GLQ3401/GLQ3651 : Première partie Cours 2 : Théorie de Lane et Taylor

Objectifs

- Expliquer le concept de matériau minéralisé et la différence avec le minerai;
- Expliquer les concepts de teneur de coupure (t.c.) limite, d'équilibre et optimale ;
- Déterminer les t.c. limites et d'équilibre et en déduire la t.c. optimale;
- Utiliser les résultats de Lane pour prévoir l'influence des différents facteurs entrant dans la détermination d'une t.c. optimale;
- Recommander si une campagne d'échantillonnage supplémentaire est utile ou si un accroissement de capacité de minage ou de traitement est justifié;
- Comprendre l'importance du concept d'absence de biais conditionnel dans l'application de la théorie de Lane.

Plan du cours

- Définitions
- 2. Facteurs influençant la teneur de coupure
- Théorie de Taylor et Lane
 - 3.1 Définitions des variables
 - 3.2 Teneur de coupure limite
 - 3.3 Teneur de coupure d'équilibre
 - 3.4 Teneur de coupure optimale
- 4. Influence des différents paramètres
- Biais conditionnel
- 6. Résumé
- 7. Compléments d'information

1. Définitions

Teneur

Quantité d'un élément contenu dans un mélange, en pourcentage.

Teneur de coupure optimale :

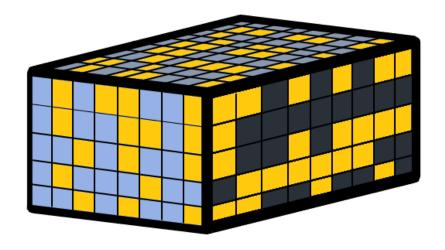
Teneur de coupure permettant de maximiser le profit net par tonne de matériau minéralisé

Minerai :

Portion économiquement rentable du matériau minéralisé

Matériau minéralisé :

Volume de roche susceptible de contenir du minerai


Δ

1. Définitions

Soit un bloc de matériaux minéralisés:

En jaune : teneur d'un petit bloc \geq teneur de coupure (t \geq t.c.)

En bleu: teneur d'un petit bloc < teneur de coupure (t < t.c.)

Comment déterminer la teneur de coupure optimale ?

2. Facteurs influençant la teneur de coupure

Coûts fixes et variables

Si les coûts ↑, la t.c. ↑ (Pourquoi ?)

Prix du métal

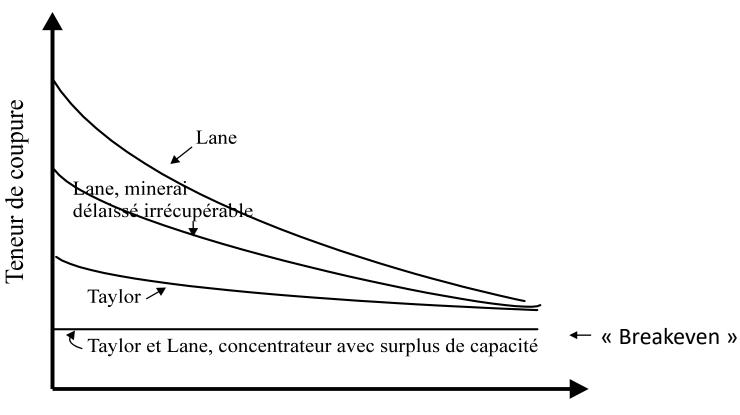
Si le prix ↑, la t.c. ↓ (Normalement, pourquoi n'est-ce pas toujours vrai ?)

Type d'opération

+ ou – sélective;

Dimensions des installations.

Besoins du concentrateur


Doit fonctionner ,normalement, à pleine capacité; Homogénéisation des teneurs pour maximiser la récupération du métal.

Facteur temps

Valeur des \$ dans le temps: exploiter zones riches en premier; Fournir le concentrateur à pleine capacité.

2. Facteurs influençant la teneur de coupure

Facteur temps

Temps

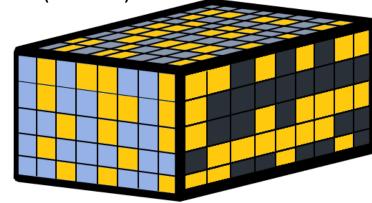
GLQ3401: Géostatistique et géologie minières

3.1 Définitions des variables

Soit une tonne de matériaux minéralisés:

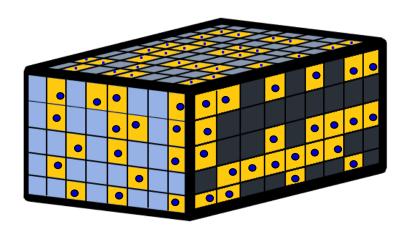
- c : la teneur de coupure
 - → délimite la transition bleu-jaune

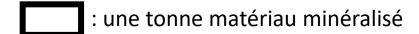
x_c: la proportion du matériau minéralisé sélectionné (minerai)

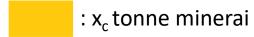

- → le pourcentage de bloc jaune
- → fonction de « c »

g_c: la teneur moyenne du <u>minerai</u>

- \rightarrow la valeur moyenne des blocs jaunes.
- → fonction de « c »


y: le taux de récupération du concentrateur


 \rightarrow *Note:* Le produit $x_c \cdot g_c \cdot y$ représente la quantité de métal récupéré par tonne minéralisée.



