Window		
ALPHA_x=6	Solution	1
b_dot=2	Main	
c_bar=3 d 2_i=4 deltaT=5 nom\$='mec1210'	Unit Settings: [kJ]/[C]/[kPa]/[kg]/[degrees] $\alpha_x = 6$ $a_1 = 1$ $\dot{b} = 2$ $\bar{c} = 3$ $\delta T = 5$ $d_1^2 = 4$ nom\$ = 'mec1210' Calculation time = .0 sec	

Insertion de commentaires

Note : *Il est essentiel d'inclure des commentaires dans les programmes du projet de thermodynamique*

EES est un solveur d'équations

- EES utilise la méthode de Newton comme résoudre (voir le manuel de EES pour plus de détails).
- EES itérera jusq'à ce que l'erreur relative entre les côtés gauche et droit de chaque équation soit moins qu'une certaine tolérance.

EES est un solveur d'équations (suite)

• On peut vérifier le résidu relatif (et absolu) entre les côtés gauche et droit de chaque équation en examinant la fenêtre "Residuals"

Equations Window	
x*ln(x)=Y^3	
x^2=1/y	
Formatted Equations	Désidu relatif
$x = 10 (x) = \sqrt{3}$	
$\mathbf{x} \cdot \mathbf{m}(\mathbf{x}) = \mathbf{r}$	
$x^2 = \frac{1}{1}$	Le processus iteratil
γ ^{Les} Residuals	arrête lorsque le résidu
There are a total of 2 equations in 1 blocks in the Main program.	relatif est inférieur à 10 ⁻⁶
Block Rel. Res. Abs. Res. Equations	
$1 = 2.550E-10 = 2.550E-10 \times 2.5174E-17 \times 10000000000000000000000000000000000$	
Variables shown in bold font are determined by the equation(s) in each block.	

L'examen des résidus peut s'avérer utile lors du "débogage" d'un programme

EES est un solveur d'équations (suite)

• On doit s'assurer d'avoir « n » équations pour « n » inconnues ... sinon EES génère un message d'erreur.

EES Academic Commercial: C:\Documents and Settings\mibern.MECA\Mes documents\enseignement\cou	ırs_ees\ppt_a05\exemp
File Edit Search Options Calculate Tables Plots Windows Help Examples	
ᅆᆞ	
Equations Window	
m=2 F=m*a	
Error	×
There are 2 equations and 3 variables. The problem is underspecified and cannot be solved. Show Debug in	nformation?
<u>Y</u> es <u>N</u> o	

Variable information

- En appuyant sur F9 ou sur l'icône « Variable Info » on obtient le tableau suivant
- Il est *fortement recommandé* d'entrer toute l'information pour chaque variable.

<mark>EES</mark> EES Acad	lemic Commercial:						/			
File Edit S	iearch Options Calculate Ta	bles Plots Window:	s Help Example	s i i i						
	· 원탁도 🖸 🗄 🗉			7 🗵 🖂 🗾	a:S	E RE		8 🖻 🗄	<u> </u>	
EES Equation	🙀 Equations Window									
m=1						/				
a=2 E=m*a	Es Variable Information				k	_			?	I X
	Show array variables								周	
	Show string variables									
	Variable	Guess 💌	Lower	Upper	Displ	ay	Units	Кеу	Comment	
	а	1	-infinity	infinity	A 3	Ν				
	F	1	-infinity	infinity	A 3	Ν				
	m	1	-infinity	infinity	A 3	N				
	J	 				1 1		1 1		
	🗸 ок	E Apply		💾 Print			Update		X Cancel	
					_	_		_		11.

Variable	Guess 🔻	Lower	Upper
а	1	-infinity	infinity
F	1	-infinity	infinity
m	1	-infinity	infinity

- Si vous connaissez l'étendue probable de la valeur d'une variable à calculer, il est conseillé de changer les limites inférieures (lower) et supérieures (upper) pour indiquer cette étendue.
- Si vous avez une hypothèse raisonnable de la valeur finale d'une variable critique, il est conseillé d'indiquer une value cible « guess » s'approchant de la valeur finale.
- Ces opérations permettent d'accélérer le processus itératif de solution et d'empêcher le système de diverger.

