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A B S T R A C T

A new algorithm for calibration of conditional realizations to measured or desired response functions is
presented. The Sequential-Spectral Turning Bands Method (S-STBM) builds the field by choosing the phase of
each new cosine function such that the observed field response functions become increasingly calibrated. The
phase selection has little influence on the spatial correlation structure but can help to meet other objectives.
Conditioning by kriging is used in the algorithm main loop to impose exact hard data reproduction. A first
case study illustrates the performance of the algorithm for a cyclic and asymmetric field. S-STBM is shown
to reproduce similarly or better the directional asymmetry than calibrated realizations obtained by FFTMA-
SA. A training image (TI) with connected low values provides the second case study where the target is
the reproduction of non-centered third-order spatial moments. A third case study shows the effectiveness of
the S-STBM algorithm to calibrate a Gaussian field to tracer tests. Contrary to FFTMA-SA, S-STBM works on
irregular grids. Its computational complexity of (𝑛) and small memory requirement makes it an attractive
method for calibration.

1. Introduction

Several geostatistical methods exists to simulate conditional random
Gaussian fields (Lantuéjoul, 2002; Chilès and Delfiner, 2012). These
methods allow the reproduction of second-order spatial statistics but
do not guarantee the reproduction of field characteristics such as high-
order spatial statistics (Tsatsanis and Giannakis, 1992; Journel, 1993;
Delopoulos et al., 1994; Dimitrakopoulos et al., 2010; Hörning and Bár-
dossy, 2018), connectivity measures (Renard and Allard, 2013), travel
time between wells in tracer tests (Sudicky, 1986), or generally any
information that relates non-linearly to the properties of the simulated
fields.

Many different approaches have been proposed to incorporate non-
Gaussian characteristics in simulated fields or to calibrate the field
to extraneous information. History matching with Ensemble Kalman
Filtering (Liu and Oliver, 2005; Evensen, 2009) use sequential updating
of a field using the covariance between the field properties and the
response variables. Other approaches optimize an objective function
(OF) either using gradients (Marsily et al., 1984; Gómez-Hernánez
et al., 1997), or by iteratively perturbing the field (Kirkpatrick et al.,
1983; Hörning and Bárdossy, 2018; Lauzon and Marcotte, 2019) or a
combination of both (Hu and Ravalec-Dupin, 2004).

A commonly used perturbation method for calibration is the Sim-
ulated Annealing (SA) algorithm (Kirkpatrick et al., 1983; Geman
and Geman, 1984). However, SA converges slowly and hard data
points (HD) can present undesired discontinuities with the neighboring
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cells (Hörning and Bárdossy, 2018). A method proposed by Hörn-
ing and Bárdossy (2018) called phase annealing (PA) improves em-
bedding by applying SA on the Fourier transform (FFT) phase com-
ponent. PA suffers of two important drawbacks. First, the size of
problems that can be tackled is limited due to the use of the FFT.
Secondly, the FFT algorithm can only be used for regular grids. Algo-
rithms combining the FFT-Moving Average with gradual deformation
(FFTMA-GD, Hu and Ravalec-Dupin (2004)) or with simulated anneal-
ing (FFTMA-SA, Lauzon and Marcotte (2019)) also suffer from the same
limitations.

The Spectral Turning Bands Method (STBM) and the Turning Bands
Method (TBM) both allow to obtain realizations over irregular grids
and solve the memory issue. The simulation in R𝑛 is replaced by a
series of simulations on R. The STBM developed by Shinozuka (1971)
and Shinozuka and Jan (1972) and studied by Emery et al. (2015)
is based on the sequential addition of several one-dimensional cosine
waves with specific spectral densities and random phases. The main
idea of our proposed algorithm is to select the phase of each cosine
function such as to minimize an OF that includes elements to calibrate.
The calibration is performed sequentially, wave by wave, during the
construction of the random field. Besides grid and memory advantages,
it does not require to set extra parameters such as a cooling schedule.

The paper is structured as follows. First, the main characteristics
of the STBM are summarized. Then, Sequential-STBM (S-STBM) al-
gorithm is described. Directional asymmetry and third-order statistics
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used in our synthetic examples are introduced. The first case study
shows cyclical and asymmetric structures and is used to compare S-
STBM to FFTMA-SA. A second case study taken from a training image
illustrates the use and performance of S-STBM with different OFs. A
third example aiming to calibrate a Gaussian porosity field to travel
time between wells in a tracer test shows the effectiveness of the
algorithm. A discussion on strengths and weaknesses of the proposed
method follows.

2. Methodology

This section begins with a general presentation of the STBM algo-
rithm followed by our proposed adaptation for sequential calibration
(S-STBM). Thereafter, some implementation details of the algorithm are
presented.

