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Summary

We present a nonlinear finite-volume method (NFVM) that is either positivity-preserving or extremum-preserving with improved
robustness. The key ingredient of the method is the construction of one-sided fluxes, which involves decomposition of conormal vectors
by introducing harmonic-averaging points as auxiliary points. The original NFVM using harmonic-averaging points is not robust in the
sense that decomposition of conormal vectors with nonnegative coefficients can easily run into difficulties for heterogeneous and aniso-
tropic permeability tensors on general nonorthogonal meshes. To improve NFVM robustness, we first present an alternative derivation
of harmonic-averaging points and give a different formula that shows more clearly a point’s location. On the basis of the derivation of
the new formula, a correction algorithm is proposed to make modifications to those problematic harmonic-averaging points so that all
the conormal vectors can be decomposed with nonnegative coefficients successfully. As a result, the resulting NFVM can be applied to
more-challenging problems when conormal decomposition with nonnegative coefficients is not possible without correction. The correc-
tion algorithm is a compromise between robustness and accuracy. While it improves the robustness of the resulting NFVM, results of
numerical convergence tests show that the effect of our correction algorithm on accuracy is problem-dependent. Optimal order of con-
vergence is still maintained for some problems, and the convergence rate is reduced for others. Monotonicity and extremum-preserving
properties are verified by numerical experiments. Finally, a field test case is used to demonstrate that the NFVM combined with our cor-
rection algorithm can be applied to simulate real-life reservoirs of industry-standard complexity.

Introduction

Accurate and robust modeling of heterogeneous and highly anisotropic diffusion processes on possibly severely distorted meshes poses
serious challenges to numerical discretization methods and has been an area of active research for decades. In petroleum-reservoir simu-
lation, for example, reliable prediction of reservoir dynamics requires a simulator that can rigorously handle highly heterogeneous and
anisotropic permeability tensors on nonorthogonal grids dictated by complex reservoir geology. Finite-difference, finite-volume, and
(mixed) finite-element methods have all been used extensively in academia to solve the diffusion equation, but the cell-centered finite-
volume method remains most popular among reservoir-simulation engineers because it has only one unknown per cell, is quite flexible
for general grids, and uses the familiar principle of mass conservation. The simplest and currently most widely used finite-volume
method is the linear two-point flux approximation (TPFA) where flux through a cell face is approximated by fluid pressure of the two
neighboring cells that share the face (Aziz and Settari 1979). TPFA is quite robust and easy to implement, but is only consistent for the
so-called K-orthogonal grids. To obtain a consistent discretization for general grids with arbitrary permeability tensors, linear multipoint
flux approximation (MPFA) methods were proposed (Aavatsmark et al. 1996, 1998a, 1998b; Edwards and Rogers 1998; Aavatsmark
2002). The earlier MPFA methods are only conditionally monotone (Nordbotten and Aavatsmark 2005) and suffer from severe unphysi-
cal oscillations when the anisotropy ratio is high or the grid has large aspect ratios. MPFA methods with improved monotonicity proper-
ties were later addressed in Nordbotten and Eigestad (2005), Aavatsmark et al. (2008), Chen et al. (2008), Edwards and Zheng (2008,
2010), and Friis and Edwards (2011). Although these new MPFA methods can greatly reduce the unphysical oscillations, still they are
not unconditionally monotone (Edwards 1995; Edwards and Rogers 1998) and it has been proved in Nordbotten et al. (2007) that a
nine-point control volume scheme that satisfies local conservation and exact reproduction of linear solution while being unconditionally
monotone is impossible.

Another class of finite-volume methods that are designed to be monotone is the cell-centered nonlinear method, which was origi-
nally proposed in Le Potier (2005). The nonlinear finite-volume method is formulated to preserve the positivity of the pressure solution
and is therefore monotone. The price to pay is that a system of nonlinear equations needs to be solved even though the original problem
is linear. The idea was further developed in Lipnikov et al. (2007, 2009, 2010), Yuan and Sheng (2008), Danilov and Vassilevski
(2009), Queiroz et al. (2014), Wu and Gao (2014), Gao and Wu (2015), and Schneider et al. (2017b). A key ingredient of the method is
to construct two one-sided fluxes for each internal grid face and a unique flux through the face is obtained by a convex combination of
the two one-sided fluxes in such a way that a nonlinear two-point flux stencil (NTPFA) results. Although these nonlinear methods are
monotone, they can still violate the discrete maximum/minimum principle (DMP). To preserve the extremum principle, a different
convex combination of the one-sided fluxes was designed in Le Potier (2009), Sheng and Yuan (2011), Lipnikov et al. (2012), Gao and
Wu (2013), and Svyatskiy and Lipnikov (2017), leading to nonlinear multipoint flux (NMPFA) stencils. Construction of one-sided
fluxes usually requires decomposing conormal vectors of grid faces, and some auxiliary points are introduced to approximate the pres-
sure gradient. To obtain a pure cell-centered method, pressure at these auxiliary points must be interpolated by pressure at cell centers.
To preserve monotonicity or DMP, both the decomposition of the conormal vectors and the weighting coefficients in the interpolation
are required to be nonnegative. Grid vertices are an obvious choice as auxiliary points, but the design of an accurate interpolating algo-
rithm with nonnegative weighting coefficients for grid vertices turns out to be a difficult task. A more attractive option is the so-called
harmonic-averaging point first proposed in Agélas et al. (2009). There is one harmonic-averaging point associated with each grid face,
and pressure at the point can be interpolated by pressure of the two neighboring cells only with nonnegative weighting coefficients.

Unfortunately, the harmonic-averaging point is not robust in the sense that for discontinuous and highly anisotropic permeability
tensors on challenging grids, the harmonic-averaging point can lie anywhere on the plane containing the grid face, which can cause
problems for the decomposition of conormal vectors during the construction of one-sided fluxes. Specifically, if all the harmonic-
averaging points associated with faces of a cell do not form a convex hull that contains the cell centroid, it might not be possible to
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decompose the conormal vectors with nonnegative coefficients only. In practice, decomposition of conormal vectors using harmonic-
averaging points can easily run into difficulties for heterogeneous and anisotropic permeability tensors on distorted nonorthogonal
grids. In light of the difficulties associated with the interpolation procedures, an interpolation-free nonlinear finite-volume method was
proposed in Danilov and Vassilevski (2009) and Lipnikov et al. (2009, 2010), but the method can be applied only to grids where each
cell can have at most one face across which permeability jumps. In Wu and Gao (2014) and Gao and Wu (2015), a novel nonlinear for-
mulation was proposed that does not require that the weighting coefficients of interpolation or coefficients of conormal decomposition
be nonnegative. As a result, any second-order accurate interpolation algorithm can be used directly without replacing the negative
coefficients with positive ones. This formulation was further extended to model flow problems for highly complex corner-point grids
(Schneider et al. 2018). However, to preserve the monotonicity of the pressure solution, the method still requires that the sum of all the
coefficients of each conormal decomposition be positive. This requirement is incorporated as a constraint into an optimization problem
in Schneider et al. (2018) to determine the conormal decomposition. For challenging cases, the resulting conormal decomposition
might involve more vectors than the dimension of the grid (e.g., more than three vectors are needed to decompose a conormal vector in
three dimensions), leading to larger stencils for one-sided fluxes. Moreover, the formulation cannot be easily extended to preserve DMP
of the solution. Therefore, it is highly desirable to devise an interpolating scheme that retains the simplicity of harmonic-averaging
points and yet is less sensitive to permeability discontinuity and grid distortion, which is the focus of this work. To address this chal-
lenge, we first present an alternative formula of harmonic-averaging points that will show more clearly a point’s location on grid faces.
On the basis of the new formula, a correction algorithm is proposed to modify those ill-placed harmonic-averaging points so that all the
conormal vectors can be decomposed with nonnegative coefficients successfully. Numerical experiments are conducted to investigate
the robustness and accuracy of the resulting NFVM. The rest of the paper is organized as follows: The mathematical model is intro-
duced in the succeeding section. The details of the nonlinear finite-volume methods and harmonic-averaging points are described in the
Numerical Model section. Results of the numerical tests including the convergence study, monotonicity study, and one field test case
are given in the Numerical Experiment section. The concluding remarks are provided in the Conclusions section.

Mathematical Model

Consider the following diffusion equation on an open bounded polygonal/polyhedral domain X�Rdim, dim¼ 2 or 3:

�r � ðKrpÞ ¼ q in X;

p ¼ gD on CD;

�Krp � n̂ ¼ gN on CN ; � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ð1Þ

where p is the unknown variable and denotes fluid pressure in the reservoir-simulation community. K is the diffusion coefficient, also
called absolute permeability of the porous media, and is represented as a symmetric, positive definite second-order tensor. q [ L2(X) is
the volumetric source term. Dirichlet boundary conditions gD and Neumann boundary conditions gN are applied to the boundaries CD

and CN, respectively. The boundary of the domain X is @X¼CN | CD and CN \ CD¼Ø. n̂ is the unit normal vector pointing outward
to the boundary.

Numerical Model

To solve the diffusion equation (Eq. 1) using finite-volume methods, the domain X is first discretized into a conformal mesh composed
of star-shaped cells. LetM denote the set of all the cells, F the set of all the faces (edges in two dimensions). The set F is divided into
a subset F I¼F \ X and FB¼F \ @X. FB is further split into two subsets FD

B and FN
B where Dirichlet and Neumann boundary condi-

tions are specified, respectively. For each internal face r [ F I, there exist two cells Xi, Xj [M such that r¼ @Xi \ @Xj. In the follow-
ing, we shall denote the set of faces of each cell Xi [M by @Xi. Integrating the first equation of Eq. 1 over a cell Xi [M and applying
the divergence theorem yieldsð

Xi

�r � ðKrpÞdx ¼
ð
@Xi

�Krp � dS ¼
X

r2@Xi

ð
r

�Krp � dS ¼
ð
Xi

qdx; ð2Þ

where dS is the oriented areal element. The integrated flux through face r is then approximated by a numerical flux fr defined asð
r

�Krp � dS � fr ¼
X
k2wr

tkpk; ð3Þ

where wr is the index set of cells that are involved in the approximation of flux fr and tk is the transmissibility term associated with cell
Xk. pk is the discrete pressure value at the centroid of Xk. Substituting Eq. 3 into Eq. 2 and writing the mass-balance equation (Eq. 2) for
all the cells of the mesh leads to a system of equations that can be solved for pressure at cell centroids.

