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Abstract
Multiple-point statistics (MPS) is a simulation technique allowing to generate images that reproduce the spatial features

present in a training image (TI). MPS algorithms consist in sequentially filling a simulation grid such that patterns around

the simulated values come from the TI. Following this principle, joint simulations of multiple variables can be handled and

complex heterogeneous fields can be generated. However, inconsistent patterns are often found in the results and some

spatial features can be difficult to reproduce. In this paper, a new MPS algorithm based on a multi-resolution representation

of the TI is proposed to enhance the quality of the realizations. The method consists in first building a pyramid of images

from the TI by successive convolution using Gaussian-like kernels. Secondly, a MPS simulation is done at the lowest

resolution level. Then, the result is expanded to the next level of resolution (one rank higher) and used as a conditioning

variable for a joint MPS simulation at that level. This last step is repeated up to the initial resolution, where the final

simulation is retrieved. The method is implemented in the DeeSse code based on the direct sampling algorithm. Most of the

features provided by the direct sampling (conditioning to hard data, uni- or multi-variate simulation of categorical and

continuous variables, scaling and rotation of the training structures) are compatible with the proposed method and the

usability is maintained. Finally, various examples show that in most of the situations, combining Gaussian pyramids with

MPS allows to get results of better quality and in less time compared to direct MPS simulations.

Keywords Direct sampling � Gaussian pyramids � Convolution � Size reduction � Multi-variate simulations

1 Introduction

Multiple-point statistics (MPS) is a non-parametric method

to generate random fields reproducing the spatial structures

present in a conceptual model, the training image (TI). The

principle is to borrow patterns from the TI to fill the sim-

ulation grid. MPS methods can be classified in two main

groups: (1) the patch-based algorithms consisting in pasting

several pattern nodes in the simulation grid at each step,

such as filtersim (Zhang et al. 2006), simpat (Arpat and

Caers 2007), CCSIM (Tahmasebi et al. 2012), CIQ (Mah-

mud et al. 2014), and techniques proposed by Rezaee et al.

(2013) and Gardet et al. (2016; 2) the pixel-based algo-

rithms, where only the central node is pasted, such as

snesim (Strebelle 2002), Impala (Straubhaar et al.

2011, 2013), and the direct sampling (Mariethoz et al.

2010). Every method has their pros and cons, but whatever

the method used, one encounters the common issue of

simulations containing patterns not present in the TI. To

reduce the number of incompatible patterns in the real-

izations, techniques have been developed such as post-

processing (Strebelle and Remy 2005), real-time post-

processing (Suzuki and Strebelle 2007), syn-processing

(Mariethoz et al. 2010), or more recently a backtracking

method (Shahraeeni 2019). These methods correct simu-

lated values in the grid at the end or during the simulation

process. Although these techniques are useful, it is

important that the core of the simulation method produces

realizations of sufficiently good quality. Thus, another idea

to prevent as much as possible anomalies consists in

adapting the TI before starting the simulation (Straubhaar

et al. 2019).
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Oriani et al. (2014) propose a method based on the

direct sampling algorithm to simulate daily rainfall time

series. They use in particular two auxiliary variables con-

sisting in 2- and 365-day moving average (of the amount of

rainfall) to guide the simulations and to better catch the

complex structure of the times series. Indeed, with these

variables, the statistics over different supports are used

during the simulation process and this helps reproduce the

signal.

In the same vein, our main motivation for the following

work is to enhance MPS simulations by accounting for the

characteristics of the TI at different scales. The rationale is

that the spatial statistics depend on the support (the scale).