2.1. Spectral Turning Band Method

As for its spatial counterpart, the main idea of the STBM is to replace
the simulation process in R𝑛 (in general, n = 2 or 3) into a simpler
series of simulations in R. Let us consider a n-dimensional stationary
continuous covariance 𝐶𝑛(ℎ). Its spectral representation is (Chilès and
Delfiner, 2012, p. 66) :

𝐶𝑛(ℎ) = ∫R𝑛
𝑒𝑖⟨ℎ,𝜔⟩𝑑𝜒(𝜔) = ∫R𝑛

𝑐𝑜𝑠(⟨ℎ, 𝜔⟩)𝑑𝜒(𝜔) (1)

where ℎ = (ℎ1, ℎ2,… , ℎ𝑛) is a n-dimensional vector specifying a direc-
tion, 𝜔 = (𝜔1, 𝜔2,… , 𝜔𝑛) denotes a n-dimensional frequency vector,
⟨ℎ, 𝜔⟩ = (ℎ1𝜔1 + ℎ2𝜔2 + ⋯ + ℎ𝑛𝜔𝑛) is the inner scalar product in R𝑛

and 𝑑𝜒(𝜔) is the spectral measure. Note that 𝐶𝑛(ℎ) being real and
symmetrical around the origin, the spectral measure is also real and
symmetrical around the origin. Further, when 𝐶𝑛(ℎ) is square integrable
the spectral measure can be expressed as 𝑑𝜒(𝜔) = 𝑓 (𝜔)𝑑𝜔 where 𝑓 (𝜔)
is the spectral density (Lantuéjoul, 2002, p. 191). Thereafter let us
consider a stationary zero-mean random field 𝑌 (𝑥) defined by:

𝑌 (𝑥) =
√

2𝑐𝑜𝑠(⟨𝑉 , 𝑥⟩ + 2𝜋𝑈 ) (2)

where 𝑉 is a random frequency vector with distribution given by the
spectral density 𝑓 (𝜔) and 𝑈 is uniformly distributed on [0, 1]. The
random process 𝑌 (𝑥) is zero-mean and possesses covariance 𝐶𝑛(ℎ) as:

𝐸[𝑌 (𝑥)] = ∫

1

0
𝑑𝑈 ∫R𝑛

𝑑𝜒(𝑉 )
√

2𝑐𝑜𝑠(⟨𝑉 , 𝑥⟩ + 2𝜋𝑈 ) = 0 (3)

𝐸[𝑌 (𝑥)𝑌 (𝑥 + ℎ)] = ∫

1

0
𝑑𝑈 ∫R𝑛

𝑑𝜒(𝑉 )2𝑐𝑜𝑠(⟨𝑉 , 𝑥⟩ + 2𝜋𝑈 )

× 𝑐𝑜𝑠(⟨𝑉 , 𝑥 + ℎ⟩ + 2𝜋𝑈 )

= ∫

1

0
𝑑𝑈 ∫R𝑛

𝑑𝜒(𝑉 )𝑐𝑜𝑠(⟨𝑉 , ℎ⟩)

+ 𝑐𝑜𝑠(2⟨𝑉 , 𝑥⟩ + ⟨𝑉 , ℎ⟩ + 4𝜋𝑈 )

= ∫R𝑛
𝑑𝜒(𝑉 )𝑐𝑜𝑠(⟨𝑉 , ℎ⟩) = 𝐶𝑛(ℎ) (4)

Eq. (4) clearly establishes that random variable 𝑉 is responsible
for the covariance reproduction and 𝑈 is a uniformly distributed ran-
dom phase shift bearing no effect on 𝐶𝑛. Although 𝑌 (𝑥) in Eq. (2) is
zero mean and has the desired covariance, it is non-ergodic and non-
Gaussian as it is made of a single cosine function. To enforce ergodicity
and Gaussian field, a sum of N independent random processes 𝑌 (𝑥) is
used:

𝑍(𝑥) =
√

1
𝑁

𝑁
∑

𝑖=1
𝑌𝑖(𝑥) (5)

𝑍(𝑥) becomes more ergodic and Gaussian as 𝑁 increases. Eq. (5) can
be implemented sequentially or parallelized. S-STBM uses a sequential
implementation for the cosine functions where, instead of being chosen
randomly, the phase 𝑈 of each added process 𝑌 (𝑥) is selected so as to
minimize the desired OF at the current step. Note that parallelization

can still be done for each cosine function by computing the coordinate
projections on the line with the GPU as suggested by Räss et al. (2019).

The spectral density defines the distribution of 𝑉 in Eq. (2). For
isotropic 3D fields the spectral density is radially symmetric. It can be
easily determined by taking the Fourier transform of the line covariance
in the TB operator. The line covariance is (Matheron, 1973):

𝐶1(ℎ) =
𝑑(ℎ𝐶3(ℎ))

𝑑ℎ
(6)

The one-dimensional spectral density 𝑓1(𝜔) is then:

𝑓1(𝜔) = 2∫

∞

0
𝐶1(ℎ)𝑐𝑜𝑠(𝜔ℎ)𝑑ℎ (7)

Another possibility is to compute the Fourier transform of 𝐶3(ℎ) to
obtain the spectral density 𝑓3(𝜔) and from it obtain the one-dimensional
spectral density 𝑓1(𝜔).

