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a b s t r a c t

In the last years, the use of training images to represent spatial variability has emerged as a viable
concept. Among the possible algorithms dealing with training images, those using distances between
patterns have been successful for applications to subsurface modeling and earth surface observation.
However, one limitation of these algorithms is that they do not provide a precise control on the local
proportion of each category in the output simulations. We present a distance perturbation strategy that
addresses this issue. During the simulation, the distance to a candidate value is penalized if it does not
result in proportions that tend to a target given by the user. The method is illustrated on applications to
remote sensing and pore-scale modeling. These examples show that the approach offers increased user
control on the simulation by allowing to easily impose trends or proportions that differ from the pro-
portions in the training image.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Multiple-point geostatistics (MPS) has emerged in the last years
as a family of stochastic simulation tools that can be used in various
areas of earth systems imaging. Although the original application
domain focused on modeling the internal structures of subsurface
deposits ranging from pore-scale (El Ouassini et al., 2008; Okabe
and Blunt, 2007; Tahmasebi and Sahimi, 2013; Zhang et al.,
2006a) to reservoir-scale (Huysmans and Dassargues, 2012;
Ronayne et al., 2008; Yin, 2013), it has thereafter been extended
to very different fields such as mining (Goodfellow et al., 2012;
Rezaee et al., 2014), soil science (Meerschman et al., 2014),
remote sensing (Boucher, 2009; Ge and Bai, 2011; Jha et al., 2013;
Stisen et al., 2011; Vannametee et al., 2014), for modeling the
occurrence of rainfall (Oriani et al., 2014; Wojcik et al., 2009), and
even in medical imaging (Pham, 2012).

Several multiple-point simulation methods have been devel-
oped over the last decade. MPS algorithms can be classified in two
categories, based on their underlying statistical approach. The first
, Institute of Earth Surface
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category comprises methods that are in the continuity of classical
variogram-based geostatistics such as SGS (Deutsch and Journel,
1998) where a probability distribution is inferred for each grid
node, which is subsequently sampled for a simulated value. This is
the case of the first available MPS method, SNESIM (Strebelle,
2002), as well as its memory-efficient implementation, IMPALA
(Straubhaar et al., 2011). One important advantage of computing
local probability density functions is that it is possible to perturb
them in order to influence the sampling. SNESIM and IMPALA allow
using probability aggregation methods (Allard et al., 2012;
Krishnan, 2008) to update, on-the-fly, the local probability den-
sity functions (pdfs) for each simulated node. In the context of the
patchwork simulation (El Ouassini et al., 2008), a method based on
the perturbation of the transition probabilities between patches
has been proposed by Faucher et al. (2014). Approaches based on
the perturbation of a probability allow the user to impose two
specific constraints on the resulting simulations:

1) To control the global proportions of a categorical variable (also
known as servo-system).

2) To increase or decrease locally the proportion of a given facies,
therefore allowing to generate non-stationary models.
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This flexibility has been used to impose spatial trends (Koch
et al., 2013; Liu, 2006), proportions of land cover categories (Tang
et al., 2013) as well as to perturb models in the context of inverse
problems (Caers and Hoffman, 2006). In the same vein, perturbing
the local probability distributions can be used to impose a specific
relationship with covariates by aggregating the local conditional
probability with a conditional non-parametric joint distribution.
Importantly, when data indicate different proportions than the
ones of the training image (for example geophysics or remote
sensing measurements), it is often easier to adjust the proportions
in the MPS simulation than to obtain a new training image with
modified proportions (although modifying the training image has
been proposed, see for example (although modifying the training
image has been proposed, see for example de Vries et al., 2009).

The second category of MPS algorithms is based on the
computation of distances between patterns. It comprises some
patch-based methods (Arpat and Caers, 2007; Honarkhah and
Caers, 2010; Mahmud et al., 2014; Tahmasebi et al., 2012; Zhang
et al., 2006b) as well as the pixel-based method of direct sam-
pling (DS) (Mariethoz et al., 2010). A distance between patterns is
used in these algorithms to compare the neighborhood of a node or
patch currently simulated with a data event in the training image
(or a prototype of data event that represents a group of patterns).
One of the main advantages of this approach is that several types of
distances can be considered, allowing to simulate continuous var-
iables, or even multiple variables simultaneously (multivariate
simulation). Therefore these methods have been preferred for a
range of applications. However, using a distance also means that no
local probability distribution is computed, and therefore it cannot
be perturbed, for example with a technique like the tau-model to
influence local trends or global averages.