Hence, we propose to integrate representations of the TI at

different resolutions into a MPS scheme. The idea is to

exploit the technique of data compression in image pro-

cessing which consists in building Gaussian and Laplacian

pyramids of the initial image (Burt and Adelson 1983). The

Gaussian pyramid of an image is built by applying suc-

cessive convolutions with Gaussian kernels. At each level,

i.e. after each convolution, we obtain a smaller image in

number of pixels providing a representation at a lower

resolution. The Laplacian pyramid is built by expanding

each image of the Gaussian pyramid. The expansion also

consists in a moving average operation (convolution) and

allows to retrieve an approximation of the image at a given

level from the image available at the level one rank coarser.

Among the family of MPS algorithm, we focus on the

direct sampling algorithm, introduced by Mariethoz et al.

(2010), because it is one of the most flexible, allowing for

joint simulations of multiple variables, it handles categor-

ical as well as continuous variable, and does not require

any data base of patterns (the TI is directly scanned for

searching for patterns). We propose to combine the tech-

nique of pyramid with the direct sampling algorithm. The

idea is to do a MPS simulation with the lowest resolution of

the TI, and then successive joint simulations at every

higher resolution level, using as TI the image from the

Gaussian pyramid and the corresponding approximate

image (obtained by expansion) and using the expanded

image of the previous MPS simulation as conditioning

variable. In this way, one catches the large scale spatial

statistics first, which serves to guide the simulation up to

the initial resolution.

This paper is organized as follows. In Sect. 2, both

ingredients of the proposed method are presented: the

direct sampling MPS algorithm (DeeSse) and the pyramid

approach for building multi-resolution images. In Sect. 3,

the new algorithm combining these two techniques is

explained in detail, including various simulation set-ups

such as conditioning data, categorical and continuous

variables as well as non-stationarity. Section 4 is devoted

to examples for demonstrating the applicability of the

proposed method. Comparisons with classical direct sam-

pling simulations are made and computational performance

is discussed. Finally, a conclusion is given in Sect. 5.

2 Background on multiple-point statistics
and Gaussian pyramids

2.1 Multiple-point statistics based on direct
sampling

The direct sampling algorithm is presented in detail in

Mariethoz et al. (2010). The simulation process consists in

successively populating the cells in the simulation grid

(SG) with values borrowed from the training image (TI).

The basic idea is to select, at each iteration, a location in

the TI where the surrounding data is similar to what is

already simulated in the SG. Such a location is searched by

directly sampling the TI. This very simple scheme allows

for multi-variate simulations, i.e. joint simulations of sev-

eral categorical or continuous variables, reproducing the

spatial statistics within and between the variables given in

the conceptual model.

The simulation algorithm relies on the comparison of

patterns (in the SG and the TI) by using a distance function

consisting of the proportion of mismatching nodes for a

categorical variable and the mean absolute error for a

continuous variable. The three key parameters required by

the user are: the maximal number of nodes (also called

neighbors) N in a pattern, an acceptation threshold t, which

corresponds to the maximal distance for compatible pat-

terns, and a maximal fraction f of the TI grid cells that can

be scanned for the simulation of one SG cell.

The DeeSse algorithm (Straubhaar 2019) is used in this

paper. It is illustrated in Fig. 1 and its main steps are

described below in the multi-variate case which is the one

of interest for this paper. Note that this algorithm is slightly

different from the one described in Mariethoz et al. (2010)

which aggregates the distances in a multi-variate context.

Let x and y denote a cell in the SG and in the TI grid

respectively, and let ZðkÞ be the k-th variable considered on

both grids. While it exists a cell in the SG with an unin-

formed variable, repeat:

(1) Choose a variable k and a cell x in the SG such that

ZðkÞðxÞ is unknown.
(2) For each variable ZðjÞ: retrieve the pattern djðxÞ in the

SG, centered on x and constituted of the at maximum

Nj closest informed nodes for that variable.

(3) Set the global error Ebest to infinity and scan the TI

grid cells y randomly:
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(3a) Get the pattern djðyÞ centered on y in the TI

for every variable ZðjÞ, the pattern geometries

being defined by the patterns retrieved from

the SG.

