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A B S T R A C T

A new algorithm is presented aiming to generate realizations calibrated to desired or observed field response
functions. The Fast Fourier Transform Moving Average - simulated annealing algorithm (FFTMA-SA) combines
the FFTMA method of simulation and the simulated annealing (SA) method for calibration. SA is performed on
the uncorrelated random numbers used within the FFTMA algorithm, keeping by construction the field covar-
iance function unchanged. Hard data exact conditioning by kriging is easily introduced into the algorithm main
loop. An interesting advantage of FFTMA-SA is the capability to perturb the field locally or globally, simulta-
neously on any desired number of points. We therefore introduce a decreasing schedule on the number of points
to perturb mimicking the cooling schedule of the temperature parameter in SA. Two cases studies are presented.
The first one is a spatially asymmetric synthetic field where FFTMA-SA is shown to better reproduce the spatial
asymmetry than calibrated realizations obtained either by classical SA or by FFTMA combined with gradual
deformation. The second example is the Walker Lake data where regularized row and columns facies proportions
are imposed. It is shown that few iterations (100) of FFTMA-SA are enough to reproduce the main characteristics
of the proportion curves. Increasing the number of iterations only reduces rather uniformly the variability of
realization proportions. The same data is used to illustrate the local calibration capability of the method with a
local data assimilation example. The proposed algorithm offers a simple and flexible tool for calibration. It is
easily adaptable for any moving average method of simulation.

1. Introduction

There exist numerous geostatistical methods aiming to simulate
conditional Gaussian fields with prescribed covariance function (Chilès
and Delfiner, 2012; Lantuéjoul, 2002). However, one common difficulty
arising in practical applications is to ensure realizations do comply with
additional information that might be available. Typical examples of
such information are connectivity measures (Renard and Allard, 2013),
third or higher order spatial statistics (Hörning and Bárdossy, 2018),
proportions above thresholds, travel time between wells in tracer tests
(Sudicky, 1986), pressure drop or water cut in petroleum wells (see
Oliver et al. (1997); Ravalec-Dupin (2005); Hu et al. (2013); Oliver
et al. (2010); Rezaee and Marcotte (2018), among many others) and,
more generally, any measure that relates non-linearly to the simulated
field properties or that are simply not compatible with a Gaussian field.
The enforcement of additional field characteristics to comply to non-
linearly related data is known under various names like history
matching, data assimilation and inversion. For simplicity, all these
variants are identified hereafter under the generic name of calibration.
Available calibration methods can require optimization of an objective
function (OF) or be based on sequential updating of the field (e.g.

history matching with Ensemble Kalman Filtering (Evensen, 2009)).
Optimization methods can be gradient based (e.g. pilot or master point
method (de Marsily et al., 1984; Gómez-Hernánez et al., 1997)) or
based on field perturbation (Deutsch, 1992; Hu, 2000; Rezaee and
Marcotte, 2018), or sometimes a combination of both (Hu and Ravalec-
Dupin, 2004). Desired characteristics of the method used for calibration
are the following: realistic computing times, reproduction of hard data
(HD), preservation of the field spatial covariance and capacity to act
locally on the field. We stress that calibration is understood here as any
optimization method seeking to optimize parameters of the field so as
to approximate any static data or dynamic response measured directly
or indirectly on the field.

One commonly used iterative calibration method is simulated an-
nealing (SA) (Kirkpatrick et al., 1983; Geman and Geman, 1984;
Deutsch, 1992; Deutsch and Journel, 1994). SA suffers a few draw-
backs: it is usually slow to converge and hard data points (HD) can be
poorly embedded with the neighbouring cells (Hörning and Bárdossy,
2018) creating undesired discontinuities. Hörning and Bárdossy (2018)
and Yao (1998) proposed instead to apply SA on the phase component
of the Fourier transform of the simulated field. This method preserves
the spatial covariance of the field at all iterations and ensure proper HD
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embedding with its neighbours. However, in the phase annealing (PA)
method, conditioning to HD is ensured by inserting a HD-misfit com-
ponent in the objective function (OF). Hence, the HD conditioning is
only approximate. Moreover, PA is a global method as any phase
modification affects simultaneously the entire field. It seems preferable
to adopt a method allowing exact conditioning and capability to per-
turb field locally as well as globally.