Nonlinear Finite-Volume Method. To derive the flux equation (Eq. 3) using the NFVM, we follow the formulation presented in
Lipnikov et al. (2012), Gao and Wu (2013), and Schneider et al. (2017b). Consider an internal face r¼ @Xi \ @Xj. Flux through the
face seen from cell Xi (called one-sided flux) can be approximated asð

r

�Kirp � dS � f ðiÞr ¼ �ðrpÞi �Kinir ¼ �ðrpÞi � wir; ð4Þ

where Ki is the constant permeability tensor of cell Xi, nir is the area-weighted normal vector to face r pointing outward of cell Xi, and
wir is the conormal vector defined as wir¼Kinir. To discretize the pressure gradient ðrpÞi inside cell Xi using finite difference, the
so-called harmonic-averaging points (Agélas et al. 2009) are introduced as auxiliary points. There is one harmonic-averaging point xr0

associated with each face r0 [ F . The conormal wir can be decomposed by the linear combination

wir ¼
X

r02Hir�@Xi

air;r0 ðxr0 � xiÞ; ð5Þ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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where xi is the centroid of cell Xi and Hir is the set of faces whose associated harmonic-averaging points are involved in the decomposi-
tion of wir. Note that Hir is a subset of @Xi and air,r0 are the corresponding decomposing coefficients and are required to be nonnegative
in order for the method to be monotone or extremum-preserving. Fig. 1 gives an example of conormal decomposition in two dimen-
sions. The extension to three dimensions is straightforward. For certain permeability distribution and mesh geometries, the set Hir

might not exist. Addressing this challenge is the focus of this work and will be detailed in later subsections. On the other hand, when
Hir does exist, it might not be unique and various linear combinations for Eq 5 are possible. The choice of linear combinations can
influence the accuracy of the resulting NFVM, as is demonstrated in Schneider et al. (2018). In this work, the searching algorithm sug-
gested in Danilov and Vassilevski (2009) will be used to determine the set Hir. This searching algorithm is relatively efficient and
ensures that out of all the allowable combinations of vectors (xr0�xi) that can be used to decompose wir, the chosen combination will
be closest to wir. Substituting Eq. 5 into Eq. 4, we have

f ðiÞr ¼ �
X

r02Hir

air;r0 ðpr0 � piÞ; ð6Þ

where pi and pr0 are pressure at centroid of cell Xi and harmonic-averaging point xr0, respectively. pr0 is then interpolated by pressure at
its neighboring cells as follows:

pr0 ¼
X
k2ur0

wr0kpk; ð7Þ

where ur0 denotes the index set of cells that are involved in the interpolation of pr0 and wr0k is the weighting coefficient associated with
pressure at the centroid of cell Xk. The weighting coefficients are required to be nonnegative and sum to unity. Substituting Eq. 7 into
Eq. 6, the one-sided flux can be expressed as

f ðiÞr ¼
X

r02Hir

air;r0 pi �
X
k2ur0

wr0kpk

 !" #
¼ t
ðiÞ
r;ipi � t

ðiÞ
r; jpj �

X
k2 [

r02Hir

ur0 nfi; jg
t
ðiÞ
r;kpk; ð8Þ

where t
ðiÞ
r;i is the one-sided transmissibility term associated with pi. Similar meaning applies to t

ðiÞ
r; j and t

ðiÞ
r;k. Notice that t

ðiÞ
r;i, t

ðiÞ
r; j, and t

ðiÞ
r;k

are all nonnegative. Analogously, the one-sided flux seen from cell Xj can be expressed as

f ðjÞr ¼ t
ðjÞ
r; jpj � t

ðjÞ
r;ipi �

X
k2 [

r02Hjr

ur0 nfi; jg
t
ðjÞ
r;kpk: ð9Þ

To derive a unique flux fr through the face r, a convex combination of Eqs. 8 and 9 is used to obtain

fr ¼ lr;i f ðiÞr � lr; j f ðjÞr

¼ lr;i
t
ðiÞ
r;ipi � t

ðiÞ
r; jpj �

X
k2 [

r02Hir

ur0 nfi; jg
t
ðiÞ
r;kpk

2
4

3
5� lr; j

t
ðjÞ
r; jpj � t

ðjÞ
r;ipi �

X
k2 [

r02Hjr

ur0 nfi; jg
t
ðjÞ
r;kpk

2
64

3
75

¼ lr;it
ðiÞ
r;i þ lr; jt

ðjÞ
r;i

h i
pi � lr; jt

ðjÞ
r; j þ lr;it

ðiÞ
r; j

h i
pj � lr;i

X
k2 [

r0Hir

ur0 nfi; jg
t
ðiÞ
r;kpk þ lr; j

X
k2 [

r02Hjr

ur0 nfi; jg
t
ðjÞ
r;kpk; � � � � � � � � � � � � � � ð10Þ

where lr,i and lr,j are two unknown coefficients that satisfy

lr;i þ lr; j ¼ 1: ð11Þ

We define rr;i ¼
X

k2 [
r02Hir

ur0 nfi; jg
t
ðiÞ
r;kpk and rr; j ¼

X
k2 [

r02Hjr

ur0 nfi; jg
t
ðjÞ
r;kpk. NTPFA methods choose the value of lr,i and lr,j such that the

last two terms of Eq. 10 cancel. Therefore, lr,i and lr,j are calculated as

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Kjnjσ

Kiniσ

xD

xj

xC

xB

xA

xi

Fig. 1—Decomposition of conormal vector w 5 Knr using harmonic-averaging points as auxiliary points.
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lr;i ¼
rr; j

rr;i þ rr; j
; lr; j ¼

rr;i

rr;i þ rr; j
; ð12Þ

if rr;i þ rr; j 6¼ 0. Whenever rr;i þ rr; j ¼ 0, lr,i¼ lrj ¼ 0.5. Flux fr can then be written as

fr ¼ lr;it
ðiÞ
r;i þ lr; jt

ðjÞ
r;i

h i
pi � lr; jt

ðjÞ
r; j þ lr;it

ðiÞ
r; j

h i
pj ¼ TðiÞr pi � TðjÞr pj; ð13Þ

where TðiÞr and TðjÞr are transmissibility terms of face r and they are dependent on pressure at cell centroids. When pressure at centroids
of all the cells is nonnegative, it follows that TðiÞr and TðjÞr will be nonnegative.

For a boundary face r [ @Xi \ FD
B , flux through this face seen from cell Xi can be approximated similarly to Eq. 8 with some

modifications,

f ðiÞr ¼
X

r02Hir

½air;r0 ðpi � pr0 Þ� ¼ t
ðiÞ
r;ipi � t

ðiÞ
r; f pf �

X
k2 [

r02Hirnfrg
ur0 nfig

t
ðiÞ
r;kpk; ð14Þ

where pf is pressure at the point xf, which is the centroid of face r. To ensure the effect of Dirichlet boundary conditions, flux through
face r seen from the face centroid is now derived in a way similar to that in Yuan and Sheng (2008) and extended to three dimensions.
Fig. 2 shows a sketch of a cell Xi with one of its faces r [ FD

B in two dimensions and three dimensions. Area-weighted face normal nr

points out of the cell. Because of positive definiteness of the permeability tensor Ki, there exists one vertex xA of face r such that the
ray originating from xf along the direction �Kinr will intersect the line connecting xi and xA in two dimensions. Similarly, in 3D there
exist two vertices xA and xB of face r such that the ray originating from xf along �Kinr will intersect the triangle formed by xi, xA, and
xB. For ease of presentation, only the 2D case is considered in the following. Derivation in three dimensions follows immediately from
two dimensions. The conormal vector can be decomposed as follows (see left of Fig. 2):

�Kinr ¼ tr;iðxi � xf Þ þ tr;AðxA � xf Þ; ð15Þ

where tr,i and tr,A are decomposing coefficients and are nonnegative. Flux f ðbÞr through face r seen from face centroid can be approxi-
mated as

f ðbÞr ¼ �ðrpÞi � ð�KinrÞ ¼ tr;iðpf � piÞ þ tr;Aðpf � pAÞ ¼ t
ðbÞ
r; f pf � t

ðbÞ
r;i pi � t

ðbÞ
r;ApA: ð16Þ

A unique flux fr through the face is then obtained as a convex combination of Eqs. 14 and 16,

fr ¼ lr;i f ðiÞr � lr;b f ðbÞr

¼ lr;i
t
ðiÞ
r;ipi � t

ðiÞ
r; f pf �

X
k2 [

r02Hirnfrg
ur0 nfig

t
ðiÞ
r;kpk

2
4

3
5� lr;b t

ðbÞ
r; f pf � t

ðbÞ
r;i pi � t

ðbÞ
r;ApA

h i

¼ lr;it
ðiÞ
r;i þ lr;bt

ðbÞ
r;i

h i
pi � lr;it

ðiÞ
f þ lr;bt

ðbÞ
f

h i
pf � lr;i

X
k2 [

r02Hirnfrg
ur0 nfig

t
ðiÞ
r;kpk þ lr;bt

ðbÞ
r;ApA; � � � � � � � � � � � � � � � � � � � � � ð17Þ

where pA is pressure at vertex xA and its value is calculated by the specified Dirichlet boundary condition. Similar to internal faces, lr,i

and lr,b are chosen such that the last two terms in Eq. 17 cancel out, leading to a nonlinear two point flux:

fr ¼ ½lr;it
ðiÞ
r;i þ lr;bt

ðbÞ
r;i �pi � ½lr;it

ðiÞ
r; f þ lr;bt

ðbÞ
r; f �pf ¼ TðiÞr pi � Tðf Þr pf : ð18Þ

The second term of Eq. 18 can be moved to the right-hand side of the final discretized equations. For faces r [ FN
B , flux across the

face is given directly by the Neumann boundary condition:

fr ¼ jrjgN ; ð19Þ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

–Kinσ

–Kinσ

Kinσ

Kinσ

nσ
nσ

xi
xi

xA

xA
xf

xf

xB

Fig. 2—Approximation of nonlinear flux for boundary faces with Dirichlet boundary conditions.
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where gN is the average of gN on face r and jrj denotes the area of the face. Substituting flux expressions—Eqs. 13, 18, and 19—into
the mass-balance equation (Eq. 2), a system of nonlinear equations is obtained:

AðpÞp ¼ bðpÞ; ð20Þ

where p is the unknown vector of pressure at cell centers and b is the right-hand side. The system of nonlinear equations (Eq. 20) can
be solved by a number of different methods. A popular choice is the Picard iteration because it can guarantee nonnegativity of the pres-
sure solution. Therefore, the Picard iteration method is also used here: Choose a small number enon> 0 and an initial vector p

(0)> 0,
and repeat for k¼ 1, 2, …,

1. Solve A(p(k�1))p(k)¼ b(p(k�1)).

2. Stop if jA(p(k))p(k)�b(p(k))j � enon j A(p(0))p(0)�b(p(0))j.
When q� 0, gD� 0, and gN� 0, it can be proved that during each Picard nonlinear iteration, the matrix A(p(k�1)) is monotone.

Therefore, the pressure solution will stay nonnegative provided that the initial vector p(0) is nonnegative. For additional information on
the proof, we refer the reader to Lipnikov et al. (2007) and Yuan and Sheng (2008) and the references therein. In this work, the linear-
ized system of equations during each iteration is solved using the default left division operator in MATLAB�. enon is taken to be 10�7

in all of the numerical examples that will follow. In our code, we also set the maximum number of Picard iterations as 500 and exit the
program if k exceeds 500.

NTPFA is monotone and preserves the nonnegativity of pressure solution, but it does not respect the discrete maximum/minimum
principle. To obtain a NFVM that is also extremum preserving, a different convex combination of the one-sided fluxes can be used; see
Sheng and Yuan (2011), Lipnikov et al. (2012), Gao and Wu (2013), Svyatskiy and Lipnikov (2017), and Terekhov et al. (2017). Fol-
lowing the ideas presented in those publications, we can write the one-sided flux expression (Eq. 8) as follows:

f ðiÞr ¼
X

r02Hir

air;r0 pi �
X
k2ur0

wr0kpk

 !" #
¼
X

r02Hir

air;r0
X
k2ur0

wr0kðpi � pkÞ
" #

¼ t
ðiÞ
r; jðpi � pjÞ þ

X
k2 [

r02Hir

ur0 nfi; jg
t
ðiÞ
r;kðpi � pkÞ : ð21Þ

Similarly, we have

f ðjÞr ¼ t
ðjÞ
r;iðpj � piÞ þ

X
k2 [

r02Hjr

ur0 nfi; jg
t
ðjÞ
r;kðpj � pkÞ: ð22Þ

A unique flux for the face is still obtained as a convex combination of the above two one-sided fluxes (Eqs. 21 and 22)

fr ¼ lr;if
ðiÞ
r � lr; jf

ðjÞ
r

¼ lr;i
t
ðiÞ
r; jðpi � pjÞ þ

X
k2 [

r02Hir

ur0 nfi; jg
t
ðiÞ
r;kðpi � pkÞ

2
4

3
5� lr; j

t
ðjÞ
r;iðpj � piÞ þ

X
k2 [

r02Hjr

ur0 nfi; jg
t
ðjÞ
r;kðpj � pkÞ

2
4

3
5

¼ lr;it
ðiÞ
r; j þ lr; jt

ðjÞ
r;i

h i
ðpi � pjÞ þ lr;i

X
k2 [

r02Hir

ur0 nfi; jg
t
ðiÞ
r;kðpi � pkÞ � lr; j

X
k2 [

r02Hjr

ur0 nfi; jg
t
ðjÞ
r;kðpj � pkÞ

¼ lr;it
ðiÞ
r; j þ lr; jt

ðjÞ
r;i

h i
ðpi � pjÞ þ lr;irr;i � lr; jrr; j: � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ð23Þ

If jrr;ij þ jrr; jj ¼ 0, lr,i¼ lr,j¼ 0.5. Otherwise, lr,i and lr,j are calculated as

lr;i ¼
jrr; jj

jrr;ij þ jrr; jj
; lr; j ¼

jrr;ij
jrr;ij þ jrr; jj

: ð24Þ

If rr,irr,j� 0, two algebraically equivalent fluxes are obtained:

fr ¼ lr;it
ðiÞ
r; j þ lr; jt

ðjÞ
r;i

h i
ðpi � pjÞ þ 2lr;i

X
k2 [

r02Hir

ur0 nfi; jg
t
ðiÞ
r;kðpi � pkÞ;

�fr ¼ lr;it
ðiÞ
r; j þ lr; jt

ðjÞ
r;i

h i
ðpj � piÞ þ 2lr; j

X
k2 [

r02Hjr

ur0 nfi; jg
t
ðjÞ
r;kðpj � pkÞ: � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ð25Þ

If rr,irr,j> 0, the last two terms in Eq. 23 cancel out and we have

fr ¼ lr;it
ðiÞ
r; j þ lr; jt

ðjÞ
r;i

h i
ðpi � pjÞ: ð26Þ

Eqs. 18 and 19 are also used for boundary faces. It is obvious that in general we end up with an NMPFA. Substituting Eqs. 25, 26,
18, and 19 into the mass-balance equation (Eq. 2), we again obtain a system of nonlinear equations. The pressure solution of NMPFA
will respect the discrete extremum principle (Sheng and Yuan 2011).

Harmonic-Averaging Point. Interpolation of pressure at auxiliary points represented by Eq. 7 plays an important role in the accuracy
and robustness of the resulting NFVM. Grid vertices are natural choices, but interpolation of pressure at grid vertices with nonnegative
coefficients can be a difficult task. Compared to grid vertices as interpolating points, the harmonic-averaging point associated with grid
faces is more attractive mainly because interpolation of its pressure involves pressure at two neighboring cells only and the weighting
coefficients are always nonnegative. The location of a harmonic-averaging point yr associated with a face r shared by two cells X1 and
X2 is given by the following equation:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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yr ¼
k1d2y1 þ k2d1y2 þ d1d2ðc1 � c2Þ

k1d2 þ k2d1

: ð27Þ

The left plot of Fig. 3 shows all the relevant quantities involved in the derivation of yr. nr is the unit normal vector to face r and
points from X1 to X2. For i¼ 1, 2, xi is the centroid of cell Xi, ki¼ nr�Kinr, ci¼Kinr�kinr, di is the distance from xi to the plane con-
taining face r, and yi is the projection of xi onto the plane. Pressure pr at the harmonic averaging point can be interpolated using pres-
sure at the centroids of X1 and X2:

pr ¼
k1d2p1 þ k2d1p2

k1d2 þ k2d1

; ð28Þ

where p1 and p2 are pressure at centroids X1 and X2, respectively. For the derivation of Eqs. 27 and 28, readers are referred to Agélas
et al. (2009). For a face r [ FB, the centroid of r is chosen as the interpolating point in the literature. If the Dirichlet boundary condition
is applied on the face, pressure at the centroid of the face can be calculated directly from the given boundary condition. However, if the
Neumann boundary condition is applied to the boundary, there seems to be no straightforward way to reconstruct pressure at the centroid
consistently (Schneider et al. 2017b). To circumvent this problem, we use a simple strategy and define a different interpolating point for
face r [FN

B . The right plot of Fig. 3 shows a boundary face r [FN
B \ X1. nr is the unit normal vector pointing out of X1, and x1 is the

centroid of cell X1. The ray originating from x1 along the direction of K1nr will intersect the plane supporting r at a point yr, and we
take this point as our new interpolating point for face r. Because the permeability tensor is positive definite, this point can always be
found as long as (x1� xr)�nr< 0 for any point xr lying on the plane. Depending on the mesh geometry and permeability tensor, this new
interpolating point can lie inside faces r or outside as is the case for internal faces. Flux out of face r can then be approximated by

fr ¼ �rp �K1nr � jrj ¼ jrj
kK1nrk
kyr � x1k

ðp1 � prÞ ¼ gN � jrj: ð29Þ

From Eq. 29, pressure at yr is

pr ¼ p1 �
kyr � x1k
kK1nrk

gN : ð30Þ

In the following, we will still call this new definition of interpolating points on the Neumann boundary face harmonic-averaging
point. We comment that although this simple treatment of Neumann boundary faces gives a consistent formula for recovering pressure
at the intersection point yr, it might not be robust, for example, when the intersection point lies far outside of face r. Our work is still
ongoing to further improve the modeling of Neumann boundary faces.