3.1 Définitions des variables

Soit une tonne de matériaux minéralisés:

= : $q_c = x_c g_c$ tonne de métal

g_c= teneur du minerai

GLQ3401: Géostatistique et géologie minières

Soit le même bloc de matériaux minéralisés:

Le revenu brut de la vente du métal est déterminé grâce à :

p: le prix d'une tonne de métal

k: le coût de mise en marché d'une tonne de métal

$$\rightarrow x_c \cdot g_c \cdot y \cdot (p-k)$$

Le total des coûts variables est déterminé grâce à:

m: frais variables de minage d'une tonne de matériau minéralisé

→ frais de développement

h: les frais variables de traintement d'une tonne de minerai

→ Forage, sautage, concassage, remontée, homogénéisation.

$$\rightarrow x_c \cdot h + m$$

Soit le même bloc de matériaux minéralisés:

D'autres paramètres :

f: les frais fixes

→ Administration, ingénierie, frais de capital.

F: les coûts d'opportunité

→ valeur actualisée du gisement multiplié par le taux d'intérêt spécifié.

M: la capacité de minage pour le matériau minéralisé

H: la capacité de traitement pour le minerai sélectionné

K: la capacité du marché pour le métal exploité

Notes:

- → H tonnes de minerai extraites implique H/x_c tonnes de matériau minéralisé développées
- \rightarrow K tonnes de métal implique K/(x, g, y) tonnes de matériau minéralisé développées
- → (f+F)/M frais fixes par tonne de matériau minéralisé (production limitée par la mine)
- \rightarrow (f+F)/(H/x_c)frais fixes par tonne de matériau minéralisé (production <u>limitée</u> par la <u>traitement</u>)
- \rightarrow (f+F)/(K/(x_c·g_c·y)) frais fixes par tonne de matériau minéralisé (production <u>limitée</u> par le <u>marché</u>)

Comment déterminer la teneur de coupure optimale ?

Définissons trois facteurs limitatifs :

- 1) Notre capacité à extraire le minerai;
- 2) Notre capacité à traiter le minerai au concentrateur;
- 3) La capacité du marché à absorber notre production de métal.

Ces trois facteurs dépendent de la teneur de coupure

Comment déterminer la teneur de coupure optimale ?

Les profits nets générés par tonne de matériau minéralisé sont :

1) Si la mine est le facteur limitatif;

$$v_1 = (p-k)x_cg_cy - x_ch - m - (f+F)/M$$

2) Si le traitement (concentrateur) est le facteur limitatif;

$$v_2 = (p-k)x_cg_cy - x_ch - m - (f+F)/(H/x_c)$$

3) Si le marché est le facteur limitatif;

$$v_3 = (p-k)x_cg_cy - x_ch - m - (f+F)/(K/x_cg_cy)$$

Revenu brut obtenu de la vente du métal par tonne minéralisé Coûts variables par tonne minéralisée

Frais fixes par tonne minéralisée

Seul terme qui change

GLQ3401: Géostatistique et géologie minières

Comment déterminer la teneur de coupure optimale ?

On veut **maximiser** notre revenu brut en fonction de la proportion du matériau minéralisé sélectionné $(x_c) ! \rightarrow dv/dx_c=0$

À noter que :
$$d(x_cg_c)/dx_c = c$$

En abaissant « c » de dc \rightarrow dx_c minerai supplémentaire et ainsi d(x_cg_c) métal supplémentaire. La teneur du matériau supplémentaire est égale à « c » par construction.

GLQ3401: Géostatistique et géologie minières

3.2 Teneurs de coupure limites

Les teneurs où sont atteints les maximums de « v » sont appelées teneurs de coupure limites:

Mine:

$$c_1 = \frac{h}{y(p-k)}$$

t.c.« breakeven »

Les frais fixes n'interviennent pas

Concentrateur:

$$c_2 = \frac{h + (f + F) / H}{y(p - k)}$$

Marché:

$$c_3 = \frac{h}{[(p-k)-(f+F)/K]y}$$

Note : ces teneurs de coupure sont indépendantes de la distribution des teneurs !