To this day, the only way of controlling local trends in distance-
based MPS is inspired from the method proposed by Chugunova
and Hu (2008), which introduces an auxiliary variable, or control
map, that determines which parts of the training image correspond
to which parts of the simulation. This method is general and offers
the possibility to impose complex non-stationarities (for example a
trend in the spatial patterns and not only the proportions of cate-
gories). Its essential concept is to restrict the sampling of the
training image to the locations that are likely to present the desired
proportions. For a binary categorical case, controlling proportions
with the approach of Chugunova and Hu (2008) is accomplished by
computing on the training image Z(y) a moving average Z0(y), and
assembling both variables together in a single bivariate training
image, which empirically describes the relationship between Z and
its local average Z0. Target local probabilities can then be imposed in
the simulated domain as conditioning data on Z0(x). The simulation
of the values Z(x) will then be influenced by those conditioning
data through the selection of multivariate patterns in the training
image (Mariethoz et al., 2010). The main drawback of this auxiliary
variable procedure is that it does not explicitly formulate a target
proportion, and therefore only provides an indirect control on the
local probability of occurrence of a given category. In essence, it can
only reproduce local proportions that are represented at some
location in the training image. Since it cannot depart from the
proportions of the training image, it is not possible for the user to
impose arbitrary proportions constraints. Furthermore, even in the
range of proportions represented in the training image it is not
possible to precisely match a target local proportion, nor to define
global proportion targets.

In this paper we pursue a different route which, in contrast to
the auxiliary variable method, is simpler for the user because it
does not necessitate to build for each category an auxiliary variable
map in the training image (such as for example by using a moving
average), and at the same time allows for a precise control of the
proportions in the simulated domain. The approach we propose
allows imposing such constraints by a perturbation of the distance
function used to compare patterns. It is found that our distance
perturbation scheme allows adjusting local and global proportions
with a given precision, and also offers control parameters to choose
between reproduction of the fine structures and honoring the
desired proportions, when these two constraints are not compat-
ible. For example, local proportion beyond the range of what is
present in the training image can be imposed on the simulation
grid.

This paper is organized as follows: we start giving a brief
background on the direct sampling method which is used to
illustrate the approach presented. Next, we describe our distance
perturbation method. We then analyze the effect and the sensi-
tivity of the main parameters of the method on a simple 2D
example, and demonstrate its applicability on two additional
synthetic case studies:2 the first one simulates future remote
sensing images of land use in Africa and the second examples
simulates the precipitation of deposits in the interstices of a 3D
porous sample.

2. Using a distance perturbation

2.1. Background on direct sampling

The direct sampling algorithm (DS) (Mariethoz et al., 2010)
works as follows: for each simulated node a local data event is
extracted. The training image is then scanned with this data event
(typically in a random or pseudo-random fashion). As soon as the
distance d{.} between the data even searched for and the one
currently scanned is below a given threshold t, the corresponding
training image value is assigned to the simulated location. A
simplified pseudocode of the algorithm is given below:

The key principle is that as soon as the condition mentioned at
point 5 is not honored, the corresponding loop is interrupted,
drastically accelerating the sampling procedure compared to an
exhaustive scan. A maximal scanned fraction of the TI f can be
defined to control the computational time. The algorithm is
essentially driven by the three key parameters n (data event size), t
(threshold) and f. Some practical recommendations on how to
choose the parameters are provided in (Meerschman et al., 2013).
The formulation of the distance d{Nx, Ny} is important and several
possibilities are proposed in (Mariethoz et al., 2010), but it is
generally defined such that its values are bounded in the interval [0
1]. Acting on the distance is the main lever that allows having
control over the algorithm's behavior. Distances are used in a
similar fashion in other distance-based MPS algorithms. The
method we propose in this paper is based on modifying this dis-
tance computation to include a term that takes into account local or
global proportion constraints.

2.2. Methodology defining errors on pdfs

The problem addressed in this paper is to directly constrain the
proportion of simulated categories in Direct Sampling, which has to
date not been possible. Such a constraint can be given by a user-
provided map that prescribes for each grid node x the target pro-
portion for facies k, and is denoted Pt(x, k), with k¼ 1… K. The local
proportions constraint can be formulated as a category appearance
frequency in the defined area/volume around and including a
simulated value Z(x). Therefore, the definition of a local proportion
as we envision in this paper necessarily involves a neighborhood in
a limited volume for computing the local proportions. Under the
hypothesis of local ergodicity we may treat these local proportions
as univariate probabilities at point Z(x). Thus, this volume should be
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large enough to yield univariate statistics that are representative of
a local frequency of a facies at Z(x). This neighborhood can be
viewed as the spatial support of the imposed local proportions. In
the case of a target global proportion, the proportion of a category k
is given by a target Pt(k) which is considered on the entire simu-
lation domain.

We define the current proportion of facies k at any simulated
node x, Pc(x, k), based on the informed values in the neighborhood
xi as well as a candidate value Z(y) from the TI. Our goal is that this
current proportion is similar to the desired target proportion in the
simulation, Pt(x, k). The concept is that the distance d{Nx, Ny} used
in the DS can be perturbed on-the-fly in order to penalize data
events that decrease the match between the local proportion in the
simulation and the user-defined target proportion. It uses a similar
philosophy as the servo-system procedure implemented in the
SNESIM algorithm (Strebelle, 2002), but on a local scale and applied
to the computation of distances instead of probabilities.