As mentioned previously, the main drawback of the harmonic-averaging point is that for heterogeneous and anisotropic permeability
tensors on a nonorthogonal grid, some harmonic-averaging points could lie far outside their associated grid face. As a result, decomposi-
tion of conormal vectors with nonnegative coefficients can easily run into difficulty. For example, the left plot of Fig. 4 depicts the loca-
tions of harmonic-averaging points for a randomly distorted 8	 8 quadrilateral grid populated by a rotating anisotropic permeability field.
The permeability tensor of each cell is represented by the ellipse whose semi-axes are scaled by the square root of the maximum and mini-
mum principle permeability, respectively. While the majority of harmonic-averaging points lie inside the face (indicated by the blue dots
in the figure), there are a few “ill-placed” points lying outside the face (indicated by the red dots). The right plot of Fig. 4 shows a
magnified plot of the red-circled part from the left plot. The four dashed arrows in black denote the vectors starting at the centroid of the
cell and ending at the four harmonic-averaging points associated with the four faces of the quadrilateral cell. Conormal vector Kn associ-
ated with the right-most face is denoted by the solid arrow in black. It can be readily seen from the figure that decomposing Kn with positive
coefficients using harmonic-averaging points only is impossible because the centroid lies outside of the convex hull of the four harmonic-
averaging points associated with this cell. Novel formulations of NTPFA have been proposed in Wu and Gao (2014) and Gao and Wu
(2015) that only require the sum of decomposing coefficients be positive. Although this requirement is less restrictive than the usual
requirement that each decomposing coefficient be nonnegative, it can still be violated, especially for simplex meshes such as triangular
meshes in two dimensions and tetrahedral meshes in three dimensions because the number of harmonic-averaging points that can be used
to decompose a conormal is too few. The difficulty can be circumvented by the searching algorithm proposed in Schneider et al. (2018), but
at the cost of potentially increasing the stencil of the one-sided flux. Moreover, the NMPFA still requires that each of the decomposing
coefficients be nonnegative. The example also shows that a few badly behaved harmonic-averaging points lying far outside their associated
faces can cause difficulty for the decomposition of conormal vectors. If all the harmonic-averaging points lie close to the centroids of their
associated faces, decomposition of conormal vectors will not have problems most of the time except in some extreme cases.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Fig. 3—Harmonic-averaging point yr. Left: internal face; right: boundary face.
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Correction of the Harmonic-Averaging Point. Eq. 27 shows that if the two permeability tensors K1 and K2 are equal or they are iso-
tropic, harmonic-averaging point yr will be bounded between the two projection points y1 and y2. To show more clearly the location of
the harmonic-averaging point for general heterogeneous and anisotropic permeability tensors K1 and K2, we give a different derivation
here. Still consider face r shared by two cells shown in Fig. 3. First, we find the point xA that lies on the plane containing face r such
that the vector xA� x1 is parallel to K1nr. Similarly, we can find the point xB such that vector xB� x2 is parallel to �K2nr. Assuming
that pressure unknown p is piecewise affine, flux out of cell X1 and X2 can be expressed individually as

f ð1Þr ¼ �ðrpÞ1 �K1nrjrj � jrj
kK1nrk
kxA � x1k

ðp1 � pAÞ ¼ jrj
w1

l1

ðp1 � pAÞ;

f ð2Þr ¼ �ðrpÞ2 � ð�K2nrÞjrj � jrj
kK2nrk
kxB � x2k

ðp2 � pBÞ ¼ jrj
w2

l2

ðp2 � pBÞ; � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ð31Þ

where wi ¼ kKinrk, i¼ 1, 2; l1 ¼ kxA � x1k and l2 ¼ kxB � x2k; and jrj is the area of the face. Assume pressure and the tangential
part of pressure gradient gr are continuous on face r. Taking an arbitrary point y on the plane containing face r, pressure at point xA

and xB can be written in terms of gr and pressure at y as

pA ¼ pðyÞ þ gr � ðxA � yÞ;
pB ¼ pðyÞ þ gr � ðxB � yÞ: � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ð32Þ

Substituting Eq. 32 into Eq. 31 and imposing flux continuity condition f ð1Þr þ f ð2Þr ¼ 0, we can solve for pressure p(y) as

pðyÞ ¼

w1

l1

p1 þ
w2

l2

p2 � gr �
w1

l1

ðxA � yÞ þ w2

l2

ðxB � yÞ
� �
w1

l1

þ w2

l2

: ð33Þ

Eq. 33 shows that pressure at any point on the plane containing face r is a linear convex combination of pressure at centroids of two
neighboring cells plus a term accounting for pressure variation along the tangent direction. If we choose a certain point y such that the
last term in the numerator vanishes regardless of the tangent gradient gr, pressure at this point will depend on pressure at centroids of

two neighboring cells only. By equating
w1

l1
ðxA � yÞ þ w2

l2
ðxB � yÞ to zero, we can solve for this particular point y denoted as yr,

yr ¼

w1

l1
xA þ

w2

l2

xB

w1

l1

þ w2

l2

: ð34Þ

Pressure at this point is then given by

pðyrÞ ¼

w1

l1

p1 þ
w2

l2

p2

w1

l1

þ w2

l2

: ð35Þ

From the similar triangles in Fig. 3, it can be shown that the following relationships hold:

w1

l1

¼ k1

d1

;
w2

l2
¼ k2

d2

;

xA � y1 ¼
d1

k1

c1; y2 � xB ¼
d2

k2

c2: � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ð36Þ
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Fig. 4—Left: harmonic-averaging points (blue dots are harmonic-averaging points lying inside the face, and red dots are points
lying outside the face). Right: zooming in on the circled part of the left plot.
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By substituting Eq. 36 into Eqs. 34 and 35, Eqs. 27 and 28 can be recovered with some algebraic manipulations. Eq. 34 shows
clearly that the harmonic-averaging point is bounded between the two points xA and xB. Note that the above derivation applies to 3D
space equally well.

Recall from Fig. 4 that the difficulty of decomposing conormal vectors with nonnegative coefficients is usually caused by those
harmonic-averaging points that lie far outside their associated faces; we propose to improve the robustness of conormal decomposition
by restricting the interpolating point to lie within a prescribed distance from the face centroid. For each harmonic-averaging point yr,
we define a ratio rr to quantify the extent to which yr deviates from the face centroid xf:

rr ¼ kyr � xf k=R; ð37Þ

where R is an equivalent radius of the face defined as R¼ 0.5A in two dimensions and R ¼
ffiffiffiffiffiffiffiffi
A=p

p
in three dimensions, and A is the

length of the face in two dimensions or area of the face in three dimensions. Now, we want to restrict the interpolating point to lie
within a distance R0 from the face centroid xf (see Fig. 5). If jjyr� xfjj �R0, the original harmonic averaging point yr can be used
directly. However, if jjyr� xfjj>R0, a different point ys is chosen as the new interpolating point. From our derivation of the harmonic-
averaging point, we know that pressure of an arbitrary point y that lies on the plane containing the face is given by Eq. 33. However,
pressure gradient gr along the plane containing r is unknown and we cannot compute pressure at ys directly. To overcome this problem,
we choose the point ys that will minimize the absolute value of the last term in the numerator of Eq. 33 and then drop that term. Pressure
at ys is then interpolated by the exact same equation as Eq. 35; that is,

pðysÞ ¼

w1

l1
p1 þ

w2

l2
p2 � gr �

w1

l1

ðxA � ysÞ þ
w2

l2
ðxB � ysÞ

� �
w1

l1

þ w2

l2

�

w1

l1

p1 þ
w2

l2

p2

w1

l1
þ w2

l2

: ð38Þ

Because we are using the same interpolation of pressure for yr and ys, ys can be seen as a correction to the location of yr. Dropping
the last term runs the risk of losing accuracy, and a minimization problem is solved to keep the effect of the correction as small as possi-
ble. Because gr is unknown and noting that gr is parallel to the plane containing the face, we take ys as the solution to the following
optimization problem:

Minimize FðyÞ ¼ w1

l1

ðxA � yÞ þ w2

l2

ðxB � yÞ
����

����; ð39Þ

subject to ky� xf k � R0: ð40Þ

Upon solving the above optimization problem, ys will be the new interpolating point for face r and pressure interpolation at ys is
given by Eq. 38. For both 2D and 3D problems, the above optimization problem can be solved analytically (see Appendix A). For faces
r [ FN

B , our new interpolating point introduced in the preceding subsection can also deviate far from the face centroid and therefore
might need correction as well. Assuming a constant pressure gradient gr along the plane containing r, pressure at any point y on the
plane can be calculated as

pðyÞ ¼ pr þ ðy� yrÞ � gr; ð41Þ

where pr is defined by Eq. 30. A new point ys can be chosen to minimize jj y� yrjj. Pressure at ys is then approximated by dropping the
second term in Eq. 41. For faces r [ FD

B , the face centroid is taken as the interpolating point and no correction is needed.
To investigate the effect of our correction algorithm on the accuracy of the respective NFVMs, we take a numerical test example

from (Schneider et al. 2017b) and conduct a numerical convergence test by solving Eq. 1 using NTPFA and NMPFA. The computa-
tional domain is X¼ (�1, 1)2 and is composed of three subdomains, as shown in the left of Fig. 6. Permeability is isotropic in Sub-
domain 1 and 3 and anisotropic in Subdomain 2 with k1¼ 1, k3¼ 100, and K2¼ diag(10, k2y). We test the two cases where k2y¼ 103

and 105, respectively. X is meshed by meshes that honor the internal permeability discontinuity. An example grid is shown in the right
of Fig. 6. The mesh is refined consecutively by an n	 n grid where n¼ 8, 16, 32, 64, and 128. The analytical pressure solution in each
subdomain is given in polar coordinates as

pðr; hÞ ¼ cþ ra½aicosðahÞ þ bisinðahÞ�; i ¼ 1; 2; 3; ð42Þ
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Fig. 5—Harmonic-averaging point yr lies far away from the centroid xf of its associated face. A different point ys within the speci-
fied radius R 0 is chosen as the new interpolating point.
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where c is a constant to make sure the pressure solution stays positive. The other constants ai and bi are calculated by enforcing pressure
and flux continuity across subdomain boundaries. Their exact values can be found in Schneider et al. (2017b). For this example, decom-
position of conormal vectors with nonnegative coefficients can succeed without any correction to the original harmonic-averaging
points despite the fact that some harmonic-averaging points associated with faces lying on the internal boundary between the sub-
domains lie outside their associated faces. Therefore, this example can be used to evaluate the possible loss of accuracy we might incur
because of the corrections we made to the harmonic-averaging points. Fig. 7 depicts the locations of harmonic-averaging points cor-
rected by our correction algorithm with various R0 values for each face on an 8	 8 grid with k2y¼ 105. The blue dots denote harmonic-
averaging points lying inside their associated faces, and red dots denote harmonic-averaging points lying outside. In plot (a) of the
figure, R0 ¼1, meaning that no correction is made to any harmonic-averaging point. It can be seen that as R0 decreases, those
harmonic-averaging points lying far from their associated faces are gradually brought back to the faces. When R0 ¼R, any harmonic-
averaging point lying outside its associated face is corrected to lie on the face. Figs. 8 and 9 show the convergence plots of pressure
and flux solutions of NTPFA and NMPFA with various R0 values for the two cases, respectively. A smaller value of R0 means a larger
degree of correction. The discrete L2 norm of pressure and flux solutions is computed by Eq. 43 and is plotted against the inverse of
mesh size h, which is computed as the mean of all face areas in a mesh. The classical multipoint flux approximation O (MPFA-O)
method is used as a benchmark to evaluate the convergence behaviors of the two nonlinear methods. The results demonstrate that for
this particular example, our correction algorithm actually has a positive effect on the accuracy of pressure solutions and the optimal
convergence rate is still maintained after correction of harmonic-averaging points. The larger the degree of correction, the smaller the
discrete pressure error norm. However, the convergence rate of flux solutions deteriorates for corrected harmonic-averaging points com-
pared with the original harmonic-averaging points. This is especially true for the high-anisotropy case (k2y¼ 105). Therefore, we pro-
pose to make corrections only when there exists a conormal that cannot be decomposed with nonnegative coefficients. This happens
when there exists a cell whose centroid lies outside the convex hull of the harmonic-averaging points associated with its faces. Hence,
we apply the above corrections to the involved harmonic-averaging points for such a cell. Out of all the harmonic-averaging points
involved for the cell, we apply the corrections to the point yr that has the largest value of rr with a given value of R0. The corrections
are applied recursively until the centroid of the cell lies inside the convex hull of the interpolating points associated with its faces.
Therefore, the following correction algorithm is proposed.

Step 1: Compute the locations of the original harmonic-averaging points using Eq. 34 and find the weighting coefficients using
Eq. 35 for internal faces. For boundary faces, face centroid is taken as its harmonic-averaging point if the Dirichlet boundary condition
is applied; when the Neumann boundary condition is specified on the boundary face, we use the strategy introduced in the Harmonic
Averaging Point subsection and Eq. 30 to determine the harmonic-averaging point and its pressure reconstruction.

Step 2: Loop over all the cells in the grid to check for each cell whether its centroid lies within the convex hull of the harmonic-
averaging points associated with its faces. If no cell violates this condition, go to Step 4; else, go to the next step.

1

3

2
β = 7π/16

Fig. 6—Left: computational domain X composed of three regions with discontinuous permeability distributions; right: mesh con-
forming to internal permeability discontinuity.

(a) R ′ = ∞ (b) R ′ = 3R (c) R ′ = 2R (d) R ′ = R

Fig. 7—Harmonic-averaging points with different R 0 values when k2y 5 105: (a) R 05 inf, (b) R 05 3R, (c) R 05 2R, (d) R 05 R.
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Fig. 8—Discrete L2 norm of pressure errors (left column) and flux errors (right column) using NTPFA (first row) and NMPFA
(second row) with various R 0 values for when k2y 5 103.
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Fig. 9—Discrete L2 norm of pressure errors (left column) and flux errors (right column) using NTPFA (first row) and NMPFA
(second row) with various R 0 values when k2y 5 105.
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Step 3: For the cell whose centroid lies outside the convex hull of the harmonic-averaging points associated with its faces, compute
rr for each involved harmonic-averaging point and then sort all the rr values from largest to smallest and find the harmonic-averaging
point yr0 with the largest rr value denoted as rr_max. Apply the correction using Eqs. 38 through 41 to this yr0 depending on whether it
lies on an internal face or a boundary face by taking R0 ¼ b � rr max � R where b is a contracting factor satisfying 0 < b < 1. A smaller
value of b means a larger degree of correction to the location of yr0. In our code, b is set to be 0.9. Then return to Step 2.

Step 4: Exit the algorithm.
The above algorithm is guaranteed to converge as long as the mesh and permeability distribution satisfy the requirement that for all

the cells of the mesh, and the cell centroid lies inside the convex hull formed by all the centroids of its faces.

Numerical Experiments

Convergence Tests. In this subsection, numerical examples are presented to test the effect of our correction algorithm on the conver-
gence behavior of the NFVMs. The MPFA-O method is used as a benchmark. The details of the MPFA-O method can be found in
Aavatsmark (2002), and its convergence behavior was numerically tested in Eigestad and Klausen (2005). We implemented the MPFA-O
method and the NFVMs within the framework of the open-source MATLAB reservoir simulation toolbox (MRST) (Lie et al. 2012). Our
implementation of Dirichlet boundary conditions for the MPFA-O method follows the technique presented in Eigestad and Klausen
(2005), and we validated our code with their published numerical results. The discrete L2 norm defined by the following equations is
used to quantify the error of pressure and flux solutions:

ep ¼ kp� phkL2 ¼
X

i

½Aiðpi � ph;iÞ2�
�X

i

Ai

( )1=2

;

ef ¼ kf � fhkL2 ¼
X

i

Qei½ðfi � fh;iÞ=ei�2
n o�X

i

Qei

 !1=2

; � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ð43Þ

where pi is the exact solution evaluated at the center of the ith control volume and ph,i is the corresponding numerical solution; Ai is the
area/volume of the ith control volume. fi is the flux across interface i using the exact solution evaluated at the centroid of the face, and
fh,i is the corresponding numeral flux; ei is the length/area of interface i and Qei is the area/volume associated with interface i, taking Qei

as the half of the sum of two neighboring control volumes. The order of convergence of pressure solution Rp between two levels of
mesh refinement is calculated by the following equation:

Rp ¼ �dim
ln½epðiÞ� � ln½epði� 1Þ�
ln½ncðiÞ� � ln½ncði� 1Þ� ; ð44Þ

where dim equals the dimension (2 or 3) of the problem, and nc is the number of cells of the mesh. Convergence order of flux solutions
Rf is calculated similarly with ef replacing ep in Eq. 44.

2D Tests. This example is taken from the 2D benchmark test of discretization schemes for anisotropic diffusion equations (Herbin
and Hubert 2008). The permeability tensor is anisotropic, and the principal direction rotates smoothly throughout the domain. Its
distribution is given by the following expression:

K ¼ 1

x2 þ y2

y2 þ ex2 �ð1� eÞxy
�ð1� eÞxy ey2 þ x2

� �
: ð45Þ

The parameter e in Eq. 45 is a constant that controls the strength of anisotropy of the permeability tensor. The computational domain
is the unit square X¼ (0, 1)2. The analytical pressure solution is p(x,y)¼ sin(px)sin(py) þ 1, and the source term is given by
q ¼ �r � ðKrpÞ. The boundary condition is of Dirichlet type, CD¼ @X, with gD given by the exact solution. The computational
domain is discretized by randomly perturbed quadrilateral and acute-triangular meshes. Fig. 10 shows an example of the two types of
meshes. In our code, the permeability tensor is computed at the centroid of each cell and is piecewise constant as in Terekhov et al.
(2017). This example is quite challenging because of both heterogeneity and anisotropy combined with nonorthogonal meshes. Note
that in Herbin and Hubert (2008) the computational domain is discretized by uniform square meshes for which all the harmonic-
averaging points lie inside their associated faces. Fig. 11 shows the locations of the harmonic-averaging points before and after correc-
tion on a randomly perturbed 8	 8 quadrilateral mesh when the anisotropy ratio is 1,000. It can be seen that a slight perturbation of the
mesh leads to some harmonic-averaging points lying far outside their associated faces, as indicated by the red dots in the left plot. If the
original harmonic-averaging points are used as interpolating points, decomposition of conormal vectors with nonnegative coefficients
can easily fail on the nonorthogonal meshes used here. The right plot in the figure shows the locations of the harmonic-averaging points
after our correction algorithm is applied. Those problematic harmonic-averaging points (black circles in the plots) are identified to
cause the decomposition of some conormals to fail, and their locations are modified accordingly. Fig. 12 further shows the convex hull
of the associated harmonic-averaging points before and after our correction algorithm is applied for a quadrilateral and triangular cell
in detail.