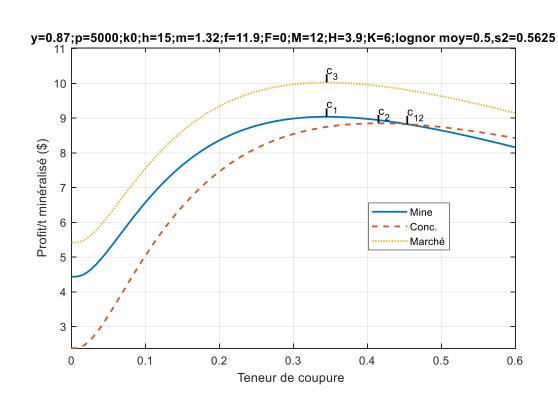
Exercice en équipe :

1) Calcul des teneurs de coupure limites

Teneur de coupure limite

Mine:

$$c_1 = \frac{h}{y(p-k)}$$


Concentrateur:

$$c_2 = \frac{h + (f + F) / H}{y(p - k)}$$

Marché:

$$c_3 = \frac{h}{[(p-k)-(f+F)/K]y}$$

Comment déterminer la teneur de coupure optimale ?

Si l'on opère à c=0.2, quel profit par tonne minéralisée pourra-t-on obtenir?

Que représente une intersection de 2 courbes?

Quelle est la t.c. optimale?

Quel profit a-t-on en opérant à cette teneur?

GLQ3401: Géostatistique et géologie minières GLQ3651: Géologie minière

3.3 Teneurs de coupure d'équilibre

Si H =
$$M \cdot x_c$$

La mine et le concentrateur sont à pleine capacité (équilibre).

Les frais fixes par tonne minéralisée sont égaux pour les 2 courbes.

→ intersection (mine-concentrateur) sur le graphe précédent.

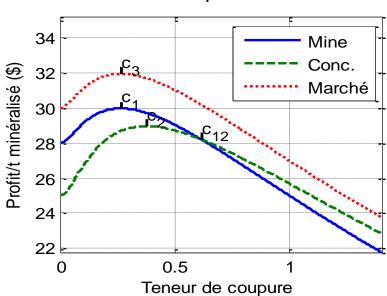
Si K =
$$M \cdot x_c \cdot g_c \cdot y$$

La mine et le marché sont à pleine capacité (équilibre).

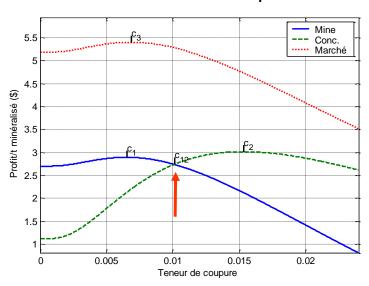
→ intersection sur le graphe précédent.

Si
$$K = H \cdot g_c \cdot y$$

Le concentrateur et le marché sont à pleine capacité (équilibre).


→ intersection sur le graphe précédent.

Note:


- i. Les courbes dépendent uniquement de la distribution des teneurs!
- ii. Pour des M, H et K donnés, il se peut que les teneurs d'équilibre n'existent pas.

3.4 Teneur optimale : deux figures de cas

1) Le maximum est atteint à une coupure limite

2) Le maximum est atteint à une teneur d'équilibre

Cette situation est celle recherchée!

Exercice en équipe : 2) Calcul de la teneur optimal

Teneur de coupure d'équilibre

Mine-

 $H = M \cdot x_c$

Mine-Marché

Concentrateur

 $K = M \cdot x_c \cdot g_c \cdot y$

Concentrateur-Marché

 $K = H \cdot g_c \cdot y$

Profits nets générés par tonne de matériau minéralisé

Mine: $v_1 = (p-k)x_cg_cy - x_ch - m - (f+F)/M$

Concentrateur: $v_2 = (p-k)x_cg_cy - x_ch - m - (f+F)/(H/x_c)$

Marché: $v_3 = (p-k)x_cg_cy - x_ch - m - (f+F)/(K/x_cg_cy)$

GLQ3401: Géostatistique et géologie minières

Exercice en équipe :

3) Comprendre les graphiques de la théorie de Lane

Diminuer « m »

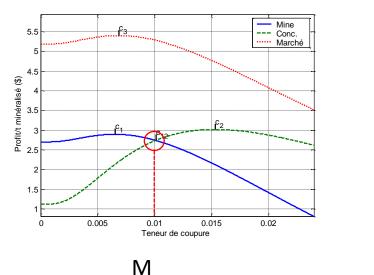
- Les 3 courbes sont translatées vers le haut.
- Le profit \$/t augmente.
- Les teneurs de coupure demeurent les mêmes.
 - → La t.c. optimale est indépendante des coûts de développement!