A simulation method that allows local modifications is the FFTMA
method of Le Ravalec et al. (2000) and more generally moving average
methods (Chilès and Delfiner, 2012). In these methods, the weighted
average of independent Gaussian variables is done over a window
(circular, elliptic or else) which size is a function of the correlation
ranges of the covariance components. Hence, modifying a single
random variable mostly modify the area around the perturbed cell. Hu
and Ravalec-Dupin (2004) proposed to combine FFTMA with gradual
deformation method (FFTMA-GD) for inversion of permeability field
from pressure data. One possible drawback of FFTMA-GD is the ten-
dency of the OF to stabilize after a few iterations. As the convergence
properties of SA are established for a sufficiently slow cooling schedule
(Geman and Geman, 1984), it might be profitable to replace GD by SA
in conjunction with FFTMA. This contribution compares performances
of FFTMA-SA to SA and FFTMA-GD and illustrate the main advantages
and possible weaknesses of the proposal.

The methodology section recalls briefly the main characteristics of
FFTMA and SA. Then, FFTMA-SA algorithm is presented. A synthetic
case study showing clear spatial asymmetry is used to illustrate the use
of FFTMA-SA. Results of FFTMA-SA are compared to SA, uncalibrated
conditional realizations and FFTMA-GD. A second case study with
Walker Lake data set compares uncalibrated conditional realizations
and FFTMA-GD to FFTMA-SA for calibration to target vertical and
horizontal facies proportions. The sensitivity to maximum number of
iterations used is examined. A second application with the Walker Lake
data illustrates how newly acquired data in a subarea can easily be
assimilated by FFTMA-SA. A general discussion underlining the pros
and cons of the proposed method follows.

2. Methodology

This section presents briefly the main characteristics of SA and
FFTMA that are then combined for calibration purpose.

2.1. Simulated annealing (SA)

Kirkpatrick et al. (1983) and Geman and Geman (1984) introduced
simulated annealing (SA), a general purpose optimization algorithm
based on iterative perturbations of an existing field. The perturbations
are accepted at iteration i when improving the objective function (i.e

< −O Oi i 1) and accepted with probability −−exp O O T([ ]/ )i i i1 when de-
teriorating the objective (i.e. > −O Oi i 1). The temperature parameter Ti
is decreased slowly with iterations such as to gradually render less
likely a deterioration of the OF as the iterations progress. The slower
the temperature decreases, the higher is the likelihood of convergence
to the global minimum but the larger is the number of iterations re-
quired to eventually reach it. Note that perturbations in SA can be
brought to one, two or more cells at a time. The algorithm runs until a
suitable stopping criterion is reached.

As always in optimization, many stopping criteria can be adopted
like the maximum number of iterations (our choice), the rate of ac-
ceptance of perturbations, the rate of decrease of the OF, or the
reaching of a threshold on OF. The stopping criteria depends of the
quality, precision and confidence in data to calibrate, of the goals of the
study and of the available computing power and time. Although SA has
good convergence properties (Geman and Geman, 1984), its weakness
is to typically require many iterations. It is therefore considered a slow
method. In cases where OF evaluation is costly in CPU time it can even
become inapplicable in practice.

2.2. Fast Fourier transform - moving average (FFTMA)

The FFTMA method was originally proposed by Le Ravalec et al.
(2000) as an efficient mean to perform unconditional Gaussian simu-
lations on a regular grid of points. It seeks to simplify the determination
of the weighting function g in moving average methods (Oliver, 1995;
Chilès and Delfiner, 2012). The moving-average method simulates a
Gaussian field Z by convolution of a suitably chosen weighting function
g with a Gaussian white noise Y. The well-known convolution theorem
(Sneddon, 1951) states that the convolution in spatial domain becomes
a simple product in the spectral domain. Hence, writing = ∗Z Y g, one
has � � �=Z Y g( ) ( ) ( ). Assuming that g h( ) is symmetric around the
origin, one has:

= ∗C g g (1)

Where C is the covariance function. Hence,

� � � � � �= = → =C g g g g C( ) ( ) ( ) ( ) ( ) ( )2 0.5 (2)

where ℱ represents the Fourier transform. The weighting function g
does not have to be found explicitly. It suffices to know the FFT of C.
Note that C being real and symmetrical around the origin, � C( ), � g( )
and, consequently the function g are also real and symmetric functions.