During the simulation, with Z(x) that is not yet simulated, the
local proportion at x can be estimated as

Pcðx; kÞ ¼ 1
n

Xn
i¼1

½ZðxiÞ ¼ k�; (1)

the expression ½ZðxiÞ ¼ k� denoting an indicator variable that is a
test returning a value 0 if false and 1 if true. This local proportion
will be updated by accounting for the candidate value. We can
define the local proportion corresponding to the proposed value
Z*(x) for which the DS algorithm is currently computing the dis-
tance d{Nx, Ny}:

P*c ðx; kÞ ¼
1

nþ 1

(Xn
i¼1

½ZðxiÞ ¼ k� þ �
Z*ðxÞ ¼ k

�)
: (2)

It corresponds to the estimated local proportion if the candidate
value Z*(x) was accepted by the sampling procedure. To achieve our
goal, which is that the current local proportions estimated from the
simulation are the same as the target proportions, we want to
accept values in the simulation such that the following equations
are honored as much as possible:

P*c ðx; kÞ ¼ Ptðx; kÞ; k ¼ 1…K (3)

In order to enforce (6), the proposedmethodology preferentially
accepts values for location x that tend to minimize the difference
between target and current proportions, through a modification of
the distance measure. For each candidate value Z*(x), we consider
the root mean squared error of the frequency for all facies:

Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
K

XK
k¼1

hn
P*cðx; kÞ � Ptðx; kÞ

o2ivuut (4)
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Equation (4) has the advantage to be bounded in the interval
[0,1], therefore comparable to the distance values that have the
same bounds. The distance used in DS is then perturbed, the
perturbation being a function of Ep. We use an additive perturba-
tion where a quantity proportional to Ep is added to the original
distance:

d* ¼ d
�
Nx;Ny

�þwEp (5)

w is a user-defined weight that can strengthen or weaken the
constraint on local proportions. It results from equation (5) that d*

is now bounded in the interval [0 1þw]. All data events that would
usually be inacceptable (i.e. when d{Nx, Ny}� t) still cannot be used
in the simulation. However, among the pool of acceptable data
events (for which d{Nx, Ny} < t) a penalty proportional to the local
proportion mismatch is applied. The additive perturbation of
equation (5) therefore ensures that the distance on accepted pat-
terns is under the threshold for all simulated values, resulting in a
good reproduction of the training image patterns.
2.3. Modeling choices and alternative implementations

For local proportion constraints, the neighborhood Nx used for
comparing patterns in the DS and the neighborhood used for
defining local proportions can be different. For all cases illustrated
in this paper we have tested the use of different neighborhoods and
found that the results are not significantly different from those
obtained with a single neighborhood definition for both uses. In
this study we therefore only illustrate the case where these
neighborhoods are the same.

This said, we cannot exclude that there are cases where the
neighborhood of the local proportion can play a role. This neigh-
borhood corresponds to the area or volume (in 3D, a sphere with
user-defined radius R) that plays the role of a support for local
univariate statistics. In practice, this radius could be derived from
the origin of the local proportions constrain. For example, if the
local proportions are constructed by a kernel smoothing applied to
point measurements, the kernel bandwidth can be seen as the
support of the local statistics. If the local proportions are derived
from an auxiliary attribute, the resolution of this attribute is an
indication of the support of the local probability.

Another modeling choice we did is to use a root mean squared
error in equation (4). Other error measures between the current
and target local proportions could be used, such as for example
outlined in Bennett et al. (2013). Moreover, instead of penalizing
the distance as proposed in equation (5), another possible way of
implementing our method can be to consider two distances
simultaneously. The acceptation criterion in step 5 of the algorithm
is then replaced by a criterion imposing that both the distance d{Nx,
Ny} is below the threshold t and the error on the proportion Ep is
also lower than a fixed error norm. If one of these two criteria is not
respected then the proposed candidate value is rejected. This
technique has been implemented and tested as well, but results are
again not significantly different from the one shown with the
penalization approach and we therefore only consider the pre-
sented approach in this paper for the sake of simplicity.
2.4. Distance perturbation for global proportion constraints

An identical on-the-fly approach can be adopted to impose
global proportion constraints. The only difference being that Pc and
Pt are not localized, hence the current proportion is simply defined
as the proportion of each facies:
PcðkÞ ¼ #½ZðxÞ ¼ k�
#½ZðxÞ� ; (6)

#[Z(x)] denoting the number of nodes simulated so far, and #
[Z(x) ¼ k] denoting the number of simulated nodes that have been
attributed a facies value of k. The proposed global proportion is

P*c ðkÞ ¼
#½ZðxÞ ¼ k� þ �

Z*ðxÞ ¼ k
�

#½ZðxÞ� þ 1
(7)

and the error on the proportions is a non-localized form of equation
(4):

Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
K

XK
k¼1

hn
P*cðkÞ � PtðkÞ

o2ivuut : (8)

2.5. Activation radius for the perturbation

The above distance perturbation strategy should lead to facies
proportions that are closer to the target. However, a drawback is
that imposing such systematic perturbations can degrade the
structures of the training image. This is especially the case at the
end of the simulation, when the local proportions are computed on
a very small spatial area around the simulated node x. In the
context of sequential simulation, the perturbations applied to the
first simulated nodes will influence the outcome of all nodes
simulated later. This cumulative effect means that it is preferable to
impose perturbations on the nodes values that are determined at
the beginning of the simulation path rather than on the last ones.
Distance perturbation applied at the final stage of the simulation
may not be effective because most of the spatial structures are
already in place and the final proportions can no longer be signif-
icantly altered. Forcing a perturbation for the last simulated values
may then result in the addition of noise and simulated patterns that
do not honor the structures of the training image.