	Di	spla	ау	Units
r	Α	3	Ν	
r	A	3	Ν	
r	A	3	Ν	

- « Display » permet de choisir le nombre de chiffres significatifs et le mode de représentation de chaque variable.
- « Units » permet de fixer les unités de la variable. C'est le *paramètre le plus important* à entrer dans cette fenêtre.

Кеу	Comment

- En cliquant sur « Key» cela permet d'identifier cette variable comme une variable « clé » . Les variables « clé » apparaissent dans une fenêtre distincte lors de la solution finale.
- « Comment » permet d'apposer un commentaire sur certaines variables. Ces commentaires sont apposés aux variables « Key »

Vérification de la cohérence des unités des équations

• La fonction F8 (« Check units ») est l'une des plus utiles de EES

• Elle permet de vérifier que les unités de part et d'autre de chaque équation sont cohérentes

Vérification de la cohérence des unités des équations (suite)

• Pour les fins de cet exemple, introduisons une erreur dans l'unité de la force F.

Show array variables							æ	
Variable	Guess 💌	Lower	Upper	Display	Units	Key	Comment	
a F m	1.000E+00 1 1.000	-infinity -infinity 0.0000E+00	infinity infinity infinity	E 3 N m A 3 NJ F 3 B kg	/s^2)	х	accélération force masse	
a F m	1.000E+00 1 1.000	-infinity -infinity 0.0000E+00	infinity infinity infinity	E 3 N m A 3 N J F 3 B kg	/s^2)]	x	accélération force masse	

• En appuyant sur F8 (check units) on obtient le message suivant:

Assignation des unités pour les constantes numériques

 Il est recommandé d'entrer toutes les unités par l'intermédiaire du tableau « Variable info » . Toutefois, EES permet d'entrer les unités des <u>constantes numériques</u> dans la fenêtre « Equations » tel que montré cidessous :

E _{ES} E	E <mark>S Acad</mark> e	emic C	ommer	cial:										
File	Edit Se	arch	Options	Calculate	Tables	Plots	Windo	ws H	lelp	Exam	ples			
<u>e</u>		æ		I I [si 🖌		⊾Ľ	G			100	<u>1</u>	Ø	x=y
E _{ES}	Equation	s Wind	low									П×	1	
	1=1 [m]													
Ľ	2=2 [m]													
L	3=L1+L2	2+2[m]												
														1
	EEs Solut	tion										_ 0	×	
	Main													
	Unit S	Settina	s: [k.l]/l	Cl/[kPa]/	[ka]/[de	arees	a							
	11 1		o. []ri	ւ սուս։ Մա	0 []	.g.ooc	U.	1.2	Г	r				
	LI = I	լայ		LZ	= 2 [m]			LJ	= 5	լայ				
	Calcu	lation	time = .	0 sec										

Facteurs de conversion

• La fonction « Convert » permet de faire la conversion d'unités.

EES Academic Commercial:	
ile Edit Search Options Calculate Tables Plots Windows Help I	Examples
> 🕞 📇 🛤 🕵 💽 📰 💽 🖌 🔳 💻 🖂 ன	
Equations Window	
L=1 {pied}	
L_si=L*convert(ft.m)	
Fig Solution	
Main	
Unit Settings: [kJ]/[C]/[kPa]/[kg]/[degrees]	
L = 1 [ft] L _{si} = 0.3048 [m]	
Calculation time = .0 sec	

'Variable info' & Conversion d'unités

• Les unités reconnues par EES peuvent être visualisées dans le menu « Options » et onglet « Unit Conversion Info » :

Facteurs de conversion (suite)