𝑓3(𝜔) =
1

(2𝜋)3 ∫R3
𝐶3(ℎ)𝑒−𝑖⟨𝜔,𝑥⟩𝑑𝑥 (8)

𝑓1(𝜔) = (2𝜋𝜔)2𝑓3(𝜔) (9)

Spectral densities can be found for most common covariance models
in Lantuéjoul (2002), Emery and Lantuéjoul (2006), Chilès and Delfiner
(2012), Marcotte (2015, 2016) and Marcotte and Allard (2017).

Drawing 𝑉 from a given spectral density can be done by sampling
uniformly the inverse cumulative distribution. First, a random direction
is selected in 3D. This can be done by generating three independent
Gaussian random values and normalizing the resulting vector to a unit
vector giving 𝑢 the random direction. The radial spectral density is then
integrated to provide the cumulative distribution function (cdf):

𝐹1(𝜔) =
1
𝜋 ∫

𝜔

0
𝑓1(𝑠)𝑑𝑠 (10)

Then, a uniform 0-1 value 𝑡 is drawn and 𝑉 is taken as 𝑉 = 𝐹−1
1 (𝑡)𝑢.

2.2. S-STBM algorithm

The S-STBM works essentially as STBM except that 𝑈 is chosen to
respect as much as possible to desired additional information on the
field like high-order statistics (Dimitrakopoulos et al., 2010; Hörning
and Bárdossy, 2018), connectivity measures (Renard and Allard, 2013),
travel time between wells in tracer tests or pressure drop or water cut
in petroleum wells (see : Oliver et al. (1997), Le Ravalec-Dupin and
Hu (2005), Oliver et al. (2010), Hu et al. (2013), Rezaee and Marcotte
(2018), among many others).

In summary, the S-STBM algorithm is:

(a) Initialization step

• Computation of Gaussian anamorphosis 𝑌 = 𝜙(𝑍) where 𝑍
is the data in original units, 𝑌 is the Gaussian equivalent

• Determination of covariance model 𝐶3(ℎ) for 𝑌
• Computation of 𝑓1(𝜔) with Eq. (6) and (7) or with Eq. (8)

and (9).
• Integration of 𝑓1(𝜔) to get 𝐹1(𝜔)

(b) Iteration step ∀𝑖 = 1...𝑁

• Choose a line direction 𝑢𝑖 over the unit half-sphere (e.g. us-
ing van der Corput sequence, see Section 2.2.1)

• Draw uniformly 𝑡𝑖 in [0,1] and define 𝑤𝑖 = 𝐹−1(𝑡𝑖)
• Define 𝑉𝑖 = 𝑤𝑖𝑢𝑖
• Phase optimization

– Search step for 𝑈 in [0,1]. For candidate value 𝑈𝑐𝑎𝑛
obtained from the linesearch
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i. Compute the random field 𝑌𝑖 =
√

𝑖−1
𝑖 𝑌𝑖−1 +

√

1
𝑖

(
√

2𝑐𝑜𝑠(⟨𝑉𝑖, 𝑥⟩ + 2𝜋𝑈𝑐𝑎𝑛)
)

where the first
term on the right side represents the contri-
bution of the field at the previous iteration
(invariant) and the right term is the pertur-
bation brought by the new cosine function
defined by 𝑉𝑖 and candidate phase 𝑈𝑐𝑎𝑛

ii. Unconditional random field 𝑌𝑖 is post-
conditioned by kriging to get 𝑌𝑐𝑖

iii. Backtransformation to get 𝑍𝑐𝑖 = 𝜙−1(𝑌𝑐𝑖 )
iv. The objective function 𝑂𝐹𝑖 is computed with

𝑍𝑐𝑖
v. Keep the best candidate 𝑈𝑐𝑎𝑛 and correspond-

ing 𝑌𝑖 minimizing the OF

(c) Evaluate stopping criteria.

Note that a Gaussian anamorphosis is performed as a first step
because STBM converges to Gaussian field. Gaussian quantiles are
associated to HD experimental quantiles so as to ensure a marginal
Gaussian distribution. The exact representation of HD is obtained by a
post conditioning by kriging right before the backtransformation to the
original unit field and the evaluation of the OF (see step b.). This step
is classical in geostatistics, for further details see Chilès and Delfiner
(2012) and Lauzon and Marcotte (2019).