(3b) For every variable, compute a relative error

EjðyÞ ¼ max
Dj djðxÞ; djðyÞ
� �

� tj

tj
; 0

� �
ð1Þ

where Djð�; �Þ is a distance function between

patterns and tj is the user defined acceptation

threshold for the variable ZðjÞ.
(3c) Compute the global error EðyÞ ¼

P
j EjðyÞ

and if EðyÞ\Ebest, set ybest ¼ y.

(3d) If Ebest ¼ 0, i.e. the distance between the

patterns in the SG and in the TI is less than or

equal to the acceptance threshold for every

variable, or if a fraction f of the TI has been

sampled, exit the ð3a�dÞ-loop.

(4) Assign the value ZðkÞðybestÞ to ZðkÞðxÞ for the selected
k, or alternatively for all variables k such that ZðkÞðxÞ
is uninformed.

The distance Dj between two patterns in the Eq. (1) is set

according to the type of the j-th variable. For a categorical

variable, the distance is simply the proportion of mis-

matching cells between the two patterns, i.e the Hamming

distance normalized by the pattern size. For a continuous

variable, the mean absolute error (of the values in the cells

of the two patterns) is usually used. In this case, the vari-

able Z is normalized before starting the simulation in the

interval [0, 1] by the application

Z �! ðZ �miny2TI ZðyÞÞ=ðmaxy2TI ZðyÞ �miny2TI ZðyÞÞ,
and then back transformed at the end of the simulation.

Hence the distance between two patterns is comprised

between 0 and 1 whatever the type of the variable, and the

acceptance threshold can be interpreted as an error

proportion.

Note also and finally that this algorithm is parallelized

for shared memory machines. When running on multiple

threads (CPUs), one grid cell is simultaneously simulated

by each thread, provided that the patterns centered on the

simulated cells would be exactly the same ones if only one

thread was used (based on the same random simulation

path), which ensures the reproducibility of the results.

2.2 Multiple-resolution images with Gaussian
pyramids

The Gaussian pyramids technique allows to build a

sequence of images Gj (j ¼ 1; 2; . . .) of reduced sizes

(lower resolutions) of an initial image G0, by successively

applying a convolution (moving average) with a Gaussian-

like kernel (Burt and Adelson 1983). In its standard

implementation, the number of cells in each direction is

divided by a factor 2 for each pyramid level. Here, we

propose a generalization to a reduction factor k (integer).

Note that averaging is meaningful only for continuous

variables or binary indicator variables.

2.2.1 Reduce and expand operations

As these operations can be applied successively for each

direction, one can consider only the uni-dimensional case.

The reduce operation, REDk, allows to obtain the image

Gjþ1 ¼ REDk Gj

� �
from the image at the previous level.

The value in the cell of index i in the image Gjþ1 is defined

as the weighted mean

x

Copy-paste the value from TI to SG

Search the pattern in the TI
(random scan not exceeding

a fraction f of the TI cells)

NO

YES

Get the pattern made 
up of the N closest 

informed cells

pattern
distance t ?

(MAE) 

SG TI

Fig. 1 MPS by direct sampling (DeeSse algorithm): illustration of the algorithm for the simulation of one cell (uni-variate case)
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Gjþ1ðiÞ ¼
Xk

l¼�k

xl � Gjðk � iþ lÞ: ð2Þ

This is a convolution with a kernel of width 2k þ 1. The

weights ðx�k; . . .;xkÞ are defined such that: (i) they are

symmetric (x�l ¼ xl for any l), (ii) they are positive and

sum to one, and (iii) the contribution of each cell to the

reduced image is the same. This implies

x0 þ 2xk ¼ xl þ xk�l ¼
1

k
; ð3Þ

for l ¼ 1; . . .; k � 1. To get a Gaussian shape kernel, one

uses the binomial coefficients
2k

l

� �
and set

fx0;xkg ¼ 1

k
�

2k

k

� �
þ 2

� 	�1

�
2k

k

� �
; 1

� �
ð4Þ

and

fxl;xk�lg ¼ 1

k
�

2k

k � l

� �
þ

2k

l

� �� 	�1

�
2k

k � l

� �
;