We first take the anisotropy ratio as 10 (e¼ 10�1). For this mild anisotropy ratio, no corrections are needed for the harmonic-
averaging points because all the cell centroids lie inside the convex hull formed by their associated points. Fig. 13 shows graphically
the discrete L2 norm of pressure and flux errors as a function of number of cells nc on the two types of meshes for MPFA-O, NTPFA,
and NMPFA methods. It can be seen that the three methods have comparable convergence behavior for both pressure and flux solutions.
Tables 1 and 2 list the discrete error norms, convergence rate at each mesh refinement level for the three methods, and the number of
Picard iterations niter for the two nonlinear methods on quadrilateral and triangular meshes. The order of convergence of pressure solu-
tion is approximately second order and for flux solutions is first order. In general, more Picard iterations are needed for the two non-
linear methods as the mesh is refined. We also note that the number of Picard iterations for NMPFA reaches 500 for several meshes
(marked in bold in Table 2) without converging to the specified stopping criterion although its effect on the final solution seems to be
insignificant. Increasing the number of Picard iterations does not help because the norm of residuals fluctuates around a horizontal line,
as depicted in Fig. 14. Because no correction is applied to the harmonic-averaging points in this case, this convergence issue with
NMPFA is not caused by our correction algorithm.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Next, we increase the anisotropy ratio to 1,000 and run the simulations again. Table 3 lists the percentage of cells whose centroid
lies outside the convex hull formed by its associated harmonic-averaging points before correction for each mesh. It can be seen that our
correction algorithm needs to be applied for both quadrilateral and triangular meshes. This test case is also investigated in Schneider
et al. (2017a) and Terekhov et al. (2017) on various meshes. The MPFA-O method is well-known to suffer from unphysical oscillations
for highly anisotropic problems, and the convergence of MPFA-O is lost for this case as is pointed out in Terekhov et al. (2017). The

Fig. 10—Example of randomly perturbed quadrilateral mesh (left) and acute-triangular mesh (right).
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Fig. 11—Locations of harmonic-averaging points on a random quadrilateral mesh before correction (left) and after correction
(right). Blue dots denote the harmonic-averaging points lying inside their associated face, while red dots denote the points lying
outside their associated face. Our correction algorithm identifies those problematic harmonic-averaging points (black circled) and
modifies their locations.
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two nonlinear methods, on the other hand, still converge although at reduced orders, which is expected because of the high anisotropy
ratio. Discrete error norms and orders of convergence at each mesh-refinement level for the three methods on random quadrilateral
meshes and acute-triangular meshes are listed in Tables 4 and 5, respectively. On random quadrilateral meshes, compared to the rele-
vant results presented in Schneider et al. (2017a), the order of convergence for NTPFA and NMPFA in this work shows only a slight
deterioration that might be caused by our correction algorithm. However, on acute-triangular meshes, our NTPFA and NMPFA show
performance comparable to the results presented in Terekhov et al. (2017) and the effect of our correction algorithm on the accuracy of
NTPFA and NMPFA is minimal. Pressure solutions of both NTPFA and NMPFA converge at an approximate order of 1.5, and the first
order of convergence is maintained for flux solutions. Also shown in Tables 4 and 5 are the number of Picard iterations for NTPFA and
NMPFA on all the meshes. Similar to the previous case, NMPFA suffers from convergence issues for several meshes.
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Fig. 13—L2 norm of pressure (left column) and flux (right column) errors for the 2D convergence test of mild anisotropy on the
random quadrilateral mesh (first row) and acute-triangular mesh (second row).

MPFA-O NTPFA NMPFA 

nc ep Rp ef Rf ep Rp ef Rf niter ep Rp ef Rf niter

64 2.37×10–2 0 3.40×10–2 0 1.37×10–2 0 4.19×10–2 0 23 1.93×10–2 0 7.16×10–2 0 42

256 5.35×10–3 2.15 1.40×10–2 1.27 3.65×10–3 1.91 1.93×10–2 1.12 39 5.20×10–3 1.90 3.23×10–2 1.15 54

1,024 1.29×10–3 2.05 6.21×10–3 1.18 1.03×10–3 1.82 8.81×10–3 1.13 52 1.31×10–3 1.99 1.36×10–2 1.24 70

4,096 3.37×10–4 1.94 3.02×10–3 1.04 2.76×10–4 1.90 4.23×10–3 1.06 64 3.26×10–4 2.01 5.52×10–3 1.30 86

16,384 8.41×10–5 2.00 1.45×10–3 1.05 7.40×10–5 1.90 2.00×10–3 1.08 72 8.52×10–5 1.94 2.51×10–3 1.14 95

Table 1—Results of 2D convergence test of mild anisotropy on random quadrilateral meshes.

MPFA-O NTPFA NMPFA 

nc ep Rp ef Rf ep Rp ef Rf niter ep Rp ef Rf niter

56 6.17×10–2 0 5.36×10–2 0 2.24×10–2 0 4.15×10–2 0 22 2.86×10–2 0 1.03×10–1 0 50

224 1.35×10–2 2.19 3.42×10–2 0.65 4.21×10–3 2.41 2.34×10–2 0.83 32 8.06×10–3 1.82 4.07×10–2 1.35 69

896 3.22×10–3 2.07 1.83×10–2 0.90 9.87×10–4 2.09 1.23×10–2 0.93 44 1.93×10–3 2.06 1.80×10–2 1.18 106

3,584 7.93×10–4 2.02 9.35×10–3 0.97 2.46×10–4 2.00 6.30×10–3 0.97 54 4.66××10–4 2.05 8.73×10–3 1.05 500

14,336 1.97×10–4 2.01 4.71×10–3 0.99 6.22×10–5 1.98 3.18×10–3 0.98 65 1.65×10–4 1.50 4.19×10–3 1.06 500

Table 2—Results of 2D convergence test of mild anisotropy on acute-triangular meshes.
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3D Tests. Case 1: Mild Anisotropy. This test case is taken from the 3D benchmark test of discretization schemes for anisotropic dif-
fusion equations (Eymard et al. 2011) and features a constant permeability tensor with mild anisotropy,

K ¼
1 0:5 0
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Fig. 14—Relative norm of residual during Picard nonlinear iterations for NTPFA and NMPFA on the acute-triangular mesh at the
last refinement level.

Mesh-Refinement
Level

Quadrilateral
Mesh (%)

Triangular
Mesh (%)

1 3.13 0
2 2.73 1.79
3 1.07 0.67
4 0.15 0.17
5 0.09 0.04

Table 3—Percentage of cells whose centroid lies outside the convex

hull formed by its associated harmonic-averaging points on quadrilat-

eral and triangular meshes at each mesh-refinement level for 2D

convergence test of strong anisotropy.

NTPFA NMPFA

nc ep Rp ef Rf niter ep Rp ef Rf niter

64 4.56×10–2 0.00 1.17×10–1 0.00 32 5.73×10–2 0.00 1.98×10–1 0.00 71

256 1.37×10–2 1.74 8.56×10–2 0.45 67 1.48××10–2 1.95 1.30×10–1 0.60 500
1,024 1.16×10–2 0.24 7.25×10–2 0.24 141 1.46×10–2 0.02 8.05×10–2 0.70 500
4,096 3.58×10–3 1.69 3.96×10–2 0.87 259 3.79×10–3 1.95 4.69×10–2 0.78 500

16,384 1.16×10–3 1.62 2.24×10–2 0.82 473 1.59×10–3 1.26 2.80×10–2 0.75 500

Table 4—Results of 2D convergence test of strong anisotropy on random quadrilateral meshes.

NTPFA NMPFA

nc ep Rp ef Rf niter ep Rp ef Rf niter

56 4.41×10–2 0 6.90×10–2 0 29 5.61×10–2 0 1.17×10–1 0 102

224 1.29×10–2 1.78 3.45×10–2 1.00 56 2.17×10–2 1.37 5.76×10–2 1.04 111

896 5.57×10–3 1.21 2.16×10–2 0.68 111 1.02×10–2 1.09 3.09×10–2 0.90 256

3,584 1.87×10–3 1.57 1.27×10–2 0.77 211 4.01×10–3 1.34 1.69×10–2 0.87 439

14,336 5.39×10–4 1.79 6.34×10–3 1.00 395 1.28××10–3 1.64 8.39×10–3 1.01 500

Table 5—Results of 2D convergence test of strong anisotropy on acute-triangular meshes.
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The analytical solution is given by p(x,y,z)¼ 1þ sin(px)sin[p(yþ 1/2)]sin[p(zþ 1/3)]. The Dirichlet condition is applied on the
domain boundary. Fig. 15 shows the meshes used in this example. The random hexahedral mesh is generated by randomly perturbing
the vertices of a Cartesian mesh of the unit cube. Because of the random perturbation, the cell faces might not be planar in general and
the computational domain is determined by the mesh. Face centroids, face normals, and face areas of the nonplanar faces are computed
by the computeGeometry function provided in MRST, and details of calculation can be found in Lie (2014). The random perturbation is
performed at each mesh-refinement level. The unstructured tetrahedral meshes are downloaded from the website of the 3D benchmark
test (URL https://www.latp.univ-mrs.fr/latp_numerique/?q=node/11#mesh2). For the random hexahedral meshes, the original
harmonic-averaging points can be successfully used for conormal decomposition and our correction algorithm does not need to be
applied. For the unstructured tetrahedral meshes, the percentage of cells whose centroid is outside the convex hull of its associated
harmonic-averaging points is 3.72, 5.64, 5.31, 4.11, and 5.06% for each level of mesh refinement, respectively. Fig. 16 shows an exam-
ple of a tetrahedral cell with its associated harmonic-averaging points. Before correction of the harmonic-averaging points, the cell cent-
roid lies outside the convex hull and decomposition of conormals with nonnegative coefficients can fail for some of its faces. After
correction, the cell centroid now lies inside the convex hull and all the conormals of this cell can be decomposed successfully with non-
negative coefficients. Fig. 17 shows the convergence results of MPFA-O, NTPFA, and NMPFA graphically, and the corresponding
order of convergence at each mesh-refinement level is listed in Tables 6 and 7 on hexahedral and tetrahedral meshes, respectively. It
can be seen that on random hexahedral meshes, the three methods have performance similar to that of MPFA-O, behaving slightly
better than the two nonlinear methods. Pressure solutions converge at approximately second order, and flux solutions converge at
higher than first order. Our results of nonlinear methods agree fairly well with those presented in Schneider et al. (2018) (the NTPFA is
denoted by NLTPFA in their work). On tetrahedral meshes, the performance of NTPFA and NMPFA deteriorates, especially for the
last mesh-refinement level. This test is also carried out in Wu and Gao (2014) on the same tetrahedral meshes. The method denoted by
LPS-TP3 in their work uses harmonic-averaging points to decompose conormal vectors. However, because of conormal-decomposition
issues, they presented results on meshes that correspond to mesh refinement Level 1–3 in this work and did not obtain results on finer
meshes. Inspecting their available results reveals that the order of convergence for both pressure and flux solutions on the first three
levels of mesh refinement is quite close between the two nonlinear methods in this work and their LPS-TP3 method, suggesting that the
effect of our correction algorithm on the accuracy of the nonlinear methods is insignificant on these meshes. However, the lower per-
formance on the last mesh-refinement level might be caused by our correction algorithm because more numbers of harmonic-averaging
points need to be corrected.