We stress that in the algorithm 𝑌𝑖 represents the entire field adding
the contributions of 𝑖 cosine functions. The current field 𝑌𝑖 is thus
formed of the 𝑖 − 1 already determined cosine functions forming field
𝑌𝑖−1 and the 𝑖th cosine function defined by the couple (𝑉𝑖, 𝑈𝑐𝑎𝑛) with

𝑈𝑐𝑎𝑛 the phase candidate value being currently examined in the line-
search. The current field 𝑌𝑖(𝑥) is then post-conditioned exactly by
kriging using known HD values 𝑌 (𝑥𝑘) (𝑘 = 1...𝑛) and backtransformed
before evaluating the OF. Hence OF evaluation is always done using a
field that is exactly conditioned to HD. The line search for optimal 𝑈
fully integrates the effect of HD conditioning on the field. This step
helps to strategically choose the phase by taking fully into account
the information contained in the HD, allowing a better convergence of
the OF. A similar strategy was applied with the FFTMA-SA algorithm
presented in Lauzon and Marcotte (2019). The number of trials for 𝑈𝑐𝑎𝑛
(see Section 2.2.3 for details) can correspond to a few steps in a golden
search line optimization (Luenberger and Ye, 2008). The stopping
criteria can be, as examples, the number of iterations (therefore of
optimized cosine functions) 𝑁 is reached or the 𝑂𝐹 does not improve
sufficiently after a series of iterations.

2.2.1. Distribution of lines over R𝑛

The first implementations of TBM used the maximum number in
3D of 15 exactly regularly spaced lines obtained by joining the edges
of an icosahedron. It was quickly acknowledged that many more lines
were required to avoid banding artifacts in the simulated fields (Chilès
and Delfiner, 2012, pp 506–508). As shown in Figs. 1(a) and 1(c), a
completely random distribution over the half-sphere does not provide a
very regular discretization. Freulon and de Fouquet (1991) studied dif-
ferent methods to obtain quasi-regular distribution of lines. The Halton
sequence 1964 and the van der Corput sequence 1935 (Figs. 1(b) and
1(d)) provide more uniform sampling (Chilès and Delfiner, 2012). The
van der Corput sequence is used in our algorithm.

Fig. 1. Lambert azimuthal equiareal projection of 100 points (top row) and 1000 points (bottom row). Left column: random; right column: quasi-random (van der Corput sequence).
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Fig. 2. Log-spectral density of four covariance models. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

Fig. 3. Mean OF over 100 realizations for three calibration strategies: 500 last lines
(solid red), 500 first lines (dashed black), one every two lines (solid black) are
calibrated.). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 4. Mean OF over 100 realizations for 2500 total OF evaluations and maximum
number of iterations per line of 5 (solid red), 10 (solid black) and 25 (dashed black).
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

2.2.2. Number of lines used
Tompson et al. (1989) suggest to generate 100 randomly oriented

lines for the spatial TBM. Freulon and de Fouquet (1991) have sim-
ulated spherical and linear covariance model with 100 quasi-random
lines (van der Corput sequence) and their results suggest that it could
suffice for some covariances with the spatial turning band. Other
authors (Lantuéjoul, 2002; Emery and Lantuéjoul, 2006; Chilès and
Delfiner, 2012; Marcotte, 2016) propose to use several hundred to
several thousand lines, especially for the spectral version of TBM which
needs to sample the high frequencies for covariance models with linear
behavior at the origin (see Fig. 2).

2.2.3. Calibration with the phase
Since the number of lines to be simulated can reach several hun-

dred or several thousand lines, the computational cost of S-STBM can
become large when each OF evaluation is itself CPU intensive. One
idea to save some CPU is to optimize the phase component only for
some iterations and randomly select the phase for the others. Fig. 3
compares three different strategies. The lines to optimize are either
selected 1) all at the end (red line), 2) all at the beginning (black dashed
line) or 3) alternately (black line). The test was carried on a total of
1000 lines with 500 of them being optimized. When optimization is
performed at the beginning, the last not optimized lines lose all the
gain obtained in the initial iterations. The alternating solution provides
good results but the optimization at the end provides overall better
calibrated realizations with this example. This is our retained method
as it seems logical to create first a field with the desired covariance that
is then slowly modified so as to meet other targets. At each iteration
where phase is optimized, it is probably advisable to stop early the
optimization to limit the number of OF evaluations for a single line.
Fig. 4 shows how the OF behaves as a function of the number of phase
values considered (5, 10 and 25) for each line. The total number of
calls to the OF is kept constant at 2500. Clearly, it is better to optimize
lightly the phase on more lines (red line) than deeply on less lines
(black line and black dashed line). Thus, the maximum number of
iterations for a single line is set to 5 in the following sections.

3. Objective function

Variogram based simulated fields bear an implicit Gaussian col-
oration, especially when the conditioning data are scarce. Non-Gaussian
characteristics can however be included in the objective function to
optimize (Guthke and Bárdossy, 2017; Bárdossy and Hörning, 2017;
Hörning and Bárdossy, 2018; Lauzon and Marcotte, 2019). Two useful
statistics to describe non-Gaussian features are the directional asymme-
try function (Hörning and Bárdossy, 2018) and the spatial high order
moments (Dimitrakopoulos et al., 2010).

3.1. Directional asymmetry

Directional asymmetry occurs in many instances. A classical ex-
ample is provided by the Barchan sand dune. The softer slope faces
the wind and the steeper slope occurs on the opposite side. This
induces a clear directional asymmetry (Bárdossy and Hörning, 2017).
The directional asymmetry can be evaluated by (Hörning and Bárdossy,
2018):

𝐴(ℎ) = 1
𝑁(ℎ)

∑

𝑥𝑖−𝑥𝑗≈𝐡
(𝐹 (𝑍(𝑥𝑖)) − 𝐹 (𝑍(𝑥𝑗 )))3 (11)

where 𝑁(ℎ) is the number of pairs with separation vector ℎ and 𝐹 (𝑍(𝑥))
is the marginal 𝑐𝑑𝑓 evaluated at 𝑍(𝑥). This function can be computed
very efficiently using FFTs (Marcotte, 1996).
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3.2. Non-centered third order spatial moment

For a stationary random field 𝑍(𝑥), the spatial non-centered third-
order moment is defined as:

𝑀(ℎ1, ℎ2) =
1

𝑁ℎ1 ,ℎ2

𝑁ℎ1 ,ℎ2
∑

𝑖=1
𝑍(𝑥)𝑍(𝑥 + ℎ1)𝑍(𝑥 + ℎ2) (12)

where 𝑁ℎ1 ,ℎ2 is the number of triplets with separation vectors ℎ1, ℎ2.
This statistic can be computed efficiently using the bispectrum func-
tion (Horikawa, 2000) that can also be obtained using FFTs. However
computing the spatial third moment for all combinations of lag vectors
is quite demanding in memory. For a field with 𝑘 cells along each of its
𝑑 dimensions, the memory required to store all the triplets is 𝑘2𝑑 , which
quickly becomes prohibitive for 𝑑 ≥ 2. It is then advisable in practice to
select only a few ℎ1 or ℎ2 lag vectors for the computation. For a fixed

ℎ2 in Eq. (12), we define 𝑓 (𝑥) = 𝑍(𝑥)𝑍(𝑥+ℎ2) and 𝑔(𝑥+ℎ) = 𝑍(𝑥+ℎ1).
Then, Eq. (12) amounts to computing the covariance of 𝑓 and 𝑔. This
computation is done by FFT in 𝑂(𝑘𝑑 𝑙𝑜𝑔(𝑘𝑑 )) operations and requires
only 𝑂(𝑘𝑑 ) in memory space for each selected ℎ2.

4. Results

Three synthetic cases are studied. S-STBM is compared to uncali-
brated and FFTMA-SA realizations. The experimental spatial asymme-
try and the third-order non-centered moments are used as targets in
the OFs of the first two case studies. The last case study presents a
calibration of a tracer test. The OF is formed by the MSRE for travel
times obtained between an injection well and pumping wells in the
reference and the simulation.

Fig. 5. (a) Reference field and location of conditioning data (black circles); (b) Uncalibrated STBM; (c) FFTMA-SA with OF directional asymmetry; (d) FFTMA-SA with OF third-order
moments; (e) S-STBM with OF directional asymmetry; (f) S-STBM with OF third-order moments.
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Fig. 6. Synthetic case. (a) Variograms along East direction, (b) along South direction. Reference field (solid red), S-STBM realizations (dark gray), uncalibrated STBM (light gray);
90% confidence intervals shown (solid dark: calibrated and dashed lines: uncalibrated). (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 7. Synthetic case. (a) Asymmetry function along East direction, (b) along South direction. Reference field (solid red), S-STBM realizations (dark gray), uncalibrated STBM
(light gray); 90% confidence intervals shown (solid dark: calibrated and dashed lines: uncalibrated). (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Table 1
Synthetic case: Correlations of simulated fields with reference field; 100 realizations. (OF: Directional asymmetry.)
Number of OF calls 200 500 1000 2500 5000

Method Mean 𝜌 Std 𝜌 Mean 𝜌 Std 𝜌 Mean 𝜌 Std 𝜌 Mean 𝜌 Std 𝜌 Mean 𝜌 Std 𝜌

No calibration 0.71 0.04 0.71 0.04 0.71 0.04 0.71 0.04 0.71 0.04
FFTMA-SA 0.77 0.04 0.78 0.04 0.80 0.04 0.81 0.05 0.83 0.03
S-STBM 0.75 0.04 0.77 0.04 0.78 0.06 0.81 0.06 0.82 0.02

Table 2
Synthetic case: Correlations of simulated fields with reference field; 100 realizations. (OF : Non-centered third order spatial moments, ℎ⃗1=all direction,
ℎ⃗2= fixed along East direction for lags 20, 40, 60.)
Number of OF calls 200 500 1000 2 00 5000

Method Mean 𝜌 Std 𝜌 Mean 𝜌 Std 𝜌 Mean 𝜌 Std 𝜌 Mean 𝜌 Std 𝜌 Mean 𝜌 Std 𝜌

FFTMA-SA 0.79 0.03 0.82 0.02 0.85 0.02 0.87 0.01 0.88 0.01
S-STBM 0.76 0.04 0.79 0.03 0.81 0.03 0.85 0.02 0.87 0.01

4.1. Synthetic case

The first synthetic example (Fig. 5(a)) is taken from Lauzon and
Marcotte (2019). It aims to mimic rock silica concentration of volcanic
sequences piling along East direction. The dimension of the synthetic
field is 100 × 100 cells. Twenty samples are randomly selected for
conditioning data (black circles). We compare results of FFTMA-SA
algorithm (Lauzon and Marcotte, 2019) to the new S-STBM algorithm.
Then, we compare results obtained using either directional asymmetry
or non-centered third-order spatial moments.

4.1.1. Comparison of S-STBM with FFTMA-SA
S-STBM is applied on the first synthetic case. The OF is formed by

the misfit of the directional asymmetry (Eq. (11)) of the realization
and the reference. The stopping criteria is the total number of OF
evaluations (here 5000). Fig. 6 presents the variogram along East
and South directions and Fig. 7 displays the directional asymmetry
along East and South directions. Fig. 6 shows that the calibration per-
formed by S-STBM preserves the variogram reproduction (dark gray)
while allowing a good calibration to the directional asymmetry of the
reference image (Fig. 7, dark gray: S-STBM realization). Due to the
calibration of the random field toward the directional asymmetry, the
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Fig. 8. Left column: Reference and realizations; Right column: thresholded at 70th percentile; First row: Reference field and 50 HD (black circle); Second row: Uncalibrated STBM
with 50 HD; Third row: S-STBM with 50 HD; Fourth row: S-STBM with no HD. (20 000 OF calls, third-order spatial moments).
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simulated field is no more Gaussian as its third-order statistics are not
compatible with Gaussian field. The correlations of the three methods
(uncalibrated realization, FFTMA-SA and S-STBM) with the reference
have been computed for each of the 100 realizations. The mean corre-
lation and standard deviation of the correlations are shown in Table 1.
As expected, calibrated realizations (FFTMA-SA and S-STBM) present
a significantly larger correlation than uncalibrated realizations. Also,
FFTMA-SA and S-STBM realizations show globally similar correlations.
Note that the 5000 iterations correspond for S-STBM to a calibration
on 1000 lines with 5 line-search optimization of the phase for each
line. For FFTMA-SA, the 5000 iterations correspond to 5000 field
perturbations. The perturbations touch simultaneously a number of grid
nodes according to a decreasing schedule as described in Lauzon and
Marcotte (2019).

4.1.2. Directional asymmetry compared to non-centered high order spatial
moments

The same synthetic case is used with OF defined this time by
the non-centered third-order moments where the direction vector ℎ1
sweeps all the field and vector ℎ2 is oriented East for lags 20, 40 and
60. Again, Table 2 shows comparable results for FFTMA-SA and S-
STBM. However, for this example, comparing Table 2 to Table 1 reveals
that higher correlations are obtained with the non-centered third-order
spatial moment. We stress that increasing the number of conditioning
data reduces significantly the differences between the two tables. For
example, a test with fifty conditioning data (not shown) presents almost
the same correlations for the non-centered third-order spatial moment
and the directional asymmetry.

4.2. Continuous image

The continuous ‘‘giraffe’’ image is taken from Wei and Levoy (2000).
This TI was used as test case in Rezaee et al. (2015) and Rezaee
et al. (2013). The dimension of the TI is 64 × 64 cells. Fifty samples
are randomly selected for conditioning data (black circles). Table 3
presents the correlation between realizations and the reference. Fig. 8
illustrates that calibration to the non-centered third-order moment (e

and f) better reproduce the connectivity of low values present in the TI
(a and b) compared to the case with no calibration (c and d). Moreover,
the conditioning data helps reproducing a texture more similar to the
TI. Fig. 9 shows variogram reproduction.

4.2.1. Further comparison
The continuous reference and realizations obtained with various

methods are thresholded at their respective 70th percentile (Fig. 8 b,
d, f and h). Some simple geometric characteristics on the white objects
are computed: area, length of major axis of an ellipse fitted to the
object, eccentricity (ratio of the distance between the foci of the ellipse
and its major axis length) and the solidity (area/convex area). The
distributions of geometric characteristics in a realization are compared
to those in the reference image. The distance between distributions is
measured by the Kolmogorov–Smirnov (KS) statistic (Smirnov, 1939).
Repeating the exercise for each realization provides a distribution of
KS statistics for each measured geometric characteristic and simulation
method.

Fig. 10 shows the boxplots obtained for the different geometric
characteristics. When the two-sample KS statistic (𝐷∗) is above the
critical value, there is significant difference between the TI and the
realization. The green lines represents the 5th and 95th percentile of
the critical value at level 𝛼 = 0.05 (the critical values varies slightly for
the different realizations because it depends on the number of objects
found in the realizations). The boxplots of geometric characteristics
reflecting the size of the objects (area and major axis) (Fig. 10a–f) show
a regular decrease of 𝐷∗ until the 95th percentile settles close to its ex-
pected location in the critical zone. However, the boxplots of geometric
characteristics reflecting the shape of the objects (eccentricity, solidity)
show no particular decrease of 𝐷∗ (Fig. 10g–l). Comparing the left and
middle columns of Fig. 10 shows that conditioning data (left column)
are useful to bring size geometrical characteristics of the realizations
closer to the ones of the TI. In particular, for 𝑁 ≥ 1000 lines the 95th
percentiles in (a) and (d) are closer to the critical zone compared to
(b) and (e). On the other hand, shape characteristics do not reveal any
clear improvement due to conditioning data.

Fig. 9. ‘‘Giraffe’’ TI. (a) Variograms along East direction, (b) along South direction. Reference field (solid red), S-STBM realizations (dark gray), uncalibrated STBM (light gray);
90% confidence intervals shown (solid dark: calibrated and dashed lines: uncalibrated). (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Table 3
TI: Correlations of simulated fields with reference field; 100 realizations. OF: non-centered third order spatial moments with ℎ⃗2 in 9 directions ((0,0),
(0,8), (8,0), (6,6), (−3,3), (2,6), (6,2), (−2,6),(−6,2)) and all available ℎ⃗1.
Number of OF calls 1000 2500 5000 10 000 20 000

Method Mean 𝜌 Std 𝜌 Mean 𝜌 Std 𝜌 Mean 𝜌 Std 𝜌 Mean 𝜌 Std 𝜌 Mean 𝜌 Std 𝜌

No calibration 0.23 0.06 0.23 0.06 0.23 0.06 0.23 0.06 0.23 0.06

FFTMA-SA 0.55 0.04 0.68 0.03 0.76 0.02 0.82 0.01 0.85 0.01
S-STBM 0.36 0.05 0.59 0.05 0.77 0.02 0.82 0.01 0.86 0.01
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Fig. 10. Two-sample KS statistic (𝐷∗) boxplots for different numbers of calibrated lines. First column: S-STBM with 50 HD; Second column: S-STBM with no HD; Third column:
FFTMA-SA with 50 HD (same number of OF calls as for S-STBM). Green dashed lines: 5th and 95th percentiles of critical values at level 𝛼 = 0.05. Red asterisks: 5th and 95th
percentiles of (𝐷∗) distribution. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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4.3. Tracer test: travel time between wells

A synthetic Gaussian rock porosity field (Fig. 11(a)) is used to
calibrate tracer tests using the Matlab Reservoir Simulation Toolbox
(MSRT) (Lie, 2019). The wells are distributed into a quarter five-
spot arrangement constituted of one injector well and four production
wells (P1 to P4). The tracer is injected at flowrate of 0.0018 m3/s
and is recovered at the productions wells (P1 to P4). The dimension
of the porosity field is 100 × 100 cells. Ten samples are randomly
selected for the conditioning data (black circles). The OF is formed
by the mean-squared error of the four travel times between wells of
the reference and the realization (time for a particle to migrate from
the injection well to a production well). The stopping criteria is the
total number of OF evaluations (here 500 OF calls for 100 calibrated
lines). Fig. 12 presents the variogram along East and South directions
and Table 4 displays the effectiveness of the S-STBM algorithm to
calibrate the tracer tests. The travel times between wells of the two S-
STBM realizations (calibrated) are much closer to the reference than the
two uncalibrated STBM realizations. Furthermore, the porosity spatial

Table 4
Tracer test : first-arrival traveltime between injector and producers (P1 to P4).

P1 P2 P3 P4

Reference 13.28 15.56 13.84 17.32

STBM No. 1 15.02 14.65 14.16 16.16
STBM No. 2 15.03 14.53 13.24 17.20

S-STBM No. 1 13.27 15.57 13.83 17.32
S-STBM No. 2 13.31 15.56 13.84 17.30

distribution of S-STBM realizations looks more like the reference than
the STBM realizations (see bottom left corner of Fig. 11).