Following Le Ravalec et al. (2000) the FFTMA simulation method
comprises the following steps:

• Computation of covariance C over the regular grid with respect to
the grid origin.

• Generation of the Gaussian white noise Y on the grid.

• Calculation of the Fast Fourier transforms �=η Y( ) and �=S C( ).
• Computation of =G S .
• Computation of � =Z ηG( ) .

• Inverse Fourier transform of � Z( ) giving the correlated Gaussian
field Z x( ) with covariance C.

To account for periodicity of the FFT, C must be periodized over the
field (see Le Ravalec et al. (2000); Chilès and Delfiner (2012) for de-
tails) and the simulated field must be embedded in a field extended by
the finite range in all directions. For covariances with asymptotic
ranges, the field must be enlarged enough to bring the covariance very
close to zero (Chilès and Delfiner, 2012) to minimize aliasing. Two
important drawbacks of FFTMA are worth mentioning. First, it works
on regular grids. This can limit the applicability of the method, espe-
cially in 3D where data are located along boreholes or in 2D for highly
clustered data. Second, it can be limited by computer memory, for ex-
ample in 3D for covariances with a large range. The FFTMA computa-
tional complexity is O Nlog N( ( )) compared to O N( ) for Turning Bands
(TB). Our own experience however is that FFTMA can be faster than TB
for small to medium size fields.

The strength of FFTMA is its flexibility and fast calculation. Any
covariance model with finite range can be simulated exactly on the
grid. The method clearly separates the random component Y from the
deterministic weighting function g. The FFT of g can be computed once.
Modifications can be brought to one or many random numbers to create
new realizations without altering the simulated covariance.

2.3. FFTMA-SA

The random field of FFTMA being uncorrelated, any number of cells
can be modified simultaneously without altering the spatial covariance,
much like does phase annealing (PA) (Hörning and Bárdossy, 2018;
Yao, 1998). This helps speeding convergence compared to classical SA.
In our implementation of the method, we start with a large number of
cells to perturb and decrease this number regularly up to a single cell
according to a decreasing schedule inspired from temperature cooling
schedule in SA. Secondly, the perturbed cells can be selected over the
entire field or be concentrated in a particular subarea to leave
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Fig. 1. Flowchart of FFTMA-SA algorithm. Z is N(0,1), W is the variable to simulate, ϕ is the Gaussian anamorphosis function, ∗ is the convolution operator.

Fig. 2. Difference between a 100×100 Gaussian field and the same field with N random perturbations by FFTMA-SA. Variogram model: spherical, C= 1, ax=50
and ay=25.
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unchanged areas already well calibrated. This capability sharply con-
trasts with PA where the entire field is modified at every iteration.
Fig. 1 summarizes the FFTMA-SA algorithm.

After a few tests the schedule chosen for temperature and number of
cells to perturb simultaneously are defined by a constant multiplicative
reduction factor (in ]0,1[) computed and applied at each iteration i:

⎜ ⎟= ⎛
⎝

⎞
⎠

T T T
Ti
iter

i iter

0
0

/

(3)

⎜ ⎟= ⎛
⎝

⎞
⎠

N N N
Ni

iter
i iter

0
0

/

(4)

where iter is the chosen maximum number of iterations, T0 and N0 re-
present the initial temperature and the initial number of cell perturbed
and Titer and Niter are the desired final temperature and final number of
cells to perturb. In the case studies, the reduction factors were com-
puted such that =T T exp/ (15)iter0 , N0 is chosen between 5% and 20% of
the total number of cells in the field and =N 1iter . The ratio T T/ iter0 was
chosen by trial-and-error and probably needs to be tailored to the
particular OF studied. The schedule for number of points to perturb
materializes the logical idea of working globally at the beginning of the
algorithm and locally towards the end.

Fig. 2 illustrates the local behavior of FFTMA-SA. The figure shows
the difference between a 100× 100 Gaussian random fields with
spherical variogram (C=1, ax=50 and ay=25) and the same field for
N random perturbations by FFTMA-SA for N=1, 100 and 1000. When
N=1 (Fig. 2(a)), mostly cells within the correlation length are mod-
ified as a decreasing function of the distance to the perturbed point.
With larger N, the entire field becomes affected by the perturbations.
Selecting the points to perturb in a desired subarea as illustrated in
Fig. 3 restore a more local behavior. Note that the perturbations extends
beyond the target subarea. This ensures spatial continuity and preserves
variogram reproduction when crossing subarea boundaries. Moreover,
the weights defined by FFTMA extends farther than the (finite) corre-
lation range as shown in Fig. 4 for the case of a spherical model.