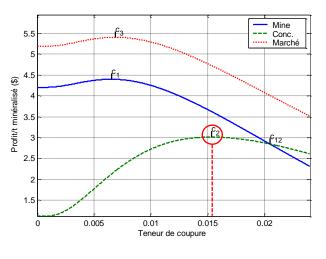
$$c_1 = \frac{h}{y(p-k)}$$

$$c_2 = \frac{h + (f + F) / H}{y(p - k)}$$

Diminuer « h », ou « k » ou augmenter « p »

- Les trois courbes sont translatées vers le haut d'une quantité diminuant selon « c ».
- Le profit \$/t augmente.
 - → La t.c. optimale diminue ou demeure inchangée

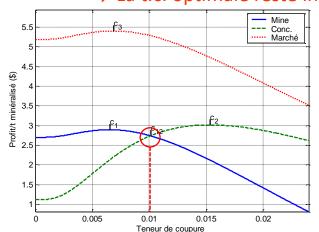

$$c_3 = \frac{h}{[(p-k)-(f+F)/K]y}$$

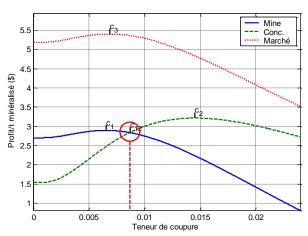

Diminuer «f » ou «F »

- Translation vers le haut d'une quantité différente pour chaque courbe et diminuant selon « c » (sauf la courbe mine).
- Le profit \$/t augmente.
 - → La t.c. optimale diminue ou demeure inchangée

Augmenter la capacité de minage « M »

- La courbe « mine » translatée vers le haut
- Profit \$/t peut augmenter
- Les teneurs d'équilibre « mine-traitement » et « mine-marché » augmentent
 - → La t.c. optimale reste inchangée ou augmente

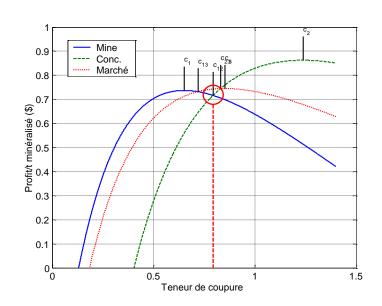


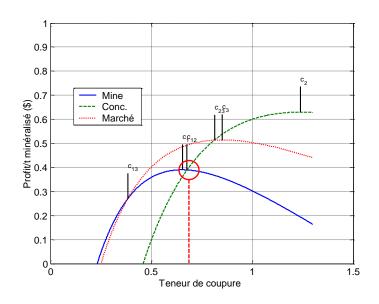

2M

Ici, augmenter M a augmenté la t.c. optimale

Augmenter la capacité de traitement « H »

- La courbe « traitement » est translatée vers le haut;
- Le profit \$/t peut augmenter;
- Les teneurs d'équilibre « mine-traitement » et « mine-marché » diminuent;
- La teneur limite « traitement » diminue.
 - → La t.c. optimale reste inchangé ou diminue.

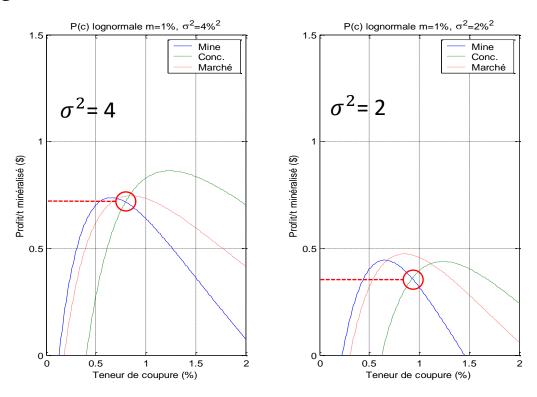

Η


Ici, augmenter H a diminué la t.c. optimale

1.2 H

Moyenne

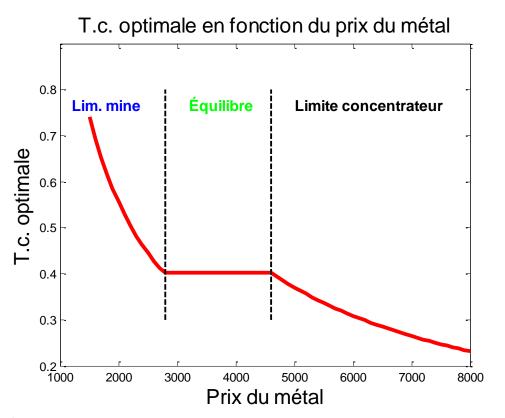
Si la moyenne diminue, pour fournir la même quantité de minerai au concentrateur, on devra diminuer la t.c.



Moy=1%

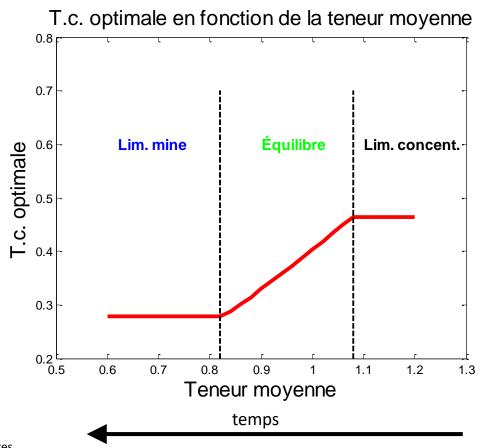
Moy = 0.9%

Variance


Plus la variance ↑, plus le profit ↑

GLQ3401: Géostatistique et géologie minières

Remarques importantes


- Le coût d'opportunité « F » est difficile à déterminer. Il dépend du type de gisement, du mode d'opération, de la t.c. utilisée. Taylor implicitement pose F=0.
 C'est probablement la pratique la plus courante;
- Au fur et à mesure que l'on exploite le gisement, la distribution des teneurs du matériau restant à être exploité change → facteur temps;
- Ne pas connaître la distribution des teneurs dans le gisement → que les teneurs d'équilibre sont mal définies;
- Dans la pratique on opère sur des <u>estimations</u>.
 - →Utiliser la distribution des teneurs estimées pour déterminer les teneurs d'équilibre;
 - →Utiliser un estimateur sans biais conditionnel.

Effet d'une augmentation du prix du métal sur la t.c. optimale

4. Influence des différents paramètres (fct. du temps)

Effet d'une augmentation de la moyenne sur la t.c. optimale

GLQ3401: Géostatistique et géologie minières GLQ3651: Géologie minière

Absence de biais conditionnel

On récupère la teneur prévue

On réalise les profits prévus

→ Dans Lane, on peut utiliser la distribution des <u>valeurs</u> estimées comme si c'était celle des vraies teneurs!

GLQ3401: Géostatistique et géologie minières GLQ3651: Géologie minière

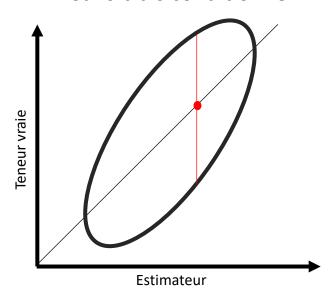
Pour un estimateur sans biais conditionnel :

Variance (de l'estimateur) < Variance (des teneurs réelles)

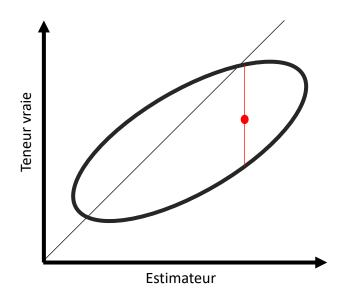
→ Estimation d'un profit moindre (effet d'information)

Plus un estimateur sans biais conditionnel est précis :

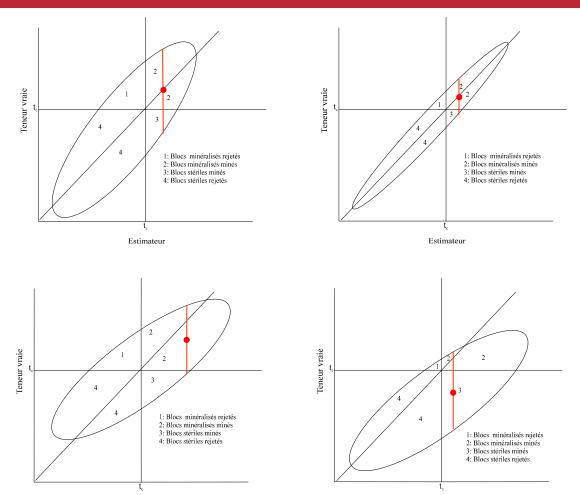
→ Plus grande est la variance des valeurs estimées et plus grand est le profit réalisé.


Pour un estimateur avec biais conditionnel, généralement :

- → Profit réalisé < profit prévu
- → Profit réalisé < profit réalisé avec un estimateur sans biais

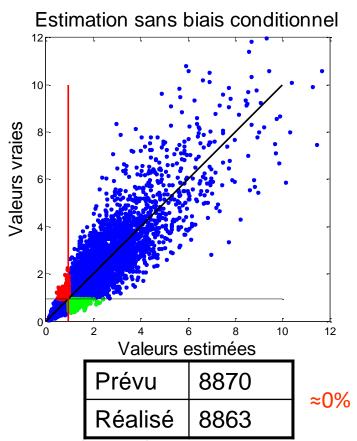

Exercice en équipe :

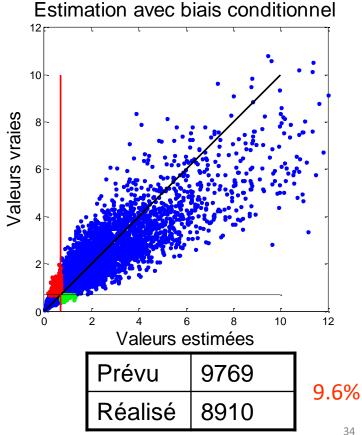
4) Comprendre le biais conditionnel


Sans biais conditionnel

Avec biais conditionnel

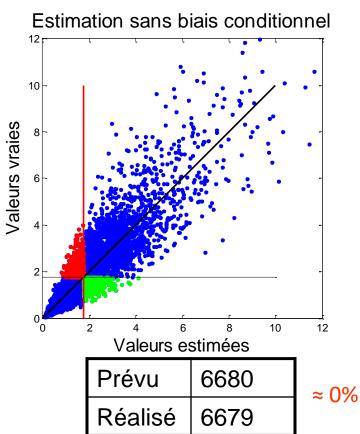
GLQ3401: Géostatistique et géologie minières

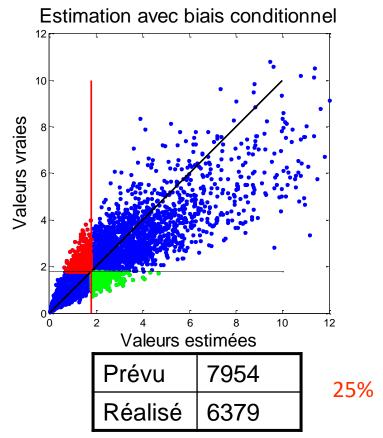

Estimateur


GLQ3401: Géostatistique et géologie minières

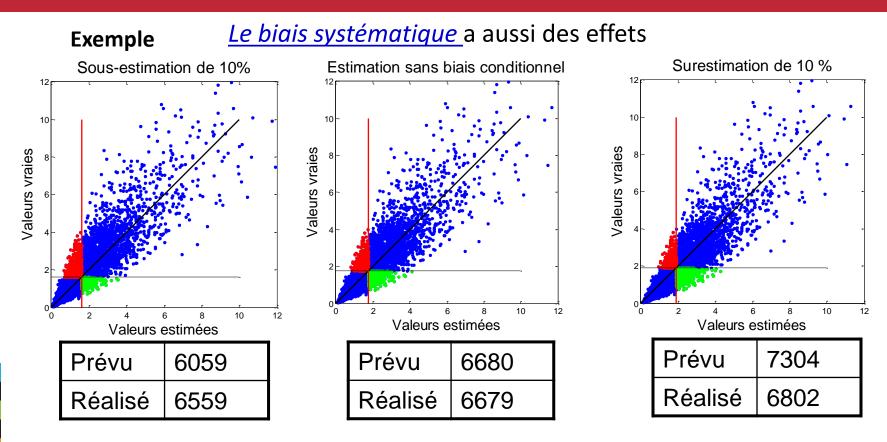
Estimateur

À basse teneur de coupure





GLQ3401: Géostatistique et géologie minières



À haute teneur de coupure

GLQ3401: Géostatistique et géologie minières

- -On ne réalise pas ce qui était prévu;
- -Ici, la surestimation a été payante; pas une règle générale

5. Biais conditionnel

Exemple

	t.c.	V optim.
Réel	0.89	5.7
Estimateur 1 sans biais cond.	0.95	5.4
Estimateur 2 avec biais <i>prévu</i>	0.69	6.8
Estimateur 2 avec biais <u>réalisé</u>	0.69	4.2

L'effet information

On prévoit plus que ce qu'il est possible d'obtenir

On n'obtient pas ce qui est prévu!

6. En résumé

- Les teneurs de coupures limites
 - → indépendantes des distributions
- Les teneurs de coupures d'équilibre
 - → indépendantes des prix et des coûts
- La teneur de coupure optimale
 - → une des t.c. limites ou d'équilibre (celle ayant « v » max et réalisable)
 - → t.c. optimale varie de façon discrète-continue en fonction de paramètres qui eux varient de façon continue.
- Avec Taylor, le coût d'opportunité est nul (F=0)
- Un estimateur sans biais conditionnel est requis
- Important de tenir compte des changements dans le temps de la distribution

7. Fonction de récupération lognormal

T(c): tonnage au-dessus de la t.c. optimale

Q(c): tonnage de métal au-dessus de la t.c. optimale

g(c): teneur du minerai

P(c): Profit conventionnel

où:

f: fonction de densité d'une loi $N(0,1) \rightarrow f(y) = \frac{1}{\sqrt{2\pi}} e^{-y^2/2}$

F : fonction de répartition (cumulative) d'une loi N(0,1)

c : teneur de coupure

m : moyenne de la population

 β : écart-type du logarithme des teneurs (population) $\rightarrow \beta^2 = \ln \left(\frac{\sigma^2}{m^2} + 1 \right)$

Loi lognormale

$$T(c) = T_0 F\left(\frac{1}{\beta} \ln\left(\frac{m}{c}\right) - \frac{\beta}{2}\right)$$

$$Q(c) = m T_0 F \left(\frac{1}{\beta} \ln \left(\frac{m}{c}\right) + \frac{\beta}{2}\right)$$

$$g(c) = Q(c)/T(c)$$

$$g(c) = Q(c)/T(c)$$

$$P(c) = T(c)(g(c) - c)$$

7. Fonction de récupération lognormal

Exercice en équipe :

5) Fonction de récupération

$$T(c) = T_0 F\left(\frac{1}{\beta} \ln\left(\frac{m}{c}\right) - \frac{\beta}{2}\right)$$

$$Q(c) = m T_0 F \left(\frac{1}{\beta} \ln \left(\frac{m}{c}\right) + \frac{\beta}{2}\right)$$

$$\beta^2 = \ln\left(\frac{\sigma^2}{m^2} + 1\right)$$

$$g(c) = Q(c)/T(c)$$

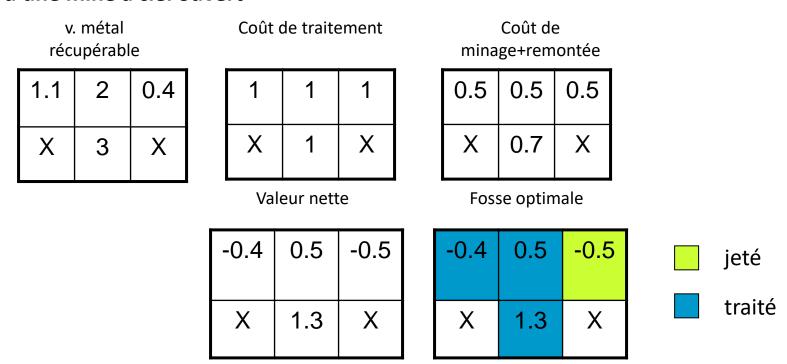
$$g(c) = Q(c)/T(c)$$
$$P(c) = T(c)(g(c) - c)$$

Cas d'une mine à ciel ouvert

- 2 problèmes: a) Quels blocs doit-on remonter? → optimisation
 - b) Le bloc remonté doit-il être traité ou jeté? -> teneur de coupure

Pour a) on doit fournir <u>la valeur « nette »</u> de chaque bloc.

valeur du bloc : v = max [v1,v2]


v1= valeur du métal récupérable – coûts traitement – coûts de minage et remontée

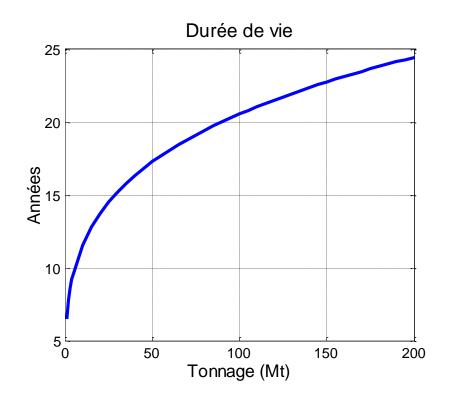
v2= - coûts minage et remontée

Pour b), on <u>traite</u> le bloc si: v = v1

valeur de métal récupérable > coût de traitement

Cas d'une mine à ciel ouvert

Note: l'optimisation se fait par l'algorithme de Lerch-Grossman ou, mieux, par maximisation du flux.


GLQ3401: Géostatistique et géologie minières GLQ3651: Géologie minière

Durée de vie d'une mine

Approximation rapide (Taylor)

Nombre d'années $\approx 6.5 \ T^{0.25}$

Ici, T: tonnage de matériau minéralisé

GLQ3401: Géostatistique et géologie minières

Taxation

Trois types principaux

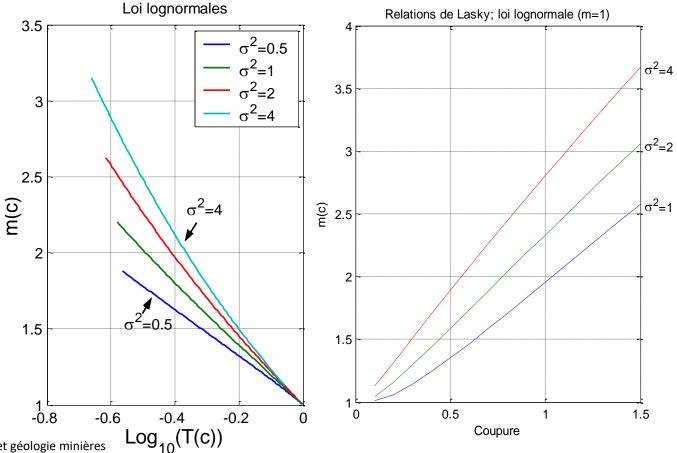
- Taxe foncière: frais fixes, augmente la t.c. optimale 1 a)
- b) Royauté: \$/tonne minerai; frais variables, augmente la t.c. 1 (très peu utilisé au Canada)
- c) Impôt sur les profits et droits miniers : aucun impact sur la t.c.

'(sauf si t.c. optimale = t.c. d'équilibre (indépendante des coûts))

GLQ3651: Géologie minière

Loi de Lasky

La teneur du gisement varie linéairement avec la t.c.


$$m(c) = a - b \ln T(c)$$
 (T(c): proportion)
 \rightarrow $m(c) = b + c$

- Vrai pour la loi exponentielle (alors a=b=m(0))
- Approximativement vrai pour la loi lognormale; dans ce cas une meilleure approximation est :

$$m(c) = e + f c$$

(e et f des constantes spécifiques au gisement)

Loi de Lasky: exemple

GLQ3401: Géostatistique et géologie minières GLQ3651: Géologie minière

Coût d'opportunité (F)

- On peut voir F comme la pénalité encourue de ne pas toucher tout de suite toute la valeur du gisement → Le gisement est comme une obligation négociable.
- F comprend 2 parties:
 - I. Intérêt non-gagné sur la valeur du gisement ;
 - II. Fluctuation de la valeur du gisement.

Exemple

Un gisement de Zn vaut 150M\$ avec un scénario du prix du zinc de 750\$/t Zn. Le taux d'intérêt est de 15%

Le coût d'opportunité est : F=150M\$*0.15=22.5M\$

• Le prix du Zn tombe à 650\$. Cette baisse est anticipée temporaire (1 an) après quoi le prix revient à 750\$. Le manque à gagner pour la prochaine année due à la baisse du prix du Zn est de 14.7M\$

Coût d'opportunité (F) (suite)

La valeur présente du gisement est donc 150M\$-14.7M\$/1.15=137.2M\$ L'intérêt sur cette « obligation » rapporterait 137.2M\$*0.15=20.8M\$ La variation de la valeur de l'obligation durant l'année est

Le coût d'opportunité est donc:

$$F=20.8 + (-12.8) = 7.8M$$
\$

Comme F est beaucoup moindre que dans le cas précédent (7.8 vs 22.5), la t.c. peut <u>diminuer</u>

Si la baisse des prix est considérée <u>permanente</u>, alors F=20.8M\$, la diminution de F sera plus que compensée par la baisse du prix et la t.c. optimale va <u>augmenter</u>

Seul le terme F permet d'incorporer ces stratégies dans la détermination de la t.c. optimale

Coût d'opportunité (F) (suite)

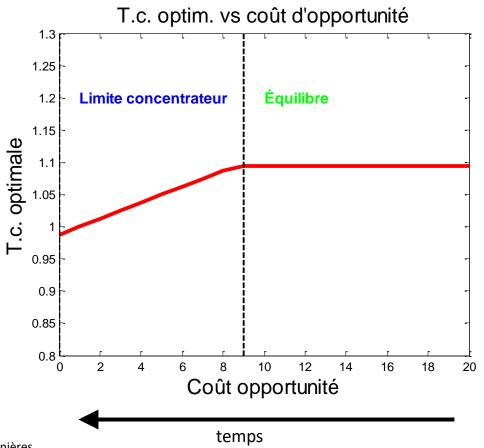
Exemple: le concentrateur est limitatif

Cas 0: le prix du Zn reste stable à 750\$; F=22.5M\$

$$c_2 = (6.5 + (15 + 22.5)/1.3)/(0.81*750) = 5.82\%$$
 Zn

Cas 1: le prix du Zn revient à 750\$ après un an : F=7.8M\$

$$c_2 = (6.5 + (15 + 7.8)/1.3)/(0.81*650) = 4.57\%$$
 Zn



Cas 2: le prix du Zn reste stable à 650\$: F=20.8M\$

$$c_2 = (6.5 + (15 + 20.8)/1.3)/(0.81*650) = 6.46\%$$
 Zn

Diminution de la t.c. suite à une diminution de prix!

Exemple Effet du coût d'opportunité (frais fixes) sur la t.c. optimale

GLQ3401: Géostatistique et géologie minières GLQ3651: Géologie minière