Another problem occurs if the spatial structure of the local
proportion map is not entirely compatible with the training image
patterns, or if the proportion map is wildly different from the
proportions found in the training image. The target proportions can
then be matched, but the spatial structure necessarily has to be
degraded. In order to keep the correct spatial structure, and at the
same time to honor the local proportions, a trade-off has to be
found, which would ideally consist in using the target proportion
when simulating the large scale structures, and leaving it to the
training image only to complete the small-scale structures.

This is accomplished by using the perturbed distance d* for the
initial part of the simulation, which would correspond to the
coarsest multiple-grid levers in the context of other implementa-
tions such as SNESIM. The distance d is then used to simulate the
remaining grid nodes. To this end, we introduce an activation
radius Rmin. If the spatial extension of the data event Rd, computed
as the average distance to the neighbor nodes xi, is larger than Rmin,
the perturbations are used. Note that Rd varies because the DS al-
gorithm considers a neighborhood made of a fixed number of the n
closest nodes whose position is not predefined; the neighborhood
covers a large area at the beginning of the simulation and reduces
while the simulation grid gets more and more informed. For
smaller data events, perturbations are deactivated. The functioning
of the activation radius is illustrated in Fig. 1. For both local and
global proportion constraints, the use of the activation radius en-
sures that the small-scale structures are not overly affected by the
proportion constraints. Moreover, in cases where the alteration of



Fig. 1. The principe of the activation radius. a) Distance perturbation activated. b) Distance perturbation not activated.
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the structures is inevitable (for example when using a stationary
training image and using local proportions to impose a strong non-
stationarity), Rmin offers a lever for the user to find a trade-off be-
tween patterns reproduction and honoring of the proportion
constraints.

3. Parameterization

3.1. Optimal parameters in the case of global proportions
constraints

In our approach, the parameters controlling the outputs are the
target proportion weight w and the activation radius Rmin. Intui-
tively, w [0 ∞] controls the degree to which the training image
patterns can be degraded, and Rmin [0 ∞] allows deciding up to
which spatial scale this degradation is allowed to take place. While
the general principle of these parameters can be qualitatively un-
derstood from equation (5) and Fig. 1, a quantitative investigation is
needed to understand the interplay of these parameters.

If the target proportions are different from those in the training
image, they can only be reached by altering the training image
statistics. It is therefore expected that some sort of trade-off needs
to be found, and the parameters w and Rmin are the levers at the
disposal of the user to allow defining how this trade-off takes place.
In essence, we want to degrade the patterns up to the point where
they allow reasonably reaching the target proportions (within a
tolerance), but we do not want to degrade them more than
necessary. As a consequence, a first modeling decision is to deter-
mine how close the target proportions should be matched. For
example, reaching target proportions that are very different than
those of the TI will only be possible by significantly altering the
patterns. Then, once an acceptable error on the proportions is
defined (this choice will be application-specific), it is possible to
find the parameters that yield the highest possible quality re-
alizations (in terms of patterns reproduction) within this
constraint. This 2-step parameterization approach was tested on a
simple case, based on a training image which was obtained from an
aerial photograph of sand dunes in the Gobi desert (Allard et al.,
2011). The image, displayed in Fig. 2a, has dimensions of 114 by
114 cells and consists of three facies with global proportions of
0.5149 (facies 0), 0.2311 (facies 1) and 0.2539 (facies 2).

Using this training image, we determine the optimal w and Rmin

parameters for three scenarios of target global proportions. In the
first scenario (shown in Fig. 2), the target proportions for the three
facies are 0.10 (facies 0), 0.45 (facies 1) and 0.45 (facies 2), denoted
thereafter as 0.10/0.45/0.45. These proportions are very different
from those of the training image, and therefore significant patterns
alteration is expected. It can be seen that in the range of parameters
considered, the target proportions cannot be reached exactly in this
scenario because they are too far from what is observed in the
training image.

In the second scenario the target global proportions are 0.45/
0.45/0.10 (Fig. 3), which is closer to what is found in the training
image. Here the target proportions can be approached, but it can be
difficult to match them exactly because the constraint is deacti-
vated for patterns smaller than the activation radius.

The third scenario imposes equal proportions for all three facies
(0.33/0.33/0.33, Fig. 4), which is even more similar to the pro-
portions in the training image and should be possible to accomplish
without significant alteration of the training image patterns. In the
case of w ¼ 20/Rmin ¼ 1, the proportions are exactly matched
although with some addition of noise and degradation of the pat-
terns, the edges of the dunes presenting unrealistic small-scale
angular features.