2.3.1. Gaussian anamorphosis
The initial Gaussian anamorphosis of step 1 in Fig. 1 is required

because FFTMA produces Gaussian fields. The anamorphosis is done
graphically by associating Gaussian quantiles to the same experimental
quantiles of HD. This only ensures marginal Gaussian distribution.
Higher order characteristics of HD can be enforced by incorporating
these in the OF definition.

2.3.2. Post-conditioning by kriging
Given an unconditional realization Z x( )u and HD ∀ =Z x i n( ), 1..i ,

one obtains a conditional realization by:

= + − = + −Z x Z x Z x Z x Z x Z x Z x( ) ( ) ( ( ) ( )) ( ) ( ( ) ( ))c u u u u
* * * * (5)

where Z x( )c is the conditional realization at point x, Z x( )* is the kriging
estimate at point x using HD at points ∀ =x i n, 1..i , Z x( )u

* is the kriging
estimate obtained at x using unconditionally simulated values at points
xi. Hence, Eq. (5) clearly shows that post-conditioning by kriging can be
seen as adding a spatially correlated error −Z x Z x( ( ) ( ))u u

* to a kriged
estimate, or alternatively to add the kriging of the difference

−Z x Z x( ( ) ( ))u
* * to the unconditional realization. Note that any form of

kriging can be used for the post-conditioning and that post-conditioning
is exact. Further details about this classical method are found in Chilès
and Delfiner (2012).

3. Results

A synthetic case showing spatial asymmetry is constructed. FFTMA-
SA is compared to classical simulated annealing (SA), uncalibrated
conditional realizations and FFTMA-GD. The OF measures the dissim-
ilarity between experimental third order spatial moments of the re-
ference and the calibrated simulation. The second case study tests
FFTMA-SA on the well known Walker Lake dataset (Isaaks and
Srivastava, 1989; Mariethoz and Caers, 2014) with an OF giving the
difference in facies proportions along vertical and horizontal directions.
The third example illustrates the capability of FFTMA-SA to assimilate

Fig. 3. Difference between a 100× 100 Gaussian random field and the same field with N random perturbations by FFTMA-SA in a centered window 40×40.
Variogram model: spherical, C= 1, ax=50 and ay=25.

Fig. 4. MA weights obtained by FFTMA for a spherical model of range 20
(white circle). The weights produced by FFTMA extend beyond the correlation
range.
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newly acquired data on a subarea of the field for the Walker Lake ex-
ample.

3.1. Synthetic case

The first example (Fig. 5) is a simple synthetic field that could re-
present three successive volcanic sequences with silica concentration
increasing within each sequence from West to East according to the
Bowen's reaction series. At the beginning of a volcanic sequence, the
silica concentration is low and mafic igneous rocks are crystallized. At
the end, the silica concentration is higher and more felsic igneous rock
appear. A new volcanic cycle reproduces typically the same sequence
with possible variations in power and completeness of each cycle.

The dimension of the synthetic field is 100×100 cells. Fifty sam-
ples are randomly selected for conditioning data (white circles). The
objective function is the misfit (quantified by RMSE) between the re-
ference and simulated asymmetry function as defined by Bárdossy and
Hörning (2017) and Hörning and Bárdossy (2018):

∑= −
− ≈

A h
N h

F Z x F Z x( ) 1
( )

( ( ( )) ( ( )))
x x

i j
h

3

i j (6)

where N h( ) is the number of pairs and F Z x( ( )) is the cdf evaluated at
Z x( ). It can be computed very efficiently on a regular grid using FFTs by
generalizing the approach presented in Marcotte (1996). To avoid
sampling fluctuations, and without loss of generality of the method, we
used the entire reference field to compute the target asymmetry func-
tion. SA and FFTMA-SA algorithms are applied to get 100 realizations
calibrated to the reference asymmetry functions. The stopping criteria
is 5000 iterations. Note that the iteration number in our algorithm re-
presents the number of evaluations. With FFTMA-SA, the number of
points perturbed can be much higher as we simultaneously perturb
many points of the field each time. Initially, 500 cells of the field are
perturbed and this number is progressively reduced to one in the last
iteration. A Tabu strategy is followed for node selection to prevent
considering again a cell before all cells have been visited. Fig. 6(a) il-
lustrates a realization obtained by SA and by FFTMA-SA. For reference,
Fig. 6(b) shows a simple conditional realization without calibration.

