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Abstract Sequential Gaussian simulation is wide-
spread in Earth Science applications to quantify the
uncertainty about regionalized properties. Its practical
implementation relies on the screen effect approxima-
tion in order to determine the successive conditional
distributions by considering only the information avail-
able in the neighborhood of the target location. A
methodology is presented to assess the accuracy of
sequential Gaussian simulation, by calculating the theo-
retical moments (expectation and variance—covariance
matrix) of the simulated random vector and comparing
them with the moments of the underlying model. The
methodology can be applied in both the conditional
and non-conditional contexts, as well as for univariate
or multivariate simulation. It is helpful to determine
appropriate implementation parameters, in particular
about the visiting sequence and the design of the mov-
ing neighborhood for selecting relevant conditioning
information, prior to performing simulation.
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1 Introduction

The simulation of Gaussian random fields is widely
used in ore body and reservoir modeling, hydrol-
ogy, soil and environmental sciences for assessing the
uncertainty in the unsampled values of regionalized
properties, such as mineral grades, concentrations of
contaminants, porosity, water saturation, permeability,
electrical conductivity, rock density, hardness, metal
recovery, or acid consumption [6, 9, 11, 12, 26, 43].

Gaussian simulation algorithms can be classified in
two families:

1. Algorithms that simulate random fields whose
finite-dimensional distributions are exactly multi-
variate Gaussian (except for round-off errors or
for the use of pseudo-random numbers), e.g., LU
decomposition of the covariance matrix [1, 10],
sequential Gaussian [15, 24], convolution [5, §],
circulant-embedding [16], and discrete spectral sim-
ulation [7, 33].

2. Algorithms that simulate random fields whose
finite-dimensional distributions are approximately
multivariate Gaussian, on account of the central
limit theorem, e.g., continuous spectral [38], turning
bands [23, 31], or dilution [8, 30].

This work focuses on a specific algorithm of the first
family, the sequential Gaussian, which is widely used
in applications. To reduce computing costs and storage
requirements when the target random field must be
simulated at a large number of spatial locations, an
approximate implementation is usually adopted, based
on the selection of subsets of data to determine the
successive conditional distributions. The selected data
are the closest to the location targeted for simulation,
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which are assumed to screen out the influence of the
data located farther away [17, 24].

The screen effect approximation results in a loss of
accuracy in the reproduction of the model statistics,
which needs to be assessed [28]. Currently, most ap-
proaches for validating sequential simulation consist in
comparing the experimental statistics of a finite set of
realizations with the model statistics [18, 24, 32, 40]
or with data statistics [29]. A drawback of these ap-
proaches is the difficulty in assessing whether or not the
deviations between experimental and model statistics
are significant. Indeed, even if simulation is perfectly
accurate, the experimental statistics of a single realiza-
tion are likely to fluctuate around the model statistics.
To avoid drawing mistaken conclusions, statistical hy-
pothesis testing can be made on a set of realizations, but
this leaves open the questions of how many realizations
should be generated and of what decision rule should
be used to balance false positives (errors of the first
kind) and false negatives (errors of the second kind):
reducing one type of error generally results in increas-
ing the other type of error [20].

In the following section, we propose a different ap-
proach consisting in determining the theoretical distri-
bution of the simulated random field and contrasting
this distribution with the underlying model distribution.
The accuracy of the sequential simulation algorithm
can then be measured by comparing theoretical statis-
tics, without the need for generating a set of realiza-
tions, calculating experimental statistics, or performing
hypothesis testing.

2 Theoretical distributions of random fields simulated
with the sequential Gaussian algorithm

2.1 Non-conditional simulation

It is of interest to simulate a standard Gaussian random
vector Y = (Y),... Y,,)T with given variance—covariance
matrix Cy. This vector represents the variables of a
Gaussian random field at a set of spatial locations tar-
geted for simulation. In the following, Cy is assumed to
be positive definite, i.e., all its eigenvalues are positive.
Otherwise, one should restrict the number of target
locations so as to ensure positive definiteness (a zero
eigenvalue occurs when one variable Y; is a linear
combination of the other variables Y; with j#i, in
which case the ith location can be removed).

The sequential Gaussian simulation algorithm con-
sists in simulating each component of Y in turn and
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using it as conditioning information for the subsequent
components [15, 24]. Denoting by Y = (Y}....Y,,))T the
simulated vector, one has:

i—1
Vi=1...n, ?,'ZZ)\];,'?/"FO}'Ui (1)
=1

where 1;; is the simple kriging weight assigned to Y;
when predicting Y;, o; the associated kriging standard
deviation, and U; a standard Gaussian random variable
independent of Uy,... U;_4, Yy,... Y.

From Eq. 1, it is seen that any linear combination
of the components of Y is a linear combination of the
independent Gaussian random variables U,,... U, and,
therefore, has a Gaussian distribution. Accordingly, Y
is a Gaussian random vector and is fully characterized
by its first- and second-order moments. Since Uj,... U,
have zero means, the mean vector of Y is zero, so that
it remains to determine its variance—covariance matrix.

Because Cy is positive definite, the kriging standard
deviation o; is positive. Equation 1 can, therefore, be
rewritten in the following fashion:

~ i—1 -
. =1
Vi=1l...n, Uy=—" 2)
of
or, equivalently:
U=AY (3)
L0 0
(;»11 2 1
oo 0
with A = . (lower trian-
At An—2n-1 1
Op—1 Opn—1 On—1 0
Ln An—2.n An—in 1
oy On On On

gular n x n matrix).
The components of U being mutually independent
with unit variances, one has:

1= E(UU") = AE(YY") AT )

where I stands for the identity n x n matrix. Since
the simulated vector Y has a zero mean, its variance—
covariance matrix is

Cy=E(YY')=a"(A")" )
If the kriging weights and standard deviation in Eq. 1

are calculated using all the previously simulated vari-
ables {Y7,... Y;_} as conditioning data (unique neigh-
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borhood implementation), the variance—covariance
matrix Cy coincides with the model matrix Cy [15]. As
A is triangular, Eq. 5 then coincides with the Cholesky
decomposition of Cy, which establishes equivalence
between the sequential Gaussian and LU simulation
algorithms [1, 10].