We consider in details the first scenario. Different w and Rmin

parameters are used and 100 realizations are generated for each
parameters combination. The parameters used for the DS simula-
tions are a neighborhood made of the 25 closest neighbors to the
simulated node, and a distance threshold of 0.01, meaning that the
algorithm is looking for very close pattern matches. These re-
alizations are used to measure 1) how well the target proportions
are honored and 2) how faithfully the training image statistics are
reproduced. The error to target proportions is easily computed
using a mean absolute error over all categories (Fig. 2b). Quanti-
fying the patterns errors is however more complex, and many
different metrics could be adopted, such as variograms (Croft et al.,
2013; de Iaco andMaggio, 2011), cumulants (Dimitrakopoulos et al.,
2010), connectivity functions (Renard and Allard, 2013) or com-
parison of patterns (P�erez et al., 2014). Here we adopt multiple-
point histograms (Boisvert et al., 2010), which inventory the fre-
quency of each patterns in an image. We compute the multiple-
point histogram of each realization and compare it to the
multiple-point histogram using a Jensen-Shannon divergence or
JSD (Fig. 2c). The higher the JSD, the larger patterns degradation
occurs in the realization. In order to compare both large and small
patterns, we consider the JSD for patterns of size 3 by 3 nodes
averaged over different offsets (1,2,3), in the same fashion as the
offsets used in multiple-grids (Tan et al., 2014).



Fig. 3. Determination of the optimal parameters in the case where the target proportions (0.45/0.45/0.10) are moderately different than the training image proportions (0.52/0.23/
0.25).

Fig. 2. Determination of the optimal parameters in the case where the target proportions (0.10/0.45/0.45) are very different from the training image proportions (0.52/0.23/0.25).
The red line represents the isoline of an absolute error on proportions of 0.12 (in b, superimposed in grid c), and the JSD values for the corresponding parameters combinations (in
d). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. Determination of the optimal parameters in the case where the target proportions (0.33/0.33/0.33) are relatively similar to the training image proportions (0.52/0.23/0.25).
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On Fig. 2 it is clear that the parameters combinations yielding
low JSDs, result in poor proportion control, whereas reaching the
target proportions involves significant degradation of the patterns
(i.e. high JSD). The proportion error and the JSD are therefore
inversely proportional. This trade-off is also present when other
target proportions are considered (see the other scenarios in Figs. 3
and 4), indicating that the trade-off between proportions con-
straints and patterns constraints is a general characteristic.

To select the parameter values, we adopt the point of view that
in practice, the target proportions are based on some available data,
which also have uncertainty bounds. It therefore makes sense to
start deciding to what level the target proportions have to be
matched, and within that constraint it is then possible to optimize
the patterns reproduction (quantified here using the JSD). This is
shown in figure Fig. 2b, where the red line represents the isoline of
an absolute error on proportions of 0.12 (a relatively large error, but
which should be considered in the context of target proportions
being very different from the ones in the training image). All re-
alizations obtained with parameters along this line will have equal
proportion error, however they may reproduce the training image
patterns to different degrees. This is shown in figure Fig. 2c, where
the same 0.12 proportion error isoline is superimposed on the JSD
values grid (note that in figure Fig. 2c the line is not an isoline in the
JDS, but the same isoline as in figure Fig. 2b that is superimposed).
While the JSD values seem relatively uniform along this isoline,
they do present small variations, as shown in figure Fig. 2d that
displays the JSD values along this red line. A point of minimum JSD
can be identified, corresponding to the optimal parameters Rmin¼ 5
and w ¼ 8.5. It is however observed that the variations of JSD along
the isoline are very small, indicating that equivalent trade-offs
between proportions constraints and patterns constraints can be
reached with different sets of parameters.

Similar trade-offs can be established to define the optimal pa-
rameters for different target proportions, such as 0.45/0.45/0.10
(Fig 3) and 0.33/0.33/0.33 (Fig. 4). For these two cases, the target
proportions are not radically different from those in the training
image, and therefore we have set the proportion error isoline to
0.05. It is found that in all cases, the optimal Rmin value is 5, which is
proportional to the size of the structures to reproduce. This is a
general observation that is not particular to this case study and has
also been observed with the examples presented in the next sec-
tions, therefore providing an easy rule of thumb for an approximate
Rmin value when a complete sensitivity analysis is not practical.
3.2. Parameterization when using local proportions constraints

The use of local proportion constraints is illustrated using the
same training image as in Fig. 2. The same parameters for the DS are
used as previously (neighborhood made of 25 nodes, distance
threshold of 0.01). We use this stationary training image to
generate non-stationary unconditional realizations on a larger
domain of 100 by 600 cells where the proportions of the facies vary
from one side of the domain to the other. Fig. 5aec shows the
model setting: we impose a target proportion for facies 0 varying
horizontally between 0 and 1, the complementary being the two
other facies having equal target proportion.