Comparing SA and uncalibrated conditional realization shows, as
expected, that SA better reproduces the alternating sequences.
However, this is achieved at the expense of a larger noise variance
(Fig. 7(a)), and globally a loss of spatial structure (Fig. 8(a)).

3.1.1. Results with FFTMA-SA
FFTMA-SA is applied on the same synthetic field. Fig. 8 present

variograms along East and South directions and Fig. 9 displays the
spatial asymmetry function. Fig. 9 shows that all FFTMA-SA realizations
(dark gray) reproduce the reference asymmetry, contrary to un-
calibrated realizations (light gray). The good calibration to asymmetry
is done without any noticeable loss of the variogram reproduction ob-
tained by FFTMA-SA (Fig. 8) despite that the variogram was not in-
cluded in the objective function. Note that the calibrated fields are no
more Gaussian as the spatial asymmetry is incompatible with a Gaus-
sian field. Hence, the method provides a way to simulate non-Gaussian
fields with imposed covariance function and higher order spatial mo-
ments different from the Gaussian case.

As a side effect, the calibration of asymmetry function by FFTMA-SA
method enables globally an improved reproduction of the reference
field as indicated by the cell-based histogram of mean errors between
realizations-reference (Fig. 7(b)).

3.1.2. Comparison of FFTMA-GD with FFTMA-SA
Gradual deformation (GD) is applied on the same synthetic case.

The OF obtained by FFTMA-SA and FFTMA-GD with 1 000, 5000 and
10 000 iterations are shown as a function of the iteration index. Fig. 10
presents the mean common logarithm of the of 100 realizations of
FFTMA-SA (red) and FFTMA-GD (blue). Each iteration corresponds to
an evaluation of the OF. Hence, the computation times are similar for
the two methods as the CPU most intensive part is computation of the
OF. FFTMA-GD decreases initially faster than FFTMA-SA, but FFTMA-
SA decreases at a globally higher rate. As a result, in the last iteration,
FFTMA-SA presents in average a two to three-fold reduction of the
objective function with respect to FFTMA-GD.

The correlations of the four methods (SA, uncalibrated realization,
FFTMA-GD and FFTMA-SA) with the reference have been computed for
each of 100 realizations. The mean correlation and standard deviation
of the correlations are shown in Table 1. SA realizations show poor
correlation with the reference due to the loss of spatial structure (in-
troducing the variogram in the OF helped increase the correlation but it
remained smaller than for FFTMA-GD and FFTMA-SA). The mean cor-
relations of FFTMA-SA and FFTMA-GD are similar and significantly
larger than those obtained with SA or with uncalibrated conditional
realizations. This indicates that the asymmetry function is an important
feature of the synthetic case that should be duly considered.

3.2. Walker Lake data

The second example bears on the well known Walker Lake data set
(Isaaks and Srivastava, 1989). The complete field is 260×300 cells
(Fig. 11(a)). A regular grid of 100 data (10×10) form the conditioning
HD. We define an indicator variable T x y( , ) taking the value one when
variable >V x y( , ) 500 (see Fig. 11(b)). The mean of T x y( , ) is com-
puted along X- and Y-axis and then the moving averages over 50 con-
secutive lines or columns are computed to obtain the proportion curves
T x( )r and T y( )r . The OF to minimize is the RMSE between the reference
and the realization facies proportions.

Fig. 11 presents realizations of variable V (uncalibrated: Fig. 11(c)
and calibrated: Fig. 11(e)) and the e-type of variable T computed after
truncation of the 100 realizations of variable V for uncalibrated
(Fig. 11(d)) and calibrated realizations (Fig. 11(f)). As expected, cali-
brated e-type estimates of T better represent areas of high values than
uncalibrated ones (compare with Fig. 11(b)). The mean correlation on V
between realizations and reference is higher for calibrated realizations
than uncalibrated ones for both FFTMA-GD and FFTMA-SA with a slight
advantage for FFTMA-SA (see Table 2).

Fig. 12 presents the moving average along the X-axis (left) and the
Y-axis (right) for the uncalibrated and FFTMA-SA realizations. After
2000 iterations, the calibrated realizations by FFTMA-SA (dark gray)
reproduce almost perfectly the reference curves (solid red). In fact, 500

Fig. 5. Synthetic case. Reference field and location of conditioning data (white
circles).
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Fig. 6. Example of simulation by SA (a), uncalibrated conditional realization (b), and FFTMA-SA (c).

Fig. 7. Cell-based histogram of the mean difference reference-realizations over 100 uncalibrated conditional realizations (blue) and (a) SA (red) and (b) FFTMA-SA
(red). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 8. Experimental variograms and 90% confidence intervals along (a) East direction for SA (dottted lines), uncalibrated conditional realizations (dashed lines) and
calibrated by FFTMA-SA (solid black lines), (b) South direction for uncalibrated conditional realizations (dashed lines) and calibrated by FFTMA-SA (solid black
lines). Reference field variograms (solid red lines). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this
article.)
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iterations were enough to obtain an almost equivalent calibration with
this OF. By comparison, uncalibrated conditional realizations (light
gray) show much larger deviations with respect to target functions.

Fig. 13 compares the evolution of the OF for FFTMA-GD and
FFTMA-SA. As for the previous synthetic case study, FFTMA-GD stalls
early after a quick decrease of the OF compared to FFTMA-SA which
decreases initially at a slower pace but is able to get better calibration at
the last iteration. FFTMA-SA shows a similar behavior on all subfigures,
with no obvious sign of getting trapped in a local minimum. The re-
lative stabilization observed at iteration approximately equal to iter/2
corresponds to ≈N 20i , a relatively small number of simultaneously
perturbed cells in a field comprising 78 000 cells.

The evolution of the calibration with choice of iter parameter differs
significantly for FFTMA-SA and FFTMA-GD. Fig. 14 (a) to (c) shows the

calibrated function along the y-axis for =iter 100, 200 and 500 re-
spectively. The sets of FFTMA-SA realizations define intervals around
the target proportion whose width decreases with increase of iter . The
target curve is well contained within the confidence interval even with

=iter 100. The result with =iter 500 is close to the one obtained with
=iter 2000 (Fig. 12). The lack of fit is rather homogeneously distributed

over the whole target curve, so the maximum number of iterations (100
vs 200 vs 500 or more) applied in FFTMA-SA globally controls fairly
well the variability of FFTMA-SA realizations around the target re-
sponse.

The behavior of FFTMA-GD in this example differs. Fig. 14 (d) to (f)
shows that important portions of the target function are well outside the
confidence interval defined by realizations, even with 500 iterations.
The spread of responses is much smaller than for FFTMA-SA in the 100
and 200 iteration cases. In fact, the confidence intervals of FFTMA-GD
show almost the same width irrespective of the number of iterations
applied. Here, contrary to the FFTMA-SA case, the number of iterations
does not control well the variability of realizations and globally the
confidence intervals are not credible.

3.3. Local FFTMA-SA

The third example illustrates the capability of FFTMA-SA to work
locally and to perform data assimilation. New local data informing on

Fig. 9. (a) Asymmetry function along East direction, (b) asymmetry function along South direction. Reference field (solid red), FFTMA-SA realizations (dark gray),
uncalibrated conditional realizations (light gray); 90% confidence intervals shown (solid dark: calibrated and dashed lines: uncalibrated). (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 10. Mean of objective functions (red: FFTMA-SA, blue: FFTMA-GD) and 75% confidence intervals shown (dark lines: FFTMA-SA, dashed lines: FFTMA-GD); 100
realizations of both methods. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Table 1
Correlations of simulated fields with synthetic reference field; 100 realizations.

Method 1000 iterations 5000 iterations 10 000 iterations

Mean ρ Std ρ Mean ρ Std ρ Mean ρ Std ρ

SA 0.64 0.03 0.57 0.05 0.44 0.08
Uncalibrated 0.78 0.03 0.78 0.02 0.78 0.03
FFTMA-GD 0.83 0.02 0.84 0.02 0.85 0.02
FFTMA-SA 0.83 0.02 0.85 0.02 0.85 0.03

D. Lauzon and D. Marcotte Computers and Geosciences 127 (2019) 99–110

105



(caption on next page)

D. Lauzon and D. Marcotte Computers and Geosciences 127 (2019) 99–110

106



local averages of variable V (over 21×21 blocks) become available
(see Fig. 16). One hundred realizations calibrated globally as in section
3.2 are obtained first. Then, we update the realizations so as to as-
similate the newly acquired local data. For this, we form a new OF
composed of two terms, the original global OF and the misfit to the new
local data. The realizations are updated to local data by a new round of
iterations (with cooling and number of points schedules reinitialized)
with the global-local OF. The global part of the OF keeps the updated

realizations compatible with the entire field whereas the local part
improves fit to the new local data. In this second phase, the points are
selected within the local window (although we could have use a mix of
local and global perturbations). Fig. 15 shows that the assimilation
phase continues improving the global calibration and succeeds to fit the
local data as well. Fig. 16(d) and (e) show the e-type of variable T x y( , )
for the global OF and the global-local OF respectively. Fig. 16(f) shows
the absolute difference between the two figures. The local data

Fig. 11. Walker-Lake data: (a) Variable V and location of conditioning data (white crosses), (b) variable T (Indicator of V > 500, in yellow). (c) uncalibrated
conditional realization, (d) e-type of T for 100 uncalibrated conditional realizations, (e) calibrated conditional realization by FFTMA-SA, (f) e-type of T for 100
FFTMA-SA realizations, contours at 0.25, 0.5, 0.75 and 0.9. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web
version of this article.)

Table 2
Walker lake Data: Correlations of simulated fields with reference field for V variable; 100 realizations.

Method 100 iterations 200 iterations 500 iterations 1000 iterations

Mean ρ Std ρ Mean ρ Std ρ Mean ρ Std ρ Mean ρ Std ρ

Uncalibrated 0.50 0.03 0.49 0.03 0.50 0.03 0.49 0.03
FFTMA-GD 0.51 0.01 0.50 0.004 0.53 0.004 0.52 0.002
FFTMA-SA 0.53 0.03 0.55 0.02 0.55 0.02 0.55 0.02

Fig. 12. Walker Lake data. Moving average of variable T over 50 lines along x-axis (a) and y-axis (b). Reference field (solid red), FFTMA-SA realizations after 2000
iterations (dark gray), uncalibrated conditional realizations (light gray). 90% confidence intervals shown (dashed lines: uncalibrated, solid black: calibrated). (For
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 13. Walker Lake data. Mean of objective functions (red: FFTMA-SA, blue: FFTMA-GD) and 90% confidence intervals shown (solid lines: FFTMA-SA, dashed lines:
FFTMA-GD), 100 realizations. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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assimilation increased the correlation with the reference field (see
Table 3).

4. Discussion

A new algorithm for calibration combining FFTMA and SA is in-
troduced. FFTMA-SA works by perturbing the independent random
numbers of the FFTMA generator using a simulated annealing approach
modified to allow simultaneous perturbation of many cells combined
with a Tabu selection of cells to avoid revisiting the same cells too soon.

Compared to the classical SA, FFTMA-SA preserves by construction
the simulated covariance after each iteration without having to

introduce the variogram function in the OF, a major advantage as this
typically produce artefacts in SA (Groleau and Marcotte, 1997). Simi-
larly, due to the post-conditioning step, there is no need to include
conditioning points in the OF as done with PA (Hörning and Bárdossy,
2018; Yao, 1998). Contrary to PA, FFTMA-SA exactly honours the HD.
Moreover, PA works always globally whereas FFTMA-SA is by con-
struction global-local thanks to the schedule for the number of points to
perturb. We stress that the global-local behavior is built-in our ap-
proach contrary to FFTMA-GD where local perturbations rely on prior
identification of the most sensitive areas, a task that can be difficult for
some OF. With both FFTMA-SA and FFTMA-GD, local perturbations do
not disturb the field covariance and continuity.

Fig. 14. Moving average of T over 50 lines along y-axis for FFTMA-SA (top row) and FFTMA-GD (bottom row). From left to right, calibration done using 100, 200 and
500 iterations. Reference field (solid red) and 90% confidence intervals shown (solid dark). (For interpretation of the references to colour in this figure legend, the
reader is referred to the Web version of this article.)