Exemple d'utilisation :

 $P_a = 10$ [psi] $P_si = P_a * Convert(psi, kPa)$

{ Pression convertie en kPa }

Mise en garde :

La fonction « Convert » converti des différences de température

Ex : $\Delta TK = \Delta TC * Convert(C, K) \longrightarrow 2 paramètres$

La fonction « **ConverTemp** » converti des températures d'une <u>échelle à une</u> <u>autre (</u>de Fahrenheit à Celsius par exemple)

Ex : TK = ConvertTemp(C, K, TC) ----> 3 paramètres

Caractères spéciaux :

Dans le tableau « Variable Info », pour entrer μ (pour μ m par exemple) ----> Faites (Alt-Key) et taper 230 sur le clavier numérique

> Cela donne accès aux caractères ASCII Voir 'Index' pour la liste des caractères disponibles

De même : Le symbole des degré (°) ----> (Alt) + 248

Pour représenter une multiplication (\cdot) ----> (Alt) + 250

Unités composées :

Les 3 symboles suivants peuvent être utilisés comme séparateur d'unités : (-), (*), Alt-250 (·)

Par exemple : Ces 3 expressions sont équivalentes ----> W-hr , W*hr , W·hr

Fonctions mathématique

Commercial:		
Options Calculate Tables Plots V Variable Info F9	Vindows Help Examples	
Unit Conversion Info Constants		
Unit System F Stop Criteria	Function Information	<u>?×</u>
Show Diagram Tool Bar	 Math functions Fluid properties Solid/liquid properties 	 EES library routines External routines
Preferences	? Function Info	
	ABS ANGLE ANGLEDEG ANGLERAD ARCCOS ARCCOSH ARCSIN ARCSINH ARCSINH ARCTAN	
	Ex: abs(Value)	X Done

Fonctions mathématique (suite)

EES Academic Commercial: C:\DOCUMENTS AND SETTINGS\MIBERN.ME	¢.
File Edit Search Options Calculate Tables Plots Windows Help Examp	4 2
Equations Window x=arcsinh(30)	Note :
Main Unit Settings: [kJ]/[C]/[kPa]/[kg]/[degrees] x = 4.095	Dans cet exemple la valeur de 30 est en degré, puisque les « degrés » ont été fixées dans le panneau de préférences au démarrage
Calculation time = .0 sec	

PROPRIÉTÉS THERMODYNAMIQUES

NOTE : Une des forces du logiciel EES est sa banque de propriétés pour les Gaz – Liquides - Solides

ATTENTION : Les propriétés physiques disponibles diffèrent selon le type de matériau !

Les différents matériaux sont regroupés 6 catégories :

- Ideal Gases : Gaz parfait ----- CO₂
- Real fluids : Fluides réels
 - a) Fluides (gaz ou liquides) courants ----- CarbonDioxideb) Réfrigérants (la série Rxxx)
- AirH2O : Air humide
- NASA : Tableau complet de la NASA pour les gaz parfaits
- Brines : Saumures servant de caloporteur
- Incompressible : Fluides et solides

Propriétés thermodynamiques : Fluides réels (suite)