When local proportions constraints are used, similar patterns
degradations will take place as in the case of global constraints,
except that the degree of the degradation will vary spatially. It is
however impractical to define spatially-variable w and Rmin pa-
rameters. We therefore base ourselves on the optimal Rmin ¼ 5
parameter inferred for the case of global proportions constraints,
and perform a sensitivity study on w to investigate the trade-off
between proportions constraints and patterns constraints. In our
example this trade-off will be problematic near the right and left
edges of the image where the target proportion for facies 0 is
respectively 1 and 0, whereas the training image is stationary with
a global proportion of 0.5149. Such a drastic change in proportions
will necessarily require either a significant alteration in the training
image patterns, or a non-respect of the local proportion constraints.

We investigate the effect of different combinations of Rmin and
w. Fig. 6 shows individual realizations, confirming that the trend in
the target proportion map is globally respected, although less so for
low w values (Fig. 6a) where the patterns cannot depart signifi-
cantly from those of the training image. In Fig. 6d, matching the
target proportions results in structures composed of facies 1 and 2
of reduced size on the right side of the domain. This is caused by the
target proportions that vary with a constant gradient. As a result



Fig. 5. Target local proportion maps.
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smaller structures are produced, allowing the mean proportion to
vary more smoothly. Similarly, large structures of increased con-
nectivity appear on the left side of the domain, showing that
modifying the proportions is associated with morphological
changes. Fig. 6e is an extreme case illustrating that it is possible to
closely follow the target proportions, but with the necessary
consequence that the patterns are globally degraded. The result is
small-scale patterns degradation that correspond to proportions
corrections carried out at the end of the random path.

In the context of the DS algorithm, altering the patterns means
that more scanning of the training has to be done. This translates in
an increase in CPU cost. In the examples of Fig. 6, 11.70 s in average
are needed for Fig. 6a, to be compared with 9.86 s if no probability
constraints are considered. When the proportions constraints are
stronger, the computational times increase, with 16.85 s for Fig. 6c
and 30.93 s for Fig. 6e.
Fig. 6. Sensitivity analysis of parameters w a
The overall respect of the proportions constraints for the same 5
parameters sets is shown in Fig. 7, where the average proportion
along the X axis is displayed. The shaded areas correspond to ±2
standard deviations around themean proportion, computed on 100
realizations for each case, and the dashed lines represent the target
proportions. Fig. 7a shows that the target proportions cannot be
honored near the edges of the domain. On the other hand the cases
in Fig. 7c to e fit the target proportions to a large degree, at the cost
of degraded patterns.

4. Application examples

4.1. Example with land use categories

While geological modeling is a traditional application domain of
multiple-point geostatistics, the possibility to impose variations of
nd Rmin for local probability constraints.



Fig. 7. Comparison of target and simulated proportions. Solid lines represent mean facies proportions. Dashed lines denote target proportions. Shaded areas represent the area
corresponding to ±2 standard deviations around the mean proportion, computed on 100 realizations. Note that the shaded area of facies 1 is mostly overlapping the shaded area of
facies 2.
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categories proportions opens possibilities in different fields of
study where it is important to account for strong non-stationarity.
To illustrate the use of local proportions control in a realistic case
that is not a classical application domain of MPS, we consider the
distribution of land use classes throughout West Africa and how it
could be altered by the end of the 21st century. We base ourselves
on land use data derived from remote sensing (Global land cover
GLCNMO). The present-day distribution of land use classes is dis-
played in Fig. 8a, with a simplified classification consisting of only 6
land use classes.

In the literature, shifts in climatic zones of approximately
500e600 m/year for the second half of the 20th century have been
reported in the Sahel area (Gonzalez, 2001). We place ourselves in a
hypothetical scenario where these shifts are accelerated in the 21st
century, with faster shifts in the arid zone (north of the studied
area) than in the equatorial zone. Based on this, we assume
different shifts for each land use class resulting, by the end of the
21st century, in southwards translations between 40 and 200 km
depending on the areas. Note that these values are arbitrarily
chosen to test our method and do not reflect an actual prediction of
future land use distribution. Our goal in this example is to use our
local proportion approach to depict what the future land use would
look like in such a hypothetical scenario. The domain size is 901 by
361 pixels, each pixel representing an area of 4 km by 4 km.

In a first step, we compute the local proportions of each category
for present-day land use by using a moving average on awindow of
size 30 pixels, corresponding to 480 km2 (Fig. 9a). The moving
average is applied separately on the indicator variable that corre-
sponds to the occurrence of each category, resulting in 6 separate
local proportion maps. In order to represent the proportions of
categories in the future, we shift the proportion map for each
category southwards by a certain distance (see Fig. 9 for the amount
of shift for each category). On each proportionmap, the southwards
shift causes a horizontal zone to be unknown. The proportion
values are extrapolated in those areas using nearest neighbor
interpolation, which is adequate in this case since the proportion of
each category is expected to be relatively uniform in this upper
horizontal zone. Since a different shift is applied for each category,
the proportions need to be renormalized to sum up to one at each
location. The resulting proportion maps are displayed in Fig. 9b.
These are used as target proportions for simulating the future land
use. Fig. 8a is used as training image for the application of our
distance perturbation method, under the assumption that the
spatial patterns will remain similar in the future, and in particular
that the spatial relationship between the different categories will
not change drastically.