Fig. 15. Walker Lake data. Moving average of variable T over 50 lines along x-axis (a) and y-axis (b). Reference field (solid red). 90% confidence intervals obtained
by global-local calibration (dashed black), by global calibration (solid black). (c) Evolution of the OF. Mean (red line), Mean of global OF and local OF (black lines);
100 realizations. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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The two examples presented, synthetic and Walker Lake, illustrate
the efficiency of the FFTMA-SA method to match each individual rea-
lization to the target response almost exactly when the number of
iterations is selected large enough. This is a desirable feature when the
response function is known with a high degree of precision. Typical
examples of precise response functions are, in hydrogeology, the travel
time between wells in a tracer test, or in petroleum reservoir en-
gineering, the pressure drop or water cut in wells. However, some re-
sponse functions can present significant uncertainties (e.g. facies pro-
portion curves). To avoid overfitting, it is then advisable to stop
iterations early in FFTMA-SA. One example showed (Fig. 14 (a) to (c))
that such strategy with FFTMA-SA increased variability of realizations
and maintained credible confidence intervals around the target func-
tion. The width of the interval appeared well controlled by the number
of iterations specified. A similar behavior (not shown) was observed for
the synthetic case. Whether this is a general behavior of FFTMA-SA
would require further study but we note that applying the same strategy
with FFTMA-GD failed to produce credible confidence intervals for the
Walker Lake case study. FFTMA-GD produced calibrated realizations

lacking variability and unable to match some parts of the target pro-
portion curves.

The main advantages of FFTMA-SA over FFTMA-GD are that
FFTMA-SA is able, in the examples tested, to reach significantly lower
OF for the same number of iterations. The variability of realizations
appears better controlled by number of iterations with FFTMA-SA than
with FFTMA-GD. The built-in global-local behavior of FFTMA-SA stems
from the schedule on number of points to perturb. It confers a sig-
nificant advantage to FFTMA-SA compared to FFTMA-GD. Finally, we
note that convergence properties of SA are also theoretically better
established than those of GD.

Two important drawbacks of FFTMA-SA (also shared by FFTMA-GD
and PA) are worth mention. First, it works on a regular grid and second,
it can be limited by computer memory for covariances with a large
range. When HD are not on a regular grid, it is possible to use FFTMA
on a sufficiently dense regular grid and then use sequential Gaussian
simulations (SGS) or local Cholesky simulations to extend simulated
values from the grid to the HD points to get the simulated values re-
quired for post-conditioning by kriging. This approach is adequate
provided the screen effect of simulated points within the local neigh-
bourhood around HD is strong enough. It would not involve significant
increase in computing time and would leave unchanged all the other
steps of the FFTMA-SA algorithm. Another simpler option classically
adopted is to migrate each HD point to its closest cell, provided the
displacement is small enough. The problem of memory limitation is
more serious, one possible avenue is to replace FFTMA by a spatial or
spectral turning band simulator which has no memory limitation.
However, the price to pay would be the lost of capability to work

Fig. 16. Top row: Calibration of local averages (block of ×21 21) of variable V (a) reference, (b) global calibration, (c) global-local calibration. Bottom row:
conditioning data (white crosses), (d) calibrated conditional realization by FFTMA-SA and global OF, (e) calibrated realization by FFTMA-SA and global-local OF, (f)
absolute difference between (d) and (e). e-type contours at 0.25, 0.5, 0.75 and 0.9. Local calibration window outlined.

Table 3
Walker lake Data: Correlations of simulated fields with reference field for V
variable, 100 realizations.

Method Mean ρ Std of ρ

Uncalibrated 0.49 0.03
FFTMA-SA (Global OF) 0.53 0.02
FFTMA-SA (Global and local OF) 0.58 0.02
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locally.

5. Conclusion

The proposed approach, FFTMA-SA, provides a fast and general
method to produce realizations that can be calibrated to various re-
sponse functions. The calibration is done efficiently without disturbing
the desired field covariance function while honouring all HD by con-
struction. Applications of the method on a synthetic example and the
Walker Lake data demonstrated its capability to meet the imposed
objectives and showed increased correlations with the reference field
after calibration to the target responses. Comparisons with SA and
FFTMA-GD showed better performance of FFTMA-SA. The ensemble of
FFTMA-SA calibrated realizations defined credible confidence intervals
around the reference, contrary to SA and FFTMA-GD. The capability of
FFTMA-SA to work globally-locally was demonstrated with a data as-
similation example. Good global and local calibrations were obtained in
a relatively small number of iterations, illustrating FFTMA-SA con-
stitutes an interesting and flexible alternative for model calibration.
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