Département de Mathématiques et de Génie Industriel Polytechnique Montréal

MATHÉMATIQUES DES ÉLÉMENTS FINIS MTH8207

Automne 2024

PROJECT 1 WITH COMSOL MULTIPHYSICS: SIMULATION OF A COLUMN

PROBLEM 1:

We are interested in the analysis of a column of length L, cross-sectional area A, and Young's modulus E. We assume that the column stands on a support at x = 0, that it is subjected to a longitudinal compression force P at x = L and to the gravitational force density g. The displacement u = u(x) in the column is governed by the 1D differential equation:

$$-\frac{d}{dx}\left(EA\frac{du}{dx}\right) = -\rho gA, \quad \text{in } (0,L)$$

and subjected to the Dirichlet and Neuman boundary conditions:

$$u = 0$$
, at $x = 0$, and $EA\frac{du}{dx} = -P$, at $x = L$

The following data will be the same for all questions: $L = 4 \text{ m}, g = 9.81 \text{ m/s}^2, P = 40 \text{ kN}.$

- 1. In this question, take E, A, and ρ constant along x: E = 20 GPa, $\rho = 2,300$ kg/m³ (concrete), and $A = A_0 = \pi \times 10^{-2}$ m².
 - (a) Solve for the exact solution and derive the weak formulation of the problem.
 - (b) Develop an application in Comsol Multiphysics to model the problem.
 - (c) Compute the stress $\sigma = E du/dx$ and the relative error in the stress at x = 0 when using 1, 2, 4, 8, and 16 linear elements of uniform size.
 - (d) Using non uniform linear elements, design, by trial and error, a mesh that yields the minimal number of degrees of freedom while reaching a relative error in the stress at x = 0 smaller than half a percent.
- 2. Keep here E and ρ constant (E = 20 GPa, $\rho = 2,300 \text{ kg/m}^3$), and consider A such that

$$A = A_0 \left[1 - \frac{x(L-x)}{L^2} \right]$$

with $A_0 = \pi \times 10^{-2}$ m². Repeat Questions (b), (c), and (d).

3. Suppose now that the column is made of two different materials: in regions $(0, \ell)$ and $(L - \ell, L)$, with $\ell = 0.5$ m, the column is made of a material with properties E = 10 GPa and $\rho = 500 \text{ kg/m}^3$, and in these two regions, the column has a constant square cross-section of width $a_0 = 0.20$ m; in region $(\ell, L - \ell)$, the column has material properties E = 20 GPa, $\rho = 2,300 \text{ kg/m}^3$, and a constant circular cross-section with diameter $d_0 = 0.15$ m. Find the location x_s in the column where the stress is maximal. Design a mesh that should give a relative error in the maximal stress smaller than one percent.

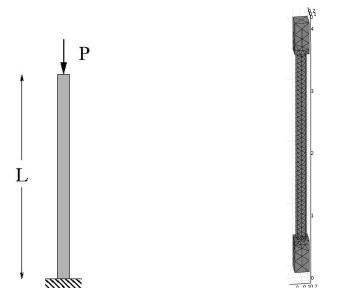


Figure 1: Description of the problem in 1D (left) and example of a mesh for the 3D model described in Problem 2 (right).

PROBLEM 2:

Develop a 3D FE model using linear elasticity to simulate the configuration in Problem 1.3. Suppose that the different components of the column are perfectly aligned along the centerline and that the force P is equally distributed at x = L. Find the maximal stress σ_s and corresponding location x_s in the column (make sure that the mesh is sufficiently refined to provide accurate solutions).

PROBLEM 3:

Suppose now that the circular column was imperfectly aligned with respect to the two other blocks by $\delta = 0.02$ m. Using 3D linear elasticity and assuming that the force P is equally distributed at x = L, compute the maximal deflection of the column.