5. Discussion

A new algorithm is proposed for the calibration of random fields to
any desired response functions. S-STBM works sequentially by selecting
the phase on each line such as to optimize an OF measuring the
departure of the realization to the field response. The two examples

Fig. 11. Top: Reference porosity field, Middle: STBM realizations, uncalibrated, Bottom: S-STBM realizations, calibrated. (Red dots: production well, Black dot: injection well, black
circles: conditioning data). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 12. Tracer test. (a) Variograms along East direction, (b) along South direction. Reference field (solid red), S-STBM realizations (dark gray), uncalibrated STBM (light gray);
90% confidence intervals shown (solid dark: calibrated and dashed lines: uncalibrated). (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

presented, the synthetic case and the continuous ‘giraffe’ training im-
age, show the ability of S-STBM to match well the realizations to
the corresponding OF for a large number of iterations. If needed, the
iterative process can be stopped early to increase variability between
realizations. Fig. 13 shows that variability of calibrated realizations
decrease regularly with the number of iterations while embedding early
the true response. This good behavior permits choosing the number of
iterations accounting for the uncertainty in the response function and
thus to avoid overfitting the OF.

The main advantages of S-STBM over PA, FFTMA-SA or FFTMA-
GD are that S-STBM can generate realizations on an irregular grid and
has no memory limitations. Furthermore, FFTMA-SA and PA need a

cooling schedule for the SA process. For S-STBM, no parameter need
to be specified else than the number of iterations. However, S-STBM,
like PA, works globally contrary to FFTMA-SA and FFTMA-GD which
both permit local or global calibration.

The continuous TI and realizations were further compared on the
basis of distributions of object sizes and shapes they define after thresh-
olding to their respective 70th percentile. We stress that the objects
geometric characteristics were not included in the OF, only third order
moments were used. Two-sample Kolmogorov–Smirnov (KS) statis-
tic (Smirnov, 1939) was used to measure similarity of distributions.
The size characteristics of the objects converged well to the size of
objects found in the TI. However, the shape characteristics of objects

Fig. 13. Non-centered third-order spatial moment along East direction for |ℎ2| = 20. S-STBM with (a) 0, (b) 200, (c) 500, (d) 2000 calibrated lines. Reference field (solid red),
90% confidence interval (solid dark). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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were not well reproduced after calibration. This indicates the OF using
third order moments is probably not rich enough in shape information.
Using directly shape information in the OF is a possible option that
warrants further research.

We note that, as for most iterative algorithms, convergence is not
guaranteed with our sequential method. There is the possibility that
the first iterations of calibration brings a state corresponding to a local
minimum in the OF from which it will not be possible to escape. The
methods using simulated annealing (PA, FFTMA-SA) have theoretical
convergence guaranteed when the cooling schedule is slow enough but
in practice too slow to be applicable (Geman and Geman, 1984).

The first two case studies present non-Gaussian high-order charac-
teristics. Although the STBM algorithm (also TBM algorithm) simulates
Gaussian fields, our algorithm allows to introduce non-Gaussian char-
acteristics by the calibration process. We stress that other methods
to simulate random fields with non-Gaussian characteristics exist. For
example, multiple-point simulation (MPS) allow these characteristics to
be directly integrated into a training image (TI). However conditioning
to (continuous) HD with MPS is difficult. Moreover meaningful TIs can
be difficult to obtain especially in 3D and MPS is confined to regular
grids. On the contrary, our algorithm allows to integrate exactly a large
amount of conditioning data on unstructured grid. It has a computa-
tional complexity of (𝑛) and small memory requirement allowing to
perform simulation over very large fields. The idea of using a Gaussian
simulation method to generate calibrated fields with non-Gaussian
characteristics is akin to the usual practice where non-Gaussian features
present in data are de facto transmitted to the realizations by the
conditioning process.

A last remark concerns the distribution of the phase component
after optimization. Eq. (4) requires 𝑈 being uniformly distributed.
Indeed, the distribution of 𝑈 after optimization can depart from an
uniform distribution. Hence, calibration can have some effect on the
covariance function much like addition of a few HD also impacts the
covariance reproduction. In our examples, this conditioning effect of
calibration was minor as the realization variograms remained close to
the experimental variograms (see Figs. 6, 9 and 12).

6. Conclusion

The S-STBM algorithm can calibrate realizations to various objec-
tive functions without disturbing significantly the field covariance of
the calibrated fields and still ensuring exact HD reproduction. Two
synthetic cases showed improved correlations of calibrated field with
the reference field. Comparisons showed that S-STBM performances
are similar to those of FFTMA-SA for a same number of OF evalua-
tions. However, contrary to FFTMA-SA, S-STBM can handle arbitrary
large simulated fields on both regular or irregular grids. Thanks to its
(𝑛) complexity and small memory requirement, S-STBM constitutes a
valuable tool for calibration.

Computer code availability

The Matlab computer codes are available at https://github.com/
Danlauz/S-STBM-Programs.
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