2k

l

� �� �
; l ¼ 1; . . .; k � 1

ð5Þ

according to the conditions (i-iii) above. Note that for the

classical Gaussian pyramid, k ¼ 2 and the weights are

proportional to the binomial coefficients,

fx�2;x�1;x0;x1;x2g ¼ 1=16f1; 4; 6; 4; 1g.
As the number of cells decreases after applying the

reduce operation, some information is lost and the original

image Gj cannot be recovered from the reduced image

Gjþ1. However, an approximation can be computed by

applying the pseudo-inverse expand operation,

eGj ¼ EXPk Gjþ1

� �
, defined as

eGjðiÞ ¼ k �
Xk

l¼�k

xl � Gjþ1

i� l

k

� �
; ð6Þ

where only the terms such that ði� lÞ=k is integer are

considered in the sum. Both reduce and expand operations

are illustrated in Fig. 2 for the case k ¼ 3.

2.2.2 Managing the image borders

The Eqs. (2) and (6) defining the RED and EXP operations

do not take care of the borders of the images. Let start with

an image Gj containing Mj cells (indexed from 0 to

Mj � 1). Both operations are illustrated in Fig. 3 for a

reduction factor of k ¼ 3 and Mj ¼ 9. Consider the Eucli-

dean division ofMj � 1 by k,Mj � 1 ¼ q � k þ r, where q is

the quotient and r the remainder. Then, the reduced image

Gjþ1 ¼ REDk Gj

� �
is of size

Mjþ1 ¼ 1þ Mj � 1

k


 �
¼ 1þ q ð7Þ

where bxc denotes the greatest integer less than or equal to

x, and the size of the expanded image eGj ¼ EXPk Gjþ1

� �
is

expressed as

eMj ¼ 1þ k � ðMjþ1 � 1Þ ¼ Mj � r: ð8Þ

To compute the value attached to a cell in a border of

the reduced (resp. expanded) image, at most k cells (resp.

exactly 1 cell) are/is temporarily added in the input image

such that the filter (kernel) is entirely filled. The value in

the added cells (red cells in Fig. 3) is simply copied from

the nearest grid cell. Note that r cells are ‘‘lost’’ from Gj to

eGj. However, one can consider the image eGj of the same

size (same support) as image Gj by adding r cells with a

missing value (unknown value), splitted in two balanced

0

1

2

3

Gj Gj+1 Gj
Expand

3

2

1

Reduce

Fig. 2 Gaussian pyramids—illustration of reduce and expand oper-

ations in one dimension for a factor k ¼ 3; the grid cells are

represented by black dots aligned vertically; both operations consist

in a moving average with the weights xi for the reduce operation

(left), and the weights set according to the colors of the arrows and

multiplied by k for the expand operation (right)

Gj

Gj+1

Gj

Red

Exp

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2

(same sup-
port as Gj)

Fig. 3 Gaussian pyramids—illustration of reduce and expand oper-

ations in a uni-dimensional grid of 9 cells for a factor k ¼ 3; the grid

cells are indexed and represented by dots aligned horizontally; red

cells are temporarily ‘‘added’’ (with value copied from the nearest

cell), gray cells are added with a missing value such that the images

Gj and eGj have the same dimensions
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sets in the borders of the grid (gray cells in Fig. 3). This

can be done by adding s cells at the left border (i.e. border

with small cell indexes) and r � s at the opposite border,

with s the quotient of the Euclidean division of r by 2. For

example, r ¼ 2 and s ¼ 1 in the case of Fig. 3. Note that

accounting for the borders in this way requires to adapt the

reduce and expand operations by integrating the possible

shift s: the index k � iþ l is replaced by sþ k � iþ l and

ði� lÞ=k by ði� s� lÞ=k in the right-hand side of the

Eqs. (2) and (6) respectively.