The window moving average used to obtain the present-day
proportions is based on a 30 pixels window. This ensures that the
local proportions are relatively constant over such a radius,
reflecting the gradient of the local proportion map. In consequence,
we use a value of Rmin ¼ 30 pixels to avoid patterns degradations in
the spatial structures. We use a relatively low value of w ¼ 1 to
preserve the spatial patterns of the training image. The parameters
of the DS algorithm are the same as in the previous synthetic
example (neighborhood made of 25 nodes, distance threshold of
0.01). Fig. 8b shows one resulting realization. The specific spatial
patterns for each category are globally preserved in the simulation.
One can notice in particular the following spatial features:

- Bare soil and sparse vegetation are relatively uniform within
each category, although they are intertwined at their interface.

- Cropland and Open trees are intermingled, with fringes of
cropland generally surrounding relatively compact open trees
areas.



Fig. 8. Case study of land use changes in Western Africa. a) present-day land use (Global land cover GLCNMO, http://www.iscgm.org). b) One realization of future land use according
to a hypothetical scenario.
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- Open trees pixels are speckled in the zones dominated by her-
baceous vegetation and broad leaf forest.

- Numerous “Islands” of broad leaf forest occur in the herbaceous
vegetation zone.

- Almost no “Islands” of herbaceous vegetation occur in the zone
covered by broad leaf forest.

Fig. 9c shows the probability of occurrence of each category
calculated over 50 realizations. It was computed by applying to
each realization the same procedure as was used to determine the
local proportions in the training image of Fig. 8a: a moving average
on a window of size 30 pixels for the indicator variable corre-
sponding to each category. Fig. 9c represents the mean local pro-
portion over all 50 realizations, and corresponds well to the target
proportions of Fig. 9b.
4.2. 3D example

The applicability of our method in 3D is shown on a pore-scale
modeling example. The training image represents a synthetic
sandstone sample where partial clogging occurs by precipitation in
a part of the pore volume. Here the training image is itself a
construct based on a simulation using the method of elementary
training images and transform-invariant distances (Mariethoz and
Kelly, 2011). The elementary training image is shown in Fig. 10a
(50� 50� 50 voxels). It consists of a regular array of cubes (in blue)
that will be used to represent the sand grains, interspaced with
green separations (the space between pores). Along certain planes
the pore space is taken up by a third facies shown in red, which will
represent the precipitation clogging. Using this elementary training
image and transform-invariant distances with random rotations in
the range [þ90� �90�], we obtain the image displayed in Fig. 10b
(100 � 100 � 100 voxels). The random rotations cause the cubic
grains in Fig. 10a to produce spheroid-type shapes in Fig. 10b, the
pore space and clogging phase taking up the remaining volume. For
the purpose of this test, we assume Fig.10b to be representative of a
sandstone where the pores have been partially clogged. For
graphical reasons on Fig. 10b the sand grains are represented in
transparent (empty pore space and clogging are left in green and
red colors respectively). The proportions in Fig. 10b for the cate-
gories grains/empty pore/clogging are respectively 71%, 21% and
8%.

Modeling this type of medium is important for applications
ranging from reactive transport in porous media where the pre-
cipitation alters the hydraulic properties of a rock formation, to the
modeling of hydrothermal ore deposits where the precipitated
deposits have a commercial value and are mined.

We set up a case where reactive transport caused differentiated
amounts of precipitation in a portion of sandstone. The setting
consists in a domain of 100 � 100 � 200 voxels, where the target

http://www.iscgm.org


Fig. 9. Local proportion maps for Western Africa land use. a) Present-day distribution of land use categories. b) Target proportions with different shifts for each category. c) Local
proportions based on 50 realizations.
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proportion of sand grains is constant and stationary at a value of
61%, the remaining volume being shared between pore space and
clogging that has precipitated in this pore space. The bottom part of
the volume considered has pores that are mostly clogged by pre-
cipitation, while the top part has pores with almost no clogging.
This situation is represented with the target proportions
Fig. 10. Clogged sandstone example. a) Elementary training image used for the constructio
sandstone with partial clogging occurring within the pore space (grains represented in trans
referred to the web version of this article.)
represented in Fig. 11: the target proportion for the sand grains is
uniform and the remaining fraction varies between 5% pores/34%
clogging and 34% pores/5% clogging.

Since the target proportions are very different than in the
training imagewe use a relatively high value ofw¼ 20, and Rmin¼ 5
which is comparable to the size of the structures. Regarding the DS
n of b) (grains in blue, pores in green, clogging in red). b) Training image representing
parent). (For interpretation of the references to color in this figure legend, the reader is



Fig. 11. Target proportions for the three facies considered.

Fig. 13. Comparison of target and simulated proportions. Solid lines represent mean
facies proportions. Dashed lines denote target proportions. Shaded areas represent the
area corresponding to ±2 standard deviations around the mean proportion, computed
on 75 realizations.