Fig. 15—Example of randomly perturbed hexahedral mesh (left) and unstructured tetrahedral mesh (right).

Fig. 16—Example of a tetrahedral cell (yellow-colored) and the convex hull (green-colored) of its associated harmonic-averaging
points. The red dot is the centroid of the cell, and the blue dots are the harmonic-averaging points. Left: the cell centroid lies out-
side the convex hull of the original harmonic-averaging points; right: the same cell centroid lies inside the convex hull after our
correction algorithm is applied to the harmonic-averaging points.
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Case 2: Strong Anisotropy. This second case is also taken from Eymard et al. (2011) and deals with a constant tensor with
strong anisotropy,

K ¼
1 0 0

0 1 0

0 0 103

0
@

1
A: ð47Þ

The analytical pressure solution is given by p(x,y,z)¼ sin(2px)sin(2py)sin(2pz)þ 1. Meshes shown in Fig. 15 are still used to discre-
tize the unit cube. Once again, the MPFA-O method does not converge because of the high anisotropy. Because the permeability is con-
stant, the locations of harmonic-averaging points for each mesh are the same as in the previous case. Therefore, no correction of
harmonic-averaging points is needed for hexahedral meshes; for tetrahedral meshes, however, our correction algorithm is necessary.
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Fig. 17—L2 norm of pressure (left column) and flux (right column) errors for 3D convergence test of mild anisotropy on random
hexahedral mesh (first row) and unstructured triangular mesh (second row).

MPFA-O NTPFA NMPFA 

nc ep Rp ef Rf ep Rp ef Rf niter ep Rp ef Rf niter

125 2.24×10–2 0 7.08×10–2 0 1.51×10–2 0 1.48×10–1 0 19 2.80×10–2 0 1.60×10–1 0 23

512 8.61×10–3 2.04 3.31×10–2 1.62 7.18×10–3 1.58 7.20×10–2 1.53 26 1.28×10–2 1.66 8.57×10–1 1.32 32

1,728 3.84×10–3 1.99 1.78×10–2 1.53 3.68×10–3 1.65 3.89×10–2 1.52 30 6.36×10–3 1.73 5.20×10–2 1.23 39

5,832 1.72×10–3 1.98 9.98×10–3 1.43 1.80×10–3 1.77 2.06×10–2 1.56 34 3.14××10–3 1.74 3.05×10–2 1.32 500

19,683 7.63×10–4 2.01 5.74×10–3 1.36 8.43×10–4 1.87 1.10×10–2 1.55 33 1.51×10–3 1.81 1.75×10–2 1.38 66

Table 6—Results of 3D convergence test of mild anisotropy on random hexahedral meshes.

MPFA-O NTPFA NMPFA 

nc ep Rp ef Rf ep Rp ef Rf niter ep Rp ef Rf niter

215 2.71×10–2 0 1.87×10–1 0 2.34×10–2 0 2.38×10–1 0 33 2.67×10–2 0 3.18×10–1 0 60

2,003 5.81×10–3 2.07 7.76×10–2 1.18 6.16×10–3 1.79 9.46×10–2 1.24 38 8.82××10–3 1.49 1.48×10–1 1.03 500

3,898 4.06×10–3 1.62 6.20×10–2 1.01 4.43×10–3 1.49 7.56×10–2 1.01 42 6.48×10–3 1.39 1.25×10–1 0.78 500

7,711 2.44×10–3 2.24 4.77×10–2 1.16 2.67×10–3 2.22 5.59×10–2 1.32 51 4.26×10–3 1.84 9.49×10–2 1.20 500

15,266 1.63×10–3 1.76 3.80×10–2 1.00 2.23×10–3 0.80 4.78×10–2 0.69 40 3.52×10–3 0.84 8.01×10–2 0.75 500

Table 7—Results of 3D convergence test of mild anisotropy on unstructured tetrahedral meshes.
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Discrete error norms and order of convergence at each mesh refinement level for the two types of meshes are listed in Tables 8 and 9,
respectively. On hexahedral meshes, the convergence order of pressure solutions for NTPFA approaches second order and flux solutions
converge at higher than first order. The performance of NMPFA is lightly worse than for NTPFA. On tetrahedral meshes, the order of
convergence for both NTPFA and NMPFA tends to be reduced in general. Pressure solutions converge at a similar rate for NTPFA and
NMPFA, but NMPFA has lower order of convergence of flux solutions than NTPFA. To our knowledge, there are no published results
of this test on tetrahedral meshes, which makes it difficult to assess to what degree the reduction of convergence order is caused by our
correction algorithm and by the tetrahedral mesh itself.

No-Flow Boundary Condition. Monotonicity properties of NFVMs have been tested extensively in the literature. The property of
positive-preserving or extremum-preserving can be proved mathematically from the formulation of the respective NFVM. Therefore, in
this subsection, we include only one example to test the performance of the nonlinear methods on domains with no-flow boundary con-
ditions. Calculation of interpolating points of faces lying on no-flow boundaries is introduced in the Harmonic-Averaging Point sub-
section. The example is taken from Aavatsmark et al. 2008 and is used to investigate the DMP for no-flow boundary conditions. The
unit square domain (0, 1)2 is meshed by an 11	 11 Cartesian grid. Permeability is given by the following formula:

K ¼ cosh �sinh
sinh cosh

� �
1000 0

0 1

� �
cosh sinh
�sinh cosh

� �
; ð48Þ

where h¼ 67.5
. No-flow boundary conditions are applied on the exterior boundaries. Pressure of cell (4, 6) is fixed to be 0 and pressure
in cell (8, 6) is 1 (see left side of Fig. 18). For practical implementations, we follow the way presented in Lipnikov et al. (2009) and
specify consistent Dirichlet boundary conditions on the faces of these two cells. Harmonic-averaging points of each face are displayed
in the right side of Fig. 18. The maximum principle states that the pressure solutions should be bounded between 0 and 1 and there
should be no extrema on the boundary. Fig. 19 shows the pressure profile of the MPFA-O, NTPFA, and NMPFA methods, and
Table 10 lists the relevant computational results. MPFA-O produces negative pressure solutions and the maximum pressure value is
larger than unity. NTPFA preserves the positivity of the solution but has large “overshoots” as is indicated by the maximum value of its
pressure solution. Only NMPFA preserves the extremum principle and gives physically correct results. The pressure profile of NTPFA
shown in Fig. 19 agrees qualitatively well with the results presented in Lipnikov et al. (2009), suggesting that our handling of Neumann
boundary conditions performs reasonably well for this example. Also shown in Table 10 is the number of Picard iterations for NTPFA
and NMPFA. It is interesting to note that for this example, NMPFA requires fewer numbers of Picard iterations than NTPFA, which is
contrary to the observations made in previous numerical tests.

Field Test Case. The NFVMs have been applied successfully to modeling multiphase flow on complex corner-point grids (Schneider
et al. 2017b, 2018). To test the performance of the nonlinear methods using harmonic-averaging points modified by our correction algo-
rithm, the mathematical model (Eq. 1) was solved for a real field case in this subsection. The geological model is extracted from the
Norne Field data set that can be accessed through MRST. Fig. 20a shows the grid of the model together with one injection well
(denoted by “I”) and one production well (denoted by “P”). The original grid data are given in the corner-point-grid format that is com-
monly used in the industry. Because of faults, pinchouts, and other geological features, the grid contains degenerate hexahedral cells.
Grid processing routines provided in MRST were first used to convert the corner-point grid into a fully unstructured grid with matching
faces. As a result, the grid used in our simulation is an unstructured one composed of general polyhedrons. The grid cells can be highly
skewed, with a large aspect ratio, and a cell can have many faces. For details of the grid, the readers are referred to Lie (2014). Porosity
/, horizontal permeability kH, and vertical permeability kV in millidarcies are shown in Fig. 20b, 20c, and 20d, respectively. It can be
seen that the reservoir is highly heterogeneous and anisotropic. Eq. 1 describes incompressible single-phase flow in reservoirs. Because

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NTPFA NMPFA

nc ep Rp ef Rf niter ep Rp ef Rf niter

125 3.50×10–2 0 1.39×102 0 16 5.41×10–2 0 1.83×102 0 28

512 2.02×10–2 1.17 8.07×101 1.16 25 4.01×10–2 0.64 1.28×102 0.76 44

1,728 1.08×10–2 1.54 4.24×101 1.59 41 2.43×10–2 1.23 7.50×101 1.31 93

5,832 5.51×10–3 1.66 2.35×101 1.46 62 1.07××10–2 2.02 3.70×101 1.74 500
19,683 2.59×10–3 1.87 1.26×101 1.54 92 6.45×10–3 1.23 2.42×101 1.05 500

Table 8—Results of 3D convergence test of strong anisotropy on random hexahedral meshes.