		REAL FLUIDS	
Acetone	m-Xylene	<u>R11</u>	<u>R218</u>
<u>Air ha</u>	Methane	R12	R227ea
Ammonia	Methanol	R13	R236fa
Argon	o-Xylene	R14	R245fa
Benzene	<u>n-Butane</u>	<u>R22</u>	<u>R290</u>
Butene	<u>n-Decane</u>	<u>R23</u>	<u>R404A</u>
Carbondioxide	<u>n-Dodecane</u>	<u>R32</u>	<u>R407C</u>
Carbonmonoxide	<u>n-Heptane</u>	<u>R41</u>	<u>R410A</u>
CarbonylSulfide	<u>n-Hexane</u>	<u>R114</u>	<u>R423A</u>
Cis-2-Butene	<u>n-Octane</u>	<u>R116</u>	<u>R500</u>
Cyclohexane	<u>n-Nonane</u>	<u>R123</u>	<u>R502</u>
<u>D4</u>	<u>n-Pentane</u>	<u>R124</u>	<u>R507A</u>
<u>D5</u>	<u>Neon</u>	<u>R125</u>	<u>R508B</u>
<u>Deuterium</u>	Neopentane	<u>R134a</u>	<u>R600</u>
DimethylCarbonate	<u>Nitrogen</u>	<u>R141b</u>	<u>R600a</u>
<u>DimethylEther</u>	<u>NitrousOxide</u>	<u>R142b</u>	<u>R717</u>
<u>Ethane</u>	<u>Oxygen</u>	<u>R143a</u>	<u>R718</u>
<u>Ethanol</u>	<u>o-Zylene</u>	<u>R143m</u>	<u>R744</u>
Ethylbenzene	Parahydrogen	<u>R152a</u>	<u>RC318</u>
Ethylene	Propane	<u>R161</u>	<u>R1234yf</u>
<u>Fluorine</u>	<u>p-Xylene</u>		<u>R1234ze</u>
<u>Helium</u>	Propylene		
<u>Hydrogen</u>	<u>Steam</u>		
HFE7500	Steam_IAPWS		
<u>HydrogenSulfide</u>	Steam_NBS		
lce	SulfurDioxide		
<u>Isobutane</u>	SulfurHexafluoride		
<u>Isobutene</u>	<u>Toluene</u>	Pour 1	e cours MEC1210 ·
<u>Isohexane</u>	<u>trans-2-butene</u>	I Oul I	
Isopentane	Water		Iltilisation de · Water
Krypton	Xenon		
MDM			
MD4M			

MM

Propriétés thermodynamiques : (suite)

Gaz parfaits - Saumures - Fluides & Solides

IDEAL GASES	BRINES
Air	CACL2 (Calcium Chloride-Water)
<u>AirH2O</u>	EA (Ethylene Alcohol-Water)
Ar	EG (Ethylene Glycol-Water)
CH3OH	GLYC (Glycerol-Water)
<u>CH4</u>	K2CO3 (Potassium Carbonate-Water)
<u>C2H2</u>	KAC (Potassium Acetate-Water)
<u>C2H4</u>	KFO (Potassium Formate-Water)
<u>C2H6</u>	LICL (Lithium Chloride-Water)
<u>C2H5OH</u>	MA (Methyl Alcohol-Water)
<u>C3H8</u>	MGCL2 (Magnesium Chloride-Water)
<u>C4H10</u>	NACL (Sodium Chloride-Water)
<u>C5H12</u>	NH3W (Ammonia-Water)
<u>C6H14</u>	PG (Propylene Glycol-Water)
<u>C8H18</u>	
<u>CO</u>	
<u>CO2</u>	
<u>H2</u>	
<u>H2O</u>	
He	
<u>N2</u>	
NO	
<u>NO2</u>	
<u>02</u>	
<u>SO2</u>	
NASA Gases	

----- INCOMPRESSIBLE ------

Incompressible substances are provided in separate Lookup (.LKT) tables. See the <u>Function Information dialog</u> for a list of these substances.

Propriétés thermodynamiques (suite)

	Example :
Image: Search Search Options Calculate Tables Plots Windows Help Examples Image: Search Options Calculate Tables Plots Windows Help Examples Image: Search Options Calculate Tables Plots Windows Help Examples Image: Search Options Calculate Tables Plots Windows Help Examples Image: Search Options Calculate Tables Plots Windows Help Examples Image: Search Options Calculate Tables Plots Windows Help Examples Image: Search Options Calculate Tables Plots Windows Help Examples Image: Search Options Calculate Tables Plots Windows Help Examples Image: Search Options Calculate Tables Plots Windows Help Examples Image: Search Options Calculate Tables Plots Windows Help Examples Image: Search Options Help Examples	Évaluer le volume spécifique de l'air à T = 300 °C et $P = 100 kPa$
Constants Unit System Stop Criteria Default Info Show Diagram Tool Bar Preferences Preferences Preferences File Edit Search Options Calculate Tables Plots Windows Help Examples C I C I Search Options Calculate Tables Plots Windows Help Examples C I C I Search Options Calculate Tables Plots Windows Help Examples C I C I C I C I C I C I C I C I C I C I	First Academic Commercial First Search Options Calculate Tables Plots Windows Help Exa Image: Comparison of the first of the window of the first of t

Propriétés - Eau

Pour l'eau, il y a plusieurs possibilités:

Les 3 fluides suivants (tous de l'eau) sont équivalents:

Water Steam R718

Les propriétés évaluées en utilisant ces 3 noms sont imprécises à haute pression (> 350 atm)

EES Academic Commercial:
File Edit Search Options Calculate Tables Plots Windows Help Examples
Equations Window
T1=300
a=FNTHALPY(Water T=T1 P=P1)
b=ENTHALPY(Steam,T=T1,P=P1)
c=ENTHALPY(R718,T=T1,P=P1)
Solution
Solution
Main
Main Unit Settings: [kJ]/[C]/[kPa]/[kg]/[degrees]
Solution Image: Solution Main Image: Main Unit Settings: [kJ]/[C]/[kPa]/[kg]/[degrees] a = 3074 [kJ/kg] a = 3074 [kJ/kg] b = 3074 [kJ/kg]
Solution Image: [k]/[C]/[kPa]/[kg]/[degrees] unit Settings: [kJ]/[C]/[kPa]/[kg]/[degrees] a = 3074 [kJ/kg] b = 3074 [kJ/kg] b = 3074 [kJ/kg] c = 3074 [kJ/kg] P1 = 100 [kPa]
Solution Image: [k] Main
Solution Image: Solution Main Main Unit Settings: [kJ]/[C]/[kPa]/[kg]/[degrees] a = 3074 [kJ/kg] b = 3074 [kJ/kg] c = 3074 [kJ/kg] b = 3074 [kJ/kg] c = 3074 [kJ/kg] P1 = 100 [kPa] T1 = 300 [C] Image: Solution
Solution Image: [k] Main Unit Settings: [k]/[C]/[kPa]/[kg]/[degrees] a = 3074 [kJ/kg] b = 3074 [kJ/kg] c = 3074 [kJ/kg] P1 = 100 [kPa] T1 = 300 [C] Calculation time = .0 sec
Solution Image: [k] Main Unit Settings: [kJ]/[C]/[kPa]/[kg]/[degrees] a = 3074 [kJ/kg] b = 3074 [kJ/kg] c = 3074 [kJ/kg] b = 3074 [kJ/kg] c = 3074 [kJ/kg] P1 = 100 [kPa] T1 = 300 [C] Calculation time = .0 sec

Sous-programmes dans EES :

• Le processus itératif ne permet pas d'introduire des boucles dans la fenêtre « Equations », sauf par la commande «Duplicate».

Ex :

NOTE : Les autres types de boucles sont permises dans les **FUNCTION** et **PROCEDURE** qui doivent être placées avant le

programme principal

Ex: IF (X < Y) THEN A = 2 B = 3ELSE A = 25 B = 35ENDIF

<u>Aide – Manuel - Exemples</u>

- EES possède un fichier d'aide accessible par le menu "Help" (ou en cliquant sur F1)
- Le manuel (format pdf) n'est malheureusement pas accessible à partir du menu "Help" dans les laboratoires informatiques de l'École. Help Examples Windows Cependant, il est accessible à Help Index Help for External Libraries Using Help partir du lecteur J: (J:\EES32) EES Manual (Acrobat)

•EES contient un bon nombre d'exemples que l'on peut consulter à partir du menu "Examples" 39