G. Mariethoz et al. / Environmental Modelling & Software 72 (2015) 184e197 195
parameters, the distance threshold is 0.01 as in the previous ex-
amples, but this time the number of neighbors is set to 50 to be able
to represent the complex 3D patterns. Fig. 12a shows one resulting
realization and Fig. 12bed shows the variation in the proportion of
the different categories, computed from 75 realizations. The pro-
portion of sand grains is relatively uniform, despite local variations
due to the limited number of realizations used. The proportions of
open pores and clogging are inversely proportional to each other, as
in the target of Fig. 11.

However when looked at closely, the target proportions are not
well respected, as shown in Fig. 13. This is especially the case to-
wards the lower part of the modeled area, where it seems very
difficult to increase the proportion of clogging. We explain this by
the particular structure of the training image, where the clogging
facies (red) has the same spatial structure as the pore scale facies
(green) consisting of sections, but for clogging these sections only
occur in two directions of space (see Fig. 10a). It is therefore very
difficult to have more clogging than pores, which is what is
observed on Fig. 13. Moreover, in this case the target proportions
impose to inflate the proportion of a facies that is very infrequent in
the training image (8%), which can only be done by completely
altering the spatial patterns. This could be achieved with lower
values of Rmin and high w, but then the patterns alterations would
be so large that it would be preferable to use a different training
image to have an explicit control on the generated patterns.
Fig. 12. a) One realization of sandstone with differential clogging. bed) proportion of each facies, computed over 75 realizations.
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5. Discussion and conclusion

A distance perturbation method is proposed to impose local
proportions of categories in the context of Direct Sampling
multiple-point simulation. Thus far, such a control on proportions
was only possible for methods that explicitly formulate a proba-
bility distribution for the simulated values such as for example
SNESIM (Strebelle, 2002). Distance-basedmethods, which are often
more computationally efficient and more flexible, do not offer for
the moment proportion control, and this is their main limitation. In
this paper we presented an approach that lift this limitation. It is
illustrated with the DS algorithm. The rationale of the approach is
to penalize, for each simulated node, the locations in the training
image that would result in a proportion further away from the
target. For each candidate value in the training image, the current
proportions in the simulation are computed accounting for the
already informed nodes in the neighborhood of the simulated node
and for this candidate value. If the new candidate value influences
the proportions in a direction that is contrary to the target, a
penalty proportional to a given weight is attributed to the
candidate.

The method is tested in a variety of cases borrowed from do-
mains ranging from remote sensing to pore-scale modeling,
demonstrating that our approach is applicable beyond the tradi-
tional field of geological modeling of lithofacies. It is generally able
to produce realizations that are constrained either to a local pro-
portion map or to given global proportions.

In case of non-stationarity in the proportions, there is only a
very small part of the simulation domain where the target pro-
portions correspond to what is observed in the training image. At
all other locations, patterns will necessarily depart from those in
the training image in order to match the target proportions. It is a
general observation that when the local proportions significantly
differ from the proportions in the training image, honoring the
target proportions comes at the price of altering the spatial struc-
tures. The parameters w and Rmin offer a way for the user to settle a
trade-off between reproduction of the training image patterns and
respect of the target proportions. w determines the strength of the
distance perturbation relative to the distance on patterns and Rmin

provides a minimum spatial scale under which no distance
perturbation is used, ensuring that the small-scale structures are
preserved.

Related to this discussion, an important aspect is that the dis-
tance perturbation method allows generating patterns that were
not initially present in the training image, and to control these new
patterns through the parametersw and Rmin. This can be interesting
in applications of uncertainty modeling where one wants to
explore models that depart from the strict pool of patterns given in
the training image.

In the approach presented, we use the same neighborhood to
compute local proportions and for determining a patterns distance
in the training image. This choice is motivated by the simplified
parameterization (only a single neighborhood needs to be chosen)
and the computational efficiency. However it is straightforward to
have a different neighborhood for the computation of local pro-
portions. Tests done on a separate implementation have showed
that it is possible to compute proportions on a neighborhood of a
fixed radius, therefore defining a constant support for the local
proportions. This could be useful in applications where there is a
physical relationship between the magnitude of the simulated
values and the volume onwhich these values are averaged, such as
for example in the case of simulating permeability values. Specific
proportions neighborhoods could also be used if there are sharp
contrasts in the proportion map, which would require to be
captured by smaller neighborhoods.
The computational cost of the proportion control is not pro-
hibitive, with only a minor increase of the order of 15% in cases
where the target proportions do not require too much alteration of
the training patterns. However the computational cost can bemuch
higher if the proportions constraints require generating new pat-
terns, with up to a tripling of the computational time compared to
the absence of proportions control.

The present paper only deals with categorical variables, where
target local or global proportions are specified for every category.
Following the same approach, one can define classes gathering
several categories and target proportions for each class. The
concept could be extended to continuous variables as well by
defining classes and the corresponding proportions. In this case the
error between two distributions Ep (used in equation (4)) could be
defined as an error between the current and the target histograms.
Alternatively, the computation of the error term could be simplified
by only considering the error between moments of the current and
target histograms, such as for example the mean and the standard
deviation.
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