However, as n increases, using all the previously sim-
ulated variables as conditioning data in Eq. 1 becomes
computationally prohibitive, so that simplifications of
the sequential algorithm are necessary. In practice,
kriging is performed with a moving neighborhood,
taking only part of the previously simulated variables
(usually the most correlated with the target variable)
as conditioning data [24]. Equations 1-5 remain valid
by assuming that the data outside the moving neigh-
borhood are assigned zero weights, but the actual
variance—covariance matrix of the simulated vector Cy,
(Eq. 5) is likely to differ from the prior model Cy
[18, 32, 40].

The above statements provide a simple means to
assess the accuracy of sequential simulation:

1. Define a visiting sequence (i.e., a permutation of
{1.... n}) for simulation and order the components
of Y accordingly.

2. Define a moving neighborhood: number of data,
search radii and angular sectors [15].

3. According to the visiting sequence and moving
neighborhood, calculate the simple kriging weights
and standard deviations and define matrix A
(Eq. 3).

4. Calculate the variance—covariance matrix Cy of the
simulated vector (Eq. 5) and compare it with the
model variance—covariance matrix Cy, e.g., by cal-
culating a norm of the difference matrix Cy — Cy.

2.2 Conditional simulation

Suppose now that one has p preexisting conditioning
data Yo = (Yo,Y_i,... Yi_,)". Equation 1 is modified
into

0 i—1

Vi=1...n, ?,’Z Z )\j,in"‘Z)\j,i?j'i‘O’iUi (6)
=1-p j=1

with A ;, the kriging weight assigned to Y'; when predict-

ing Y}, and o, the associated kriging standard deviation.

This is equivalent to writing

U=AYo+AY (7)
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L 0 0
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A= o 1 (lower triangular
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n X n matrix).

Because U is a standard Gaussian random vector and
is independent of Yy, its expectation conditionally to Y
1s null:

0= E(UYy) = AgYo + AE (\?|Y0) (8)

The expectation of the simulated vector Y conditionally
to the data Y| is, therefore:

E (\?|Y0) — A 'A0 Yo 9)

Furthermore, by taking into consideration the indepen-
dence of the components of U and using Eqgs. 7 and 9,
one has:

I = E(UU"|Y,)
= E(AYoYJA] + AYY AL + AgYoYAT
+ A??TATWO)
= AoYoY AT + AE (Y|Y0) YIAT
+ A)YoE (YT|Y0) AT + AE (??TWO) AT
TAT ol T
— —AoYoYIAT + AE (YY |Y0) A (10)

Consequently, the conditional variance—covariance ma-
trix of Y is:

Cyy, = E (??T|YO) —E (\?|Y0) E \?T|Yo)
= A" (I+ AYoYgAf) (A7)
— (A" Yo) (YEAT (A7)
=AY (11)

Note that, unlike the conditional expectation vector
(Eq.9), this matrix does not depend on the conditioning
data values (Yy) or on the weights assigned to the
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conditioning data (Ay). Its calculation is formally the
same as in the non-conditional case (Eq. 5).

Provided that the kriging weights and standard devi-
ations used in Eq. 6 are calculated using all the data
and previously simulated variables {Y_,,...,Yo, Yi,...
f’i_]} as conditioning data, then the conditional ex-
pectation (Eq. 9) and conditional variance—covariance
matrix (Eq. 11) coincide with the kriging predictor of
Y from Y, and with the variance-covariance matrix
of kriging errors, respectively. These results not only
hold for simple kriging [3, 8] but also for ordinary,
universal, or intrinsic kriging [19, 22]. What is more,
the conditional expectation coincides with the kriging
predictor of Y from Y, under the weaker condition
that the neighborhood used in sequential simulation
contains all the components of the conditioning vector
Y, (Appendix 1).

Based on the previous statements, the following ap-
proach is proposed to assess the accuracy of sequential
conditional simulation:

1. Determine the model conditional expectation
E(Y|Yy) and conditional variance—covariance ma-
trix Cyyo. This requires predicting Y from Y, by
kriging in a unique neighborhood. Formulae giving
the kriging error covariances and variances can be
found in [19].

2. Define a visiting sequence for simulation; order the
components of Y accordingly.

3. Define a moving neighborhood: number of data,
search radii and angular sectors.

4. In accordance with the visiting sequence and mov-
ing neighborhood, calculate the simple kriging
weights and standard deviations and define matri-
ces A and Ay (Eq. 7). Data not selected in the
moving neighborhood are assigned zero weights.

5. Calculate the conditional expectation vector
E(Y|Yy) (Eq. 9) and the conditional variance—
covariance matrix Cyy, of the simulated vector
(Eq. 11). Compare them with the model statistics,
by calculating a vector norm of E(Y|Y)-E(Y | Yo)
and a matrix norm of Cyy — Cyyy, These
norms should be zero if simulation were perfectly
accurate.

2.3 Non-conditional cosimulation

Here, it is of interest to cosimulate two jointly Gaussian
random vectors Y = (Yy,... V)T and Z = (Z,,... Z)T
with zero means, variance—covariance matrices Cy and
Cz and cross covariance matrix Cyz = E(YZ").
Cosimulation can be performed hierarchically: hav-
ing simulated Z first and obtained a vector Z, Y is then
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simulated conditionally to Z. Similarly to Eq. 7, one
has:

U=QZ+AY (12)

with U a vector with n independent standard Gaussian
components

Y, O

a1 o]
Q= - ‘ and
_@in-1l 0 @l
On—1 On—1
P _®nn
On On
L0 0
oy
A= : (n x n matrices)
_ Mt 1
On—1 On—1
P P
On Opn On

where w;; and A;; are the simple co kriging weights
assigned to Z; and Y; when predicting Y;, and o; is the
standard deviation of the associated co kriging error.

Based on Eq. 12 and on the independence of U
and Z, one has:

E(AYY'AT) = E(UU" - ezu’ —uz' e’
+QZZ7Q")
=1-9 E(Z) E(U7)
-
—EEEE(ZT) Q" +QE (Z z") e

0 0

(13)
and
E(A?ZT) - E(UZT - szZZT)
_ 7T\ > 7T
_E(PE(Z ) SZE(ZZ ) (14)

0
Let Cy=E (YY), Cu=E(ZZ") and Cy;=

E (Y ZT) be the covariance matrices of the simulated

vectors. Equations 13 and 14 give the following
identities:

Cy=A"'(A") +a'ec e’ (A (15)

CYZ =_A"! QCZ (16)
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As in Section 2.1, we assumed that no component of Y
and Z is a linear combination of other components (the
standard deviations of co kriging errors are positive).
If this is not the case, redundant components should
be removed: the previous Eqgs. 12-16 remain valid, al-
though vectors Y and Z and matrices £ and A may have
different sizes, depending on the number of removed
components.

If the kriging and co kriging weights and standard
deviations used to simulate Z and Y are calculated
using all the previously simulated variables as con-
ditioning data, then Cy, C;, and Cyj; coincide with
the model matrices Cy, Cz, and Cyz. In contrast, if
fewer variables are used, the covariance matrices of the
simulated vectors are likely to be different from the
model matrices; a few particular cases are presented in
Appendix 2.

Consequently, the accuracy of sequential cosimula-
tion can be assessed in the following fashion:

1. Calculate the variance—covariance matrix C; of the
simulated vector Z and compare it with the model
matrix Cz (Section 2.1).

2. Define a visiting sequence for simulating Y. Order
the components of Y accordingly.

3. Define a moving neighborhood: number of data
from Y and Z, search radii and angular sectors.

4. In accordance with the visiting sequence and mov-
ing neighborhood, calculate the simple co kriging
weights and standard deviations and define matri-
ces  and A (Eq. 12).

5. Calculate Cy and Cyj (Egs. 15 and 16) and com-
pare these matrices with the model matrices Cy and
Cyz. Such a comparison can be done by calculat-
ing matrix norms of Cy — Cy and of Cy; — Cyz:
cosimulation is all the more accurate when these
norms are close to zero.

2.4 Conditional cosimulation

Let us finally consider the problem of cosimulating two
jointly Gaussian random vectors Y and Z conditionally
toYy=(Yy,Y_q,... Yl_p)T andZo=(Zo,Z _1,... Zl_p)T.
Let us start with the simulation of Z, by writing:

Vi

l...n,
0

> Z—i—ZA Z+Za)ZY+a U/

j=1-p j=1-p

‘Nz
Il

(17)

with 17, and w7, the co kriging weights assigned to
Z; and Y; when predicting Z;, and o/? the associated
co kriging standard deviation. This is equivalent to
writing

Uz=AozZo+AzZ+9 7Y, (18)

with U, a standard Gaussian random vector with inde-
pendent components,

L 0
—
o
Ay = 7 (n x n matrix),
Ln—1
P 0
nl
)‘l:n _L
O.HZ (THZ
z
Moo o M
O'lZ U]Z
A() 7z = .' ' and
s z
Mpni )‘(]Zn 1
Z v
Oén—l O-nz—l
1—p.n .. AOJ’I
o/ o/
z z
_ @ipa . @y
UIZ O'IZ
Rz = p 5 (n x p matrices) .
_®itpn-t _ Don-1
Z Z
UZ,H UnZ—]
_ w]—p/z . @o.n
oZ o’

n n

Following with the simulation of Y, one has:

Vi=1...n,

0
5}1‘22)\. Y+Z)x Y+Zw]);Z,
j=1-p j=1-p
—i—Za)YZ +ao¥uy 19)

with ky and a)Y the co kriging weights assigned to
Y; and Z; when predicting Y;, and 0¥ the associated
co kriging standard deviation. Equivalently:

Uy = Aoy Yo+ AyY + Q. yZo + RyZ (20)
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with Uy, a standard Gaussian random vector with inde-
pendent components,

- 0
—— -
91
Ay = WY and
Ln—1 0
Py
"}7]
Mo _ 1
any GVIY
Y Y
_@n %
Uly aly
Qy = ¥ ¥ (n x n matrices),
_ @ i _ Dy n—1
Y Y
O-nfl arz);]
_ % _ @
oY oy
Y Y
Mopa _to1
Y Y
9] 9
Aoy = N o and
_ Mopn-i 0,n—1
Y Y
g]n—] any—I
_ )‘l—p,n _ )‘OAn
UIIYv o-”),
Y Y
@i_p.i @o,1
Y T Y
9 91
Qoy = v ¥ n X p matrices) .
’ _w]—p n—1 | ( p )
Y Y
?L—l o-n;l
— w]—[’v” . wtln
oY oY

By reasoning as in Sections 2.2 and 2.3, the following
identities relating the conditional covariance matrices
of the simulated vectors are found:

AzCyyyzyAy =1 (21)
AYC?\(YO.ZO)AIT/ =1+ Qy CZ\(YD,ZO)QiT/ (22)
AvCyzivy.z) = —2vCqv,.2) (23)

Provided that the co kriging weights and standard de-
viations are calculated using all the previously sim-
ulated variables as conditioning data, then Cz,y 7.,
Cy\v,. 7,0 and Cyzy, 7z, coincide with the covari-
ance matrices of the co kriging errors of (Y,Z) from
(Yo, Zy). This result holds for simple, ordinary, univer-
sal, or intrinsic co kriging.

To assess the accuracy of sequential conditional
cosimulation, the following approach is proposed:

1. Determine the model covariance matrices
CY\(YO,Zn)s CZ\(YO,ZO) and CYZl(Yo,ZO)' This requires
co kriging (Y,Z) from (Yo,Zo) (co kriging in a
unique neighborhood).
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2. Define visiting sequences for cosimulating vectors
ZandY.

3. Define moving neighborhoods for cosimulating
vectors Z and Y: number of data, search radii and
angular sectors.

4. According to the visiting sequences and moving
neighborhoods, calculate the co kriging weights and
standard deviations and define matrices Az, Ay,
and Qy (Egs. 18-20). Data not selected in the
moving neighborhood are assigned zero weights.

5. Caleulate Cyy, 7, Czvyzo a4 Cyzv, 7
(Egs. 21-23).

6. Compare these matrices with the model matri-
ces Cyvyzy» Czivyzp, and Cyzjy,zp, €.g., by
calculating matrix norms of Cy,y, 7z, — Cviv,, 2o
Caivo. 2oy — Czitvo. 20,304 Cyv, 7, — Cyziov,, z)-

Note that the weights assigned to the conditioning
data (matrices Ao z, Aoy, R0z, and 2py) and the
conditioning data values (Y,Zo) have no influence
on the conditional covariance matrices. However, they
have an influence on the conditional means. Based on
Eqgs. 18 and 20, these are found to be:

E (Z|Y0, Zo) = —A3' (Ao.2Zo + 0.2 Y0) 24)
E (?|Y0, Zo) = —Ay' (AoyYo + Qo vZo
+QE (Z|Yo, Z0>> (25)

As in the univariate case (Appendix 1), it can be shown
that such conditional expectations coincide with the
theoretically expected ones (i.e., the co kriging pre-
dictions in a unique neighborhood), provided that the
moving neighborhoods used in the sequential simula-
tion of Z and Y contain all the conditioning data (Zy
and Y)).

3 Numerical experiments

In this section, numerical experiments will be realized
in order to assess the accuracy of sequential Gaussian
simulation under given implementation settings (prior
covariance model, visiting sequence, moving neighbor-
hood, and type of kriging or co kriging used to deter-
mine the conditional distributions). Some alternatives
will also be proposed in order to improve the reproduc-
tion of the model variance—covariance matrices.
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3.1 Visiting sequences and neighborhood parameters

When using a moving neighborhood, the kriging or co
kriging weights and variances used to determine the
conditional distributions depend on the neighborhood
parameters (search radii, use of angular sectors, num-
ber of data per sector...) and on the sequence according
to which the spatial locations targeted for simulation
are visited.

In the following, these locations will be the nodes of
a regular 2D grid with 65 x 65 nodes and mesh 1 x 1.
Four particular sequences will be considered:

1. A regular sequence in which the nodes are visited
rOW-wise.

2. A regular sequence in which the nodes are visited
from the center of the grid toward the edges, fol-
lowing an arithmetic spiral.

3. Anirregular sequence, in which the ordering of the
grid nodes is obtained by a random permutation of
the 4,225 grid nodes.

4. An irregular sequence in which the corners of the
grid are visited first; at each subsequent step, one
visits the midpoints of the already visited points,
until all the grid nodes are visited (Fig. 1). Such a
“midpoint displacement” sequence is a particular
case of multiple-grid sequence, in which one defines
nested grids and starts visiting the coarsest grid
then follows with the intermediate grids and ends
with the finest grid [24, 40].

For brevity, these sequences will be named row-wise,
spiral, random, and midpoint, respectively. Concerning

Midpoint displacement seq
5| I m |
B First step
4 | | 0o B | |
B Second step
a
o i
§ 3t ] n | | ] ] [ Third step
[l Fourth step
2 | | ] 5] | | |
B Fifth step
1 | ] m n n
1 2 3 4 5
Abscissa

Fig. 1 Midpoint displacement sequence for a grid with 5 x 5
nodes

the third sequence, any other random permutation of
the grid nodes could have been chosen, which may have
an impact on the reproduction of the model variance—
covariance matrix. For this reason, 20 other random
sequences have also been tested, but the results are
not significantly different from those of the particular
random sequence presented hereunder.

As for the search of conditioning data, we will con-
sider four moving neighborhoods, respectively contain-
ing up to 10, 20, 50, and 100 previously simulated
variables (the ones located at the grid nodes closest to
the node targeted for simulation, without considering
angular sectors or radius restrictions), in addition to
all the original conditioning data in case of performing
conditional simulation.

3.2 Criterion for assessing the accuracy of simulation

The accuracy of sequential simulation will be assessed
by calculating the Frobenius norm of the difference
between the model covariance matrix (Cy) and the co-
variance matrix of the simulated vector (Cy), standard-
ized by the Frobenius norm of the model covariance
matrix:

_ NG — Gyl (26)

[1Cxl
where ||A|| is the square root of the sum of the squared
entries of A (Frobenius norm).

In the sequel, n will be referred to as the standardized
Frobenius norm of Cy — Cy. It measures the accuracy
in the reproduction of the model covariance matrix,
in the form of a root-mean-square deviation relative
to the root mean square of the entries of the model
covariance matrix, i.e., in the form of a relative error.
For conditional simulation, we will consider Cy,y, and
Cyyy, instead of Cy and Cy. In multivariate cases, we
will also consider cross covariance matrices in addition
to the direct covariance matrices.

A zero value for n indicates a perfectly accurate
simulation, for which the covariance matrix of the sim-
ulated vector Cy exactly matches the desired model
matrix Cy. Any non-zero value of 5 indicates an inaccu-
rate reproduction of the model covariance matrix. This
situation is likely to be met in practice, because of a
deficient screening effect when using a moving neigh-
borhood to determine the successive kriging weights
and standard deviations. To decide whether or not the
model matrix is well reproduced, the user can define a
threshold value for 7, e.g., 1max = 0.05: the mismatch
between Cy and Cy is deemed acceptable if the norm
of the difference is smaller than 5% of the norm of Cy.
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3.3 Non-conditional simulation

In this sub-section, sequential Gaussian simulation is
performed without any pre existing conditioning data.
Eight stationary isotropic prior covariance models,
each with sill 1, are considered:

1) Spherical with range 10

2) Spherical with range 40

3) Spherical with range 10 and nugget 30% of the
total sill

4) Spherical with range 40 and nugget 30% of the
total sill

5) Gaussian with practical range 10 and nugget 1% of
the total sill

6) Gaussian with practical range 40 and nugget 1% of
the total sill

7) Gaussian with practical range 10 and nugget 30%
of the total sill

8) Gaussian with practical range 40 and nugget 30%
of the total sill.

In each case, the standardized Frobenius norm of
the difference matrix Cy — Cy (Eq. 26) is indicated in
Tables 1 and 2. Overall, it is seen that the accuracy of
the simulation depends on the covariance model to be
reproduced, on the moving neighborhood and on the

visiting sequence. Detailed comments are provided in
the next sub-sections.

Note that the pure Gaussian model (without nugget
effect) has not been considered in this exercise, insofar
as it leads to very poor results. This is explained by
the sensitivity of the kriging weights obtained when
using a moving neighborhood and by the numerical
instabilities caused by this model when some data loca-
tions are close to each other [28, 34]. Other simulation
algorithms that do not suffer from these problems, such
as the continuous spectral or turning bands, should be
preferred in this case [23, 28].

3.3.1 Impact of the visiting sequence

In almost all the cases, the midpoint displacement
sequence yields the best reproduction of the tar-
get variance—covariance matrix, while the regular se-
quences (row-wise and spiral) have the poorest per-
formances. These results corroborate the findings by
various other authors who advocate against the use of
regular visiting sequences [24, 40].

3.3.2 Impact of the number of conditioning variables

In general, the target variance—covariance matrix is
better reproduced if more variables are included in

Table 1 Standardized

. Range Nugget Separate simulation Sequence Moving neighborhood
Frobenius norms of 0
Cy — Cy for non-conditional of nugget effect? : 10nodes 20nodes S50nodes 100 nodes
simulation with spherical 10 0% No Row-wise  0.5098 0.3138 0.1783 0.1810
covariance model 10 0% No Spiral 0.5144 0.2833 0.1706 0.1837
10 0% No Random  0.2357 0.1109 0.0467 0.0266
10 0% No Midpoint  0.2096 0.0599 0.0286 0.0175
10 30% No Row-wise  0.5138 0.5506 0.1820 0.1689
10 30% No Spiral 0.6073 0.5351 0.1706 0.1601
10 30% No Random  0.2318 0.2083 0.0734 0.0396
10 30% No Midpoint  0.1900 0.1616 0.0598 0.0343
10 30% Yes Row-wise  0.4998 0.3077 0.1748 0.1775
10 30% Yes Spiral 0.5044 0.2778 0.1672 0.1801
10 30% Yes Random  0.2311 0.1087 0.0458 0.0261
10 30% Yes Midpoint  0.2055 0.0587 0.0281 0.0171
40 0% No Row-wise  0.5225 0.4287 0.3380 0.2704
40 0% No Spiral 0.7312 0.5815 0.4262 0.2882
40 0% No Random  0.1761 0.0836 0.0208 0.0097
40 0% No Midpoint  0.1400 0.0342 0.0104 0.0046
40 30% No Row-wise 0.6424 0.4836 0.4943 0.3658
40 30% No Spiral 0.4736 0.6563 0.6824 0.4188
o 40 30% No Random  0.2221 0.1532 0.0962 0.0403
Smallest norms are indicated 49 30%  No Midpoint 02385 01334  0.0786  0.0342
in blue, largest norms in red. 49 30%  Yes Row-wise 0.5217 04280 03374  0.2700
Itfah"s m‘ilcate ‘m?r‘gfve‘:lem 40 30%  Yes Spiral 07301 05807 04256  0.2878
e e 40 30%  Yes Random  0.772  0.0712  0.0203  0.0095
simulation 40 30%  Yes Midpoint  0.1398  0.0341 _ 0.0104 00046
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Table 2. Standardized Range Nugget Separate simulation Sequence Moving neighborhood
Frobenius norms of £ t effect? 10nodes 20 nodes S0 nodes 100 nod
Cy — Cy for non-conditional of nugget effect? : nodes nodes nodes nodes
simulation with Gaussian 10 1% No Row-wise 1.1373 3.2534 0.4956 0.2318
covariance model 10 1% No Spiral 1.0768 1.1079 0.4017 0.2085
10 1% No Random  0.1610  0.0766  0.0253  0.0083
10 1% No Midpoint  0.1264  0.0437  0.0185  0.0057
10 30% No Row-wise 1.1539  1.8673 03741  0.1651
10 30% No Spiral 14059 12252 03076  0.1472
10 30% No Random 02887 02436  0.0650  0.0358
10 30% No Midpoint 02163 0.1958  0.0595  0.0316
10 30% Yes Row-wise 1.9290  2.6586  0.4654 02210
10 30% Yes Spiral 1.2548  1.0119 03599  0.2003
10 30% Yes Random 01692  0.0769  0.027]  0.0088
10 30% Yes Midpoint 01331  0.0437  0.0195  0.0060
40 1% No Row-wise 0.9870 22121  1.1857  0.7603
40 1% No Spiral 1.8846  1.6213  0.7173  0.5809
40 1% No Random  0.1179  0.0547 00201  0.0067
40 1% No Midpoint  0.0861  0.0433  0.0193  0.0065
40 30% No Row-wise 0.6757 05333 09348 12679
40 30% No Spiral 04984 09344 13695  0.7919
40 30% No Random 02277  0.1700 01457  0.0952
Smallest norms are indicated 40 30%  No Midpoint 02597  0.1554  0.1365  0.0937
in tl’,lue; largest norms in red. 40 30%  Yes Row-wise 09434 17650 14765  0.6809
gfas:s;?;i?if m;f’re‘;fveecrt“em 40 30%  Yes Spiral 1.8340 17101 06175  0.6282
: {’ ; &8 " 40 30%  Yes Random  0.1270  0.0629  0.0260  0.0089
simuation over direct 40 30% Y Midpoint  0.0923  0.0512  0.0246  0.0087
simulation o es idpoint . . . .

the moving neighborhood. Significant improvements
can be observed when passing from 20 to 50 variables
and, to a lesser extent, from 50 to 100 variables. These
numbers are greater than those habitually considered
for kriging [8, 15, 25], suggesting that the design of the
moving neighborhood for sequential simulation is more
demanding than for kriging. This can be explained
because the errors due to deficient screening effect are
likely to propagate in sequential simulation, insofar as
the simulated variables are used as conditioning data
for simulating subsequent variables.

There are, however, a few exceptions, especially with
the Gaussian covariance model, for which increasing
the number of variables in the moving neighborhood
deteriorates the reproduction of the model variance—
covariance matrix. This rather counterintuitive re-
sult can be explained by recalling that the variance—
covariance matrix of the simulated vector depends on
the successive kriging weights and on the error vari-
ances and coincides with the model matrix if kriging
is performed in a unique neighborhood (Section 2.1).
When using a moving neighborhood, increasing the
number of conditioning variables makes the error vari-
ances get closer to the ones that would be obtained
in a unique neighborhood, but this may not be the
case for the kriging weights due to edge effects, string

effects, or to numerical instabilities for the Gaussian
covariance model [13, 14, 34]. Accordingly, the norm of
Cy — Cy may not necessarily be a monotonic function
of the number of conditioning variables selected in the
moving neighborhood, although it tends to zero as this
number becomes very large.

3.3.3 Covariance structure of the simulated vector

Because the prior covariance model is stationary, the
target variance—covariance matrix Cy has a block
Toeplitz structure. However, this property does no
longer hold with the variance—covariance matrix Cy of
the simulated vector. In other words, the covariance
(equivalently, the variogram) between the components
of Y at two grid nodes depends on the positions of
these two nodes within the grid, and not only on their
separation vector. As a result, for a given separation
vector, one obtains a set of simulated covariances (var-
iograms) rather than a single covariance (variogram)
value, which can be represented by a cloud of points
or by a box-plot. An illustration is given in Fig. 2
for the spherical model with range 10 and no nugget
effect, considering a neighborhood with 20 previously
simulated variables. It is seen that the model is well
reproduced at short-scale, but biases appear at larger
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Row-wise sequence
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Variogram
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Fig. 2 Prior variogram model (solid line) and distributions of the
variograms between pairs of simulated components (circles indi-
cate mean values, box plots indicate quantiles at 2.5%,25%, 50%,

scales (exaggerated range for the row-wise, spiral and
random sequences; apparition of a slight hole effect for
the random and midpoint sequences).

These biases are also perceptible on Fig. 3, which
maps the covariances between the variables at two par-
ticular grid nodes (nos. 2113 and 3089) and the variables
at surrounding nodes: the midpoint displacement se-
quence yields the covariance maps closest to the model,
in terms of correlation range and isotropic variations
(circular patterns).

Two additional comments deserve to be mentioned
at this stage.

1) Reproducing the complete variance—covariance
matrix is much more demanding than reproducing
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75%, and 97.5%). Implementation with a spherical model with
range 10 and no nugget, and a neighborhood with 20 previously
simulated variables

only the covariance or the variogram on average
over all the pairs of grid nodes. Traditional ap-
proaches for validating the sequential simulation
algorithm often focus on the latter point, by com-
paring the sample covariances or variograms of
a few realizations with the underlying theoretical
model. In contrast, the proposed approach allows
inspecting the covariance or the variogram of any
particular pair of simulated variables.

2) Despite a widespread belief, the use of a moving
neighborhood does not yield random fields with a
covariance structure identical to the desired model
for distances less than the neighborhood radius:
some deviations between the actual and desired co-
variances or variograms are likely to be observed,
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Row-wise sequence, node 2113 Midpoint sequence, node 2113 Random sequence, node 3089
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Fig. 3 Covariance maps between two given vector components and their surrounding components. Implementation with a spherical
model with range 10 and no nugget, and a neighborhood with 20 previously simulated variables

even at very small distances. This is explained be- model variogram values (0.1495 and 0.2960), with
cause a perturbation in the ith row of A propagates small biases and with slightly higher fluctuations in
into the ith to nth rows of A~! and of Cy (Eq. 5). the case of the random sequence (Tables 3 and 4).
To illustrate these statements, let us go back to the

example of Fig. 2, in which the neighborhood con-  3.3.4 An alternative: separate simulation

tains 20 variables (hence, all the variables within of the nugget component

a radius of 2 or more units): the variogram of the
simulated random variables calculated along the  To improve the reproduction of the covariance models
abscissa axis at lags 1 and 2 fluctuate around the  with nugget effect, an option is to simulate (via the
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Table 3 Statistics on the variogram between simulated variables
at grid nodes separated by 1 unit

Sequence Row-wise Spiral Random Midpoint
Minimum 0.1483 0.1483 0.1465 0.1491
Maximum 0.1496 0.1500 0.1512 0.1497
Mean 0.1484 0.1489 0.1493 0.1495

Desired value is 0.1495

Table 4 Statistics on the variogram between simulated variables
at grid nodes separated by 2 units

Sequence Row-wise Spiral Random Midpoint
Minimum 0.2903 0.2903 0.2812 0.2942
Maximum 0.2960 0.2972 0.3008 0.2967
Mean 0.2910 0.2931 0.2947 0.2955
Desired value is 0.2960

sequential algorithm) a random vector without such a
nugget effect (or with a very small nugget effect for
smooth covariance models such as the Gaussian), then
to add a Gaussian random vector with uncorrelated
components and with variance equal to the nugget
effect variance. This way, only the structured part of
the covariance is affected by inaccuracies due to the im-
plementation parameters (moving neighborhood and
visiting sequence), while the nugget part is perfectly
reproduced.

The standardized Frobenius norms of the differences
between the target and actually simulated covariance
matrices are indicated in Tables 1 and 2 for the covari-
ance models with 30% nugget effect. For the random
and midpoint displacement visiting sequences, one ob-
serves a significant improvement in the reproduction of
the target covariance matrix. Also, the smallest norms
are always associated with the midpoint displacement
sequence.

3.4 Conditional simulation

To limit the number of experiments, we will now fo-
cus on two specific covariance models (spherical of
range 10, without nugget and with 30% relative nugget
effect), one visiting sequence (midpoint displacement),
and two kriging options (simple and ordinary). Two
configurations of conditioning data are considered,
both with 36 data: a regular grid and a configuration
with aligned data points, emulating drill holes (Fig. 4).

3.4.1 Reproduction of the conditional moments

In each case, sequential simulation perfectly repro-
duces the conditional expectation, since the moving
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neighborhoods contain all the original conditioning
data (Appendix 1). The accuracy of the simulation
is assessed by examining the conditional variance—
covariance matrix and by calculating the standardized
Frobenius norm of Cyy, — Cyy,.

Using ordinary kriging leads to a poorer reproduc-
tion of the conditional covariance matrix than using
simple kriging (Table 5). This is explained because,
in ordinary kriging with a unique neighborhood, data
located far from the target location may receive non-
negligible weights, since they implicitly contribute to
the estimation of the unknown mean [34, 35]: the
moving neighborhood, therefore, discards relevant data
and significantly deteriorates the results with respect
to a unique neighborhood implementation. Moreover,
these results turn out to be the poorest (1) in the
presence of a nugget effect and (2) with the second
configuration of conditioning data: in both cases, data
closest to the target kriging location may not screen
out the influence of farther data due to the nugget
effect and/or a string effect [8, 13, 14, 34], so that there
is a significant loss of accuracy when using a moving
neighborhood.

3.4.2 An alternative: two-step simulation

To improve the reproduction of the conditional covari-
ance matrix when using ordinary kriging, a two-step
approach can be used [22]:

1) Non-conditional sequential simulation at the data
locations and target grid nodes, using simple krig-
ing in order to minimize the loss of accuracy caused
by deficient screening effect and string effect.

2) Conditioning to original data by ordinary kriging:

a) Calculate the residuals (data values mi-
nus non-conditional simulation) at the data
locations.

b) Estimate the residuals at the target grid nodes
by ordinary kriging.

c¢) Add the estimated residuals to the non-
conditional simulation.

In the cases under consideration, non-conditional sim-
ulation is first made at the 36 conditioning data loca-
tions (unique neighborhood), then at the target grid
nodes (moving neighborhood, as in the previous ex-
periments), while conditioning by ordinary kriging is
performed in a unique neighborhood due to the small
amount of conditioning data (36).

The conditional covariance matrix Cy,y, of the sim-
ulated vector can be calculated from the covariance
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matrix of the non-conditional simulation at the data
locations and target grid nodes (Section 2.1) and the
ordinary kriging weights used in the conditioning step.
On the other hand, the model covariance matrix Cyyy,
is the variance—covariance matrix of kriging errors
(ordinary kriging of Y from Yj).

It is observed (Table 5) that the standardized Frobe-
nius norm of Cyy, — Cyyy, is much smaller than that
obtained with direct sequential simulation using or-
dinary kriging, even smaller than that obtained with
direct sequential simulation using simple kriging. The
two-step approach therefore allows performing condi-
tional simulation without a significant loss of accuracy
when using a moving neighborhood and ordinary krig-
ing to determine the conditional moments.

3.5 Multivariate simulation

We finally consider the cosimulation of two jointly
Gaussian random vectors Y and Z under an intrin-

sic correlation model (proportional covariance model)
[8, 41]:

CY = CZ and CYZ =p CY (27)

with p the correlation coefficient between compo-
nents of Y and Z. The intrinsic correlation model is
a particular case of reverse Markov model, for which
full co kriging reduces to multi-collocated co kriging
(Appendix 2) [36, 37].

The experiments will be run with the following im-
plementation parameters:

e Covariance type: spherical with range 10, without
nugget and with 30% nugget

e Correlation coefficient between components of 'Y
andZ: p =0.7

e Cosimulation type: non-conditional and condi-
tional (dataset configuration 2, as shown in Fig. 4)

e First vector (Z) perfectly simulated (unique
neighborhood)

Table 5 Standardized

) Nugget Conditioning Conditioning Two-step Moving neighboorhhood
Frobenius norms of o . .
C?IY — Cyyy, for dataset kriging simulation? 10 nodes 20nodes 50nodes 100 nodes
conditional simulation 0% 1 Simple No 0.1865 00740  0.0365  0.0220
with spherical covariance 0% 1 Ordinary No 0.2204 0.1295 0.0726 0.0360
model of range 10 0% 1 Mixed Yes 0.1805 0.0716 0.0353 0.0213
30% 1 Simple No 02024 01606  0.0678  0.0399
30% 1 Ordinary No 0.2899 02522 01576  0.0997
30% 1 Mixed Yes 0.1879 01494  0.0629  0.0371
Smallest norms are indicated 0% 2 Simple No 0.1960  0.0628  0.0298  0.0183
in blue, largest norms in red. 0% 2 Ordinary No 04321 03079 01112 0.0440
Two-step simulation uses 0% 2 Mixed Yes 01491  0.0478  0.0226  0.0139
n‘?tnh‘csf’;dllgcl’g?l .jllm‘flﬁlt(‘)"ne g 0% 2 Simple No 01865  0.1554 00614  0.0356
IV)V; con diﬁonin‘ggltogéata W 30% 2 Ordinary No 05093 04086 02191  0.1226
30% 2 Mixed Yes 0.1317 01097  0.0433  0.0251

by ordinary kriging
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Table 6 Standardized
Frobenius norms of

Nugget Conditioning Cokriging

Covariance Moving neighborhood

Ce —Cy.Con —C dataset type matrix 10 nodes 20 nodes 50 nodes 100 nodes
Y Y, Lyv7 YZ, -
C10vo. 20) — CYIY0. Zo) and 0% None Strictly collocated Cy 02867  0.1914  0.1679  0.1647
C\?i\(Yo Zo) ~ Cyz/(Yo. Zo)s Cyz 0.4448 0.4031 0.3910 0.3894
for cosimulation under an 0% None Multi-collocated Cy 0.1069 0.0305 0.0146 0.0089
intrinsic correlation model Cyz 0 0 0 0
(spherical covariance 30% None Strictly collocated Cy 0.3419  0.3938 0.3534  0.3390
model of range 10) Cyz 0.5580  0.5889  0.5700  0.5631
30% None Multi-collocated  Cy 0.1314 0.1219 0.0925 0.0888
Cyz 0 0 0 0
0% 2 Strictly collocated Cyyy,,z,) 0.2577 0.1748 0.1532 0.1499
Cyz v,z 04185 0.3830 0.3724 0.3709
0% 2 Multi-collocated  Cyjv,,z,)  0.1000 0.0320 0.0152 0.0093
Cyvzivozy) 0 0 0 0
Smallest ndicated 30% 2 Strictly collocated Cyycy,,z, 03282 03777 03437  0.3313
mallest norms are indicate
in blue, largest norms in red Cyz(vy.z,) 0.5391 0.5702 0.5543 0.5484
Ttalics i’n dicate improvemen£ 30% 2 Multi-collocated  Cyyy,,z,) 0.1373 0.1277 0.1027 0.0993
over univariate simulation Cyzivozp 0 0 0 0

e Visiting sequence: midpoint displacement
Moments of the conditional distributions deter-
mined by either strictly collocated or by multi-
collocated simple co kriging. In the former case,
the components of Y are simulated sequentially
by using a moving neighborhood containing up to
10, 20, 50 or 100 previously simulated Y variables,
a single Z variable (the one collocated with the
Y variable targeted for simulation) and, for con-
ditional cosimulation, all the original Y data. In
the latter case (multi-collocated co kriging), we
also consider the Z variables collocated with the
selected Y variables.

In each case, the expectations of Z and Y perfectly
match the model expectations (zero in the non-
conditional cases; co kriging predictions in the condi-
tional cases, see Appendix 1). The accuracy of cosimu-
lation is assessed by calculating the standardized Frobe-
nius norms of Cy — Cy and Cyz — Cyz or Cy iy, 7, —
Cyi(v,.z) and Cyzy, z,) = Cvziv,. ), depending on
whether or not conditioning data are considered
(Table 6).

In every case, it is observed that cosimulation with
strictly collocated co kriging leads to poor results due to
the loss of information caused by discarding data on the
covariate (Z) (Appendix 2). In contrast, cosimulation
with multi-collocated co kriging leads to a more accu-
rate reproduction of the direct covariance (sometimes,
better than for univariate simulation, as per Tables 1
and 5) and a perfect reproduction of the cross covari-
ance. The latter is explained because of Egs. 16 or 23,
accounting for the following facts:
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e The intrinsic correlation model (Eq. 27) being a
particular case of reverse Markov coregionaliza-
tion model (Eq. 31 in Appendix 2), Eq. 32 holds,
even when working in a moving neighborhood:
—A'Q@ = plor —Ay' @y = pl

e 7 is simulated in a unique neighborhood, so that
Cz = Czor Cyy, z,) = Czivo. 2)-

4 Conclusions

In this paper, we presented a methodology to calculate
the theoretical first- and second-order moments (expec-
tation and variance—covariance matrix) of a Gaussian
random vector simulated by the sequential algorithm.
In practice, these moments may deviate from the the-
oretically expected ones, depending on the implemen-
tation of the simulation algorithm, in particular on
the visiting sequence and on the number of variables
selected in the moving neighborhood.

Although limited, the numerical experiments show
the following:

1) In general, the model covariance matrix is better
reproduced by using a midpoint displacement se-
quence, by increasing the number of data in the
neighborhood and/or by simulating separately the
nugget effect component.

2) When using ordinary kriging, the model covariance
matrix is poorly reproduced with the direct sequen-
tial approach, but well-reproduced with a two-step
approach.



Comput Geosci (2011) 15:673-689

687

3) In the multivariate case, under an intrinsic cor-
relation model, the direct and cross covariance
matrices are better reproduced when using multi-
collocated co kriging than when using strictly col-
located co kriging.

The proposed approach can also help to determine,
prior to generating any realization, suitable implemen-
tation settings in order to accurately reproduce the tar-
get moments: which visiting sequence should be chosen
and how many initial conditioning data and previously
simulated variables should be included in the moving
neighborhood, including covariates in the multivariate
case. To this end, the following test strategy is suggested:

e Restrict the experiments to a grid size adapted to
the computer numerical capacity; for instance, the
experiments presented in Section 3 considered a
grid with 4,225 nodes. The implementation settings
found with such a grid are expected to still be
appropriate with larger grids.

e Select a visiting sequence for simulation. Following
the experimental results obtained in Section 3.3, it
is recommended to choose a midpoint displacement
or, in the more general case when the grid size is not
a power of 2, a multiple-grid sequence [24, 40].

e Perform numerical tests with moving neighbor-
hoods containing an increasing number of vari-
ables, until the mismatch measure n (Eq. 26) is less
than, say, 5% or until it reaches a certain plateau.
If the reproduction of the model covariance matrix
is unacceptable (mismatch measure 5 too high),
some alternatives can be explored, such as a sep-
arate simulation of the nugget component, a two-
step simulation or another choice of the visiting
sequence.

For instance, according to the results given in Ta-
ble 1, for non-conditional simulation of a Gaussian
random field with a spherical covariance of range 10
and with a midpoint displacement sequence, a neigh-
borhood containing 50 previously simulated variables
is sufficient, while this number can be reduced to 20
variables if the range of the spherical covariance is 40.
The same neighborhoods can be kept in the presence of
a 30% relative nugget effect, provided that the nugget
component is simulated separately.
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Appendix 1: Expectation of conditional simulation

In the scope of sequential simulation with a moving
neighborhood implementation and in the presence of
conditioning data Y, (Section 2.2), it is of interest to
determine whether or not the expectation of the sim-
ulated vector Y could coincide with the kriging of Y
from Yy = (Yo,Y_1,... Yl_p)T. To this end, consider the
weighting matrix defined in Eq. 9:

W=—-A"A (28)

so that —AW = A(. Accounting for the definition of
matrices A and Ay, this is equivalent to writing:

i—1
Vi=1...n,Vk=1 ...p,)»k,p,,'—i-Z)»ijjk: Wik
j=1

(29)

with A;; the weight assigned to Y; when kriging Y;
(zero if Y is not selected in the kriging neighborhood
associated with Y;).

Assume that, for any i € {1... n}, this neighborhood
includes all the conditioning dataset (Y,) as well as a
subset of the previously simulated variables {Y;, j € S;}
with S; C {1... i~1}. Equation 29 then reduces to:

Vi=1...n,Vk=1...p, )\kfp,i+z)¥j,iwjk = Wik
jesi

(30)

By using the additivity relationship between kriging
weights [21], it is seen that Eq. 30 is fulfilled when, for
any i € {l...n} and k € {1... p}, wi is the weight assigned
to Y_, when kriging Y; from Y, alone. Accordingly,
the conditional expectation of the simulated vector
(Eqgs. 9 and 28) matches the kriging predictor of Y from
Y, and is thus perfectly accurate.

Appendix 2: Markov model and collocated
simple co kriging

Consider the non-conditional simulation of two stan-
dard, jointly Gaussian random vectors Z and Y such
that the cross covariance matrix is proportional to the
variance—covariance matrix of Z:

CYZ = ,OCZ (31)

where p stands for the correlation coefficient between
components of Y and Z. When Y is viewed as the main
variable and Z as a covariate, Eq. 31 corresponds to the
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so-called reverse Markov [8] or Markov 2 coregional-
ization model [27].

Let us assume that Z is simulated prior to Y and that
sequential cosimulation is performed using simple co
kriging in a unique neighborhood, so that the model co-
variance matrices are perfectly reproduced. Equations
16 and 31 entail the following identity:
Q=—-pA (32)
In particular, £ is a triangular matrix: for i = 1... n,
the components of Z with indexes greater than i are
assigned zero co kriging weights and can, therefore, be
discarded from the neighborhood without any loss of
accuracy. Full co kriging boils down to multi-collocated
co kriging 36, 37, 39].

It is also of interest to determine whether or not
full co kriging under a reverse Markov model (Eq. 31)
could reduce to strictly collocated co kriging 2, 42], in
which only one Z-component (the one collocated with
the Y-component to simulate) is used in the co kriging
system. In such a case,  is a diagonal matrix. Owing to
Eq. 32, this happens in full co kriging in the following
situations:

e p =20, ie, Z and Y are independent Gaussian
vectors.

e A is a diagonal matrix: for any pair (i,j) such that
1 < j <i < n, the co kriging weight assigned to Y;
when predicting Y; vanishes. One, therefore, has
(Eq. 15):
Cy=A+p°Cyg (33)

with A = A™! (A‘I)T a diagonal matrix. Since Y and

Z are standard Gaussian vectors, A must be equal

to (1 — p»I in order to ensure a unit variance for

the components of Y. Particular cases occur if Cy is

diagonal (Y; is uncorrelated with Y;) or if |p| =1 (Z;

perfectly screens out Y in the co kriging system) [4].

Except for these few specific situations, already
pointed out by Rivoirard [36], strictly collocated co
kriging is not identical to full co kriging.
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