NTPFA NMPFA

nc ep Rp ef Rf niter ep Rp ef Rf niter

215 1.18×10–1 0 4.86×102 0 51 1.34×10–1 0 5.88×102 0 79

2,003 4.51×10–2 1.29 2.27×102 1.02 90 6.96××10–2 0.88 3.76×102 0.60 500
3,898 3.43×10–2 1.23 1.79×102 1.08 98 4.87×10–2 1.61 2.82×102 1.29 500
7,711 2.84×10–2 0.84 1.41×102 1.07 126 3.94×10–2 0.93 2.38×102 0.76 500

15,266 2.12×10–2 1.27 1.12×102 0.98 156 2.93×10–2 1.31 1.97×102 0.82 500

Table 9—Results of 3D convergence test of strong anisotropy on unstructured tetrahedral meshes.
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the focus of this work is to solve the diffusion equation, we keep the physics simple. Both fluid viscosity and density are assumed to be
unity. No-flow boundary conditions are applied on all the boundary faces, as is often the case for reservoir-simulation problems. There-
fore, harmonic-averaging points on boundary faces are defined according to our new definition given in the Harmonic Averaging Point
subsection. There are approximately 0.1% of cells whose centroid lies outside the convex hull of its associated harmonic-averaging
points before correction. Therefore, application of our correction algorithm to the harmonic-averaging points is necessary. Fluid flow is
driven by the two wells. Bottomhole pressure of the injection well and production well is fixed at 20 and 10 MPa, respectively. The
source term in Eq. 1 is related to the wells by the Peaceman well model (Chen et al. 2006). For comparison, the model was simulated
using the NTPFA method in this work and the standard linear TPFA method. The linear TPFA method is known to be inconsistent for
the non-K-orthogonal grid and suffers from the grid-orientation effect. The NMPFA method, unfortunately, encounters convergence
issues again using Picard iterations and its results will not be shown here. In comparison, the NTPFA method converges after 42 Picard
iterations. For a reference solution, the classical MPFA-O method is not applicable for this model because it is unable to deal with grids
consisting of arbitrary polyhedrons. Therefore, we used another consistent discretization called the mimetic finite-difference (MFD)
method that is provided in MRST. The pressure solution of linear TPFA, NTPFA, and MFD are denoted as ptpfa, pntpfa, and pmfd, respec-
tively. Fig. 21 shows the difference between ptpfa and pmfd as well as the difference between pntpfa and pmfd in absolute values. The
results show that the NTPFA method gives a much closer pressure solution to MFD compared with the linear TPFA method. To investi-
gate the quality of flux solutions, the following passive tracer transport equation ignoring dispersion is solved once we have the flux
solution (Sandve et al. 2012):

@ð/cÞ
@t
þr � ðcvÞ ¼ qc; ð49Þ

where / is porosity, c is tracer concentration, v is the velocity field obtained from pressure solution as v ¼ �Krp, and qc is tracer
source term. Integrating Eq. 49 over a control volume Xi and using the divergence theorem yieldsð

Xi

@ð/cÞ
@t

dxþ
ð
@Xi

cv � dS ¼
ð
Xi

qcdx: ð50Þ

Eq. 50 is solved using an implicit first-order upwind scheme. Its discrete form can be written as

Vi/i

Dt
ðcnþ1

i � cn
i Þ þ

X
j2NðiÞ

cnþ1
ij fij ¼ Qci; ð51Þ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p = 0 p = 1

Fig. 18—Left: 11 3 11 Cartesian grid; right: location of harmonic-averaging points. Red dots represent our new definition of
harmonic-averaging point on no-flow boundary faces.
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Fig. 19—Pressure profile of MPFA-O (left), NTPFA (middle), and NMPFA (right).
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where Vi is the volume of cell i and Dt is the timestep; cnþ1
i and cn

i are concentration of tracer of cell i at the next time level and the cur-
rent time level, respectively; NðiÞ is the index set of neighboring cells that share a common face with cell i; cnþ1

ij is tracer concentration
on the interface between cell i and j; fij is flux flowing from cell i to j; and Qci is the integrated tracer source in cell i. The value of cnþ1

ij
is equal to cnþ1

i or cnþ1
i depending on the sign of flux fij. We further assume that tracer concentration in the injection well is always

unity, giving rise to constant tracer source terms for cells that are penetrated by the injection well. At the end of 1 PV injection after
100 timesteps, the differences in tracer concentration between linear TPFA and MFD and between NTPFA and MFD are shown in
Fig. 22. It can be seen that the magnitude of differences between NTPFA and MFD is smaller than that between linear TPFA and MFD.
Therefore, this example demonstrates that our correction algorithm can be applied to nonlinear methods to solve physically
realistic problems.
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Fig. 20—Geological model of a field test case: (a) grid model (I = injector well, P = producer well); (b) porosity /; (c) horizontal per-
meability kH; (d) vertical permeability kV.
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pntpta – pmfdptpta – pmfd

Fig. 21—Absolute-pressure difference between linear TPFA and MFD (left), and between NTPFA and MFD (right).

pmin pmax niter

MPFA-O –0.0600 1.0600 \
NTPFA 0.0143 1.5263 171
NMPFA 0.0168 0.9724 99

Table 10—Computational results for DMP test on the domain with

no-flow boundaries.
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Conclusions

A cell-centered NFVM with improved robustness is presented in this paper. The NTPFA method is positivity-preserving, while the
NMPFA is extremum-preserving. The concept of harmonic-averaging points is used for interpolation during the construction of one-
sided fluxes. A correction algorithm is proposed to address the main drawback of harmonic-averaging points—namely, for heterogene-
ous and highly anisotropic permeability tensors on general nonorthogonal grids, a harmonic-averaging point can lie anywhere on the
plane containing its associated face, causing potential problems for the decomposition of conormal vectors with nonnegative coeffi-
cients. By using the correction algorithm, the robustness of the nonlinear methods can be improved significantly. The correction algo-
rithm is a compromise between robustness and accuracy. By solving a minimization problem, the negative effect on the accuracy of the
scheme is kept minimal. Results of convergence in both 2D and 3D tests show that the optimal order of convergence is still maintained
for some problems but the convergence rate is reduced for others. A monotonicity test on a domain with no-flow boundary conditions
verified that both NTPFA and NMFPA methods preserve the positivity of pressure solutions but only NMPFA respects the discrete
maximum principle, and our simple strategy of defining a new interpolating point on boundary faces with Neumann boundary condi-
tions seems to work well, but more work is needed for more-robust handling of Neumann boundary conditions. Finally, the NTPFA
method combined with our correction algorithm is applied to a field test case to demonstrate that it can be used to simulate flow in reser-
voirs of industry-standard complexity. However, our numerical experiments also reveal that the NMPFA method can suffer from con-
vergence difficulties during Picard iterations for challenging problems.

Nomenclature

c ¼ tracer concentration
dS ¼ oriented areal element
ef ¼ L2 norm of flux errors
ep ¼ L2 norm of pressure errors
fr ¼ numerical flux through face r
F ¼ set of faces
FB ¼ set of boundary faces
F I ¼ set of internal faces

FD
B ¼ set of Dirichlet boundary faces

FN
B ¼ set of Neumann boundary faces

gD ¼ Dirichlet boundary condition
gN ¼ Neumann boundary condition
gr ¼ pressure gradient along face r
H ¼ index set of faces involved in decomposition of conormal vector
K ¼ permeability tensor
M ¼ set of cells

n̂ ¼ unit normal vector
p ¼ pressure
q ¼ fluid source term

qc ¼ tracer source term
R ¼ equivalent radius
t ¼ time

tk ¼ transmissibility of pressure at cell Xk

T ¼ nonlinear transmissibility
w ¼ weighting coefficient of harmonic averaging point
w ¼ conormal vector
x ¼ position vector

yr ¼ harmonic averaging point associated with face r
a ¼ coefficient of conormal decomposition
b ¼ contracting factor

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Concentration

ctpta – cmfd cntpta – cmfd

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Concentration

Fig. 22—Absolute-concentration difference between linear TPFA and MFD (left), and between NTPFA and MFD (right).
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CD ¼ Dirichlet boundary
CN ¼ Neumann boundary
l ¼ convex combination parameter
r ¼ generic face
u ¼ index set of cells involved in interpolating harmonic averaging point
/ ¼ porosity

wr ¼ index set of cells involved in approximating fr
@X ¼ boundary of computation domain
X ¼ computational domain
Xi ¼ ith cell
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Appendix A—Analytical Solution to the Minimization Problem

The solution to the minimization problem (Eqs. 39 and 40) is equivalent to the following problem:

Minimize FðyÞ ¼

w1

l1

ðxA � yÞ þ w2

l2

ðxB � yÞ
����

����
w1

l1
þ w2

l2

; ðA-1Þ

subject to ky� xf k � R0: ðA-2Þ

Because the denominator of Eq. A-1 is positive, objective function F(y) can be manipulated algebraically to the following form:

FðyÞ ¼

w1

l1

ðxA � yÞ þ w2

l2

ðxB � yÞ
����

����
w1

l1
þ w2

l2

¼

w1

l1

ðxA � yÞ þ w2

l2

ðxB � yÞ
w1

l1

þ w2

l2

�������
������� ¼

w1

l1
xA þ

w2

l2

xB

w1

l1
þ w2

l2

� y

�������
�������: ðA-3Þ

We recognize that the first term of F(y) is nothing but the original definition of harmonic-averaging point given by Eq. 34. There-
fore, the objective function is simplified as

FðyÞ ¼ kyr � yk: ðA-4Þ

Considering a face r as shown in Fig. 5, solution to the optimization problem (Eqs. A-1 and A-2) can be found directly as the inter-
section point between the line connecting xf and yr and the circle centered at xf with radius R0. For 2D problems, the solution can be
found analogously.
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