Gaussian pyramids are illustrated for a bi-dimensional

binary image, using a reduction factor k ¼ 2 and k ¼ 3 in

Figs. 4 and 5 respectively. The original image represents

channels at two different scales, the main (larger) channels

are emphasized at lower resolution in the pyramid levels.

Note that the reduction factors could be chosen indepen-

dently for each direction and each level transition. These

factors are indicated with index notation, hence, REDðkx;kyÞ
(resp. EXPðkx;kyÞ) denotes the reduce operation (resp. expand

operation) applied to a bi-dimensional image with the

factors k ¼ kx in the x-axis direction and k ¼ ky in the y-

axis direction.

3 MPS based on pyramids: the methodology

In this section, we show how Gaussian pyramids (Sect. 2.2)

can be integrated in the DeeSse algorithm (Sect. 2.1) in

order to better account for structures at different scales.

The general idea is to consider a multi-resolution TI built

using the Gaussian pyramids technique, and perform hier-

archical conditional MPS simulations, from the lowest

resolution to the highest one.

3.1 Simulation of a continuous or binary
variable

The methodology is described here in the case where the

variable is continuous or binary. In this situation, the

Gaussian pyramids technique can be directly applied onto

the considered variable as computing moving averages

makes sense. The flowchart of the algorithm in this case is

displayed in Fig. 6 and explained in detail in the following.

3.1.1 Building the pyramid

First, one specifies the number L of pyramid levels addi-

tional to the initial resolution, and the reduction factors

defining the reduce (resp. expand) operations REDðjÞ (resp.

EXPðjÞ) from the level j to the level jþ 1, for

j ¼ 0; . . .; L� 1, the levels being indexed from 0, the initial

and highest / finest resolution, to L, the last and lowest /

coarsest resolution.

The initial step consists in normalizing the TI variable

and then building the pyramid:

TI0 ¼ TI; ð9Þ

TIjþ1 ¼ REDðjÞ TIj
� �

; ð10Þ

eTI j ¼ EXPðjÞ TIjþ1

� �
; ð11Þ

G0 [size: 764 × 239] G0 = EXP (2,2)(G1) [lost cells: rx = 1, ry = 0]

G1 = RED(2,2)(G0) [size: 382 × 120] G1 = EXP (2,2)(G2) [lost cells: rx = 1, ry = 1]

G2 = RED(2,2)(G1) [size: 191 × 60]

Fig. 4 Gaussian pyramids applied to an initial bi-dimensional binary image (top left), with L ¼ 2 levels additional to the initial resolution and a

reduction factor of k ¼ 2; the dimensions of the grids and the number of ‘‘lost’’ cells (gray cells) in each direction are indicated for each level
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for j ¼ 0; . . .L� 1.

For the simulation grid, one considers a pyramid

SG0; SG1; . . .; SGL, and fSG0; . . .; fSGL�1, initialized with

uninformed cells, i.e. a missing value in any cell, of the

same resolution at each level as in the pyramid for the

training image. Note that in a level j, the images TIj and eTI j
(resp. SGj and fSGj) are defined on the same grid, assuming

that applying a reduce operation and then an expand

operation keeps the support unchanged by considering

uninformed cells in the borders of the expanded image

(corresponding to ‘‘lost’’ cells) if needed (see end of

Sect. 2.2.2 and Fig. 3).

G0 [size: 764 × 239] G0 = EXP (3,3)(G1) [lost cells: rx = 1, ry = 1]

G1 = RED(3,3)(G0) [size: 255 × 80] G1 = EXP (3,3)(G2) [lost cells: rx = 2, ry = 1]

G2 = RED(3,3)(G1) [size: 85 × 27]

Fig. 5 Gaussian pyramids applied to an initial bi-dimensional binary image (top left), with L ¼ 2 levels additional to the initial resolution and a

reduction factor of k ¼ 3; the dimensions of the grids and the number of ‘‘lost’’ cells (gray cells) in each direction are indicated for each level

Normalize the TI in [0,1]

Build the TI pyramid:

TIL-1

TI0

TI1

TIL-1

TI1

reduce

TIL

...

TI = TI0

Set n = 0 (simulation index)

Initialize an empty pyramid for the 
simulation: SG = SG0, SG1, ... SGL

In presence of HD points: normalize their value 
(same normalization as for the TI), assign them

in SG, and spread them into SG1, ... SGL

Simulate SGL with TIL (MPS)
and set j = L - 1

Expand SGj+1 to SGj

Do MPS simulation of (SGj, SGj) with (TIj, TIj)
[SGj used as conditioning map]

j < 0 ? Back-transform (un-normalize) SG0
to get the n-th simulation

All simulations 
done ?

START

END

j = j - 1
n = n + 1

NO

NO

YES

YES

expand

reduce expand

Fig. 6 Flowchart of the multi-scale MPS algorithm for a continuous or binary variable
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3.1.2 Simulation using the pyramid

The main steps to generate a realization are the following

ones.

(1) Assign conditioning data (if any) into SG0, and

spread conditioning information to SG1; . . .; SGL (see

Sect. 3.2).

(2) Do a MPS simulation at level L (in SGL) using

DeeSse and the training image TIL.

(3) For j ¼ L� 1; . . .; 0, successively do:

(3a) Expand the image simulated at level jþ 1:

fSGj ¼ EXPðjÞðSGjþ1Þ.
(3b) Do a MPS simulation of SGj at level j

conditionally to fSGj. DeeSse is used in bi-

variate mode with the vector of variables

ðSGj; fSGjÞ for the simulation grid and

ðTIj; eTI jÞ as the training image.

In step (3b), the secondary variable is obtained from the

expansion of the primary variable at the pyramid level one

rank coarser. It is exhaustively known except for a few

possible cells in the borders (called the ‘‘lost’’ cells in

Sect. 2.2.2).

Each DeeSse simulation requires as input parameters the

maximal numbers of neighbors (N) in the search patterns

and the acceptation threshold (t) for each variable, plus the

maximal scanned fraction (f) (Sect. 2.1). We propose to

derive these parameters for the simulation at each level

from a unique set N, t, f to avoid requesting to too many

parameters from the user. As a consequence, using pyramid

will require as additional parameters only L (the number of

levels additional to the initial resolution), and k (the

reduction factor(s) for the level transitions).

3.1.3 MPS parameters in the pyramid

The maximal scanned fraction at the level j is set to

fj ¼ min fmax;
S

Sj
� f

� �
; ð12Þ

where S is the size (number of cells) of the initial TI and Sj
the size of the TI at the level j, and fmax is a maximal value,

constant typically set to 1 or 0.9 to avoid an exhaustive

scan. Thus, the maximal number of scanned cells at the

level j does not exceed fj � Sj 6 f � S.
As the TI values are normalized only for the initial level

(0), the acceptation threshold is adapted at the level j

according to the new range of values. It is defined, for any

level j, as

tj ¼ max
yj2TIj

ZðyjÞ � min
yj2TIj

ZðyjÞ
� �

� t; ð13Þ

~tj ¼ max
yj2eTI j

ZðyjÞ � min
yj2eTI j

ZðyjÞ
 !

� t; ð14Þ

for the first variable (simulated) and the second variable

(expanded from the level one rank coarser) respectively.

The idea for the maximal number of neighbors is to

decrease it as one moves to a finer level. The two main

reasons are: (1) the simulation being conditioned by the

expanded variable, it is well-guided and then reduced

pattern are sufficient to reproduce the spatial features, and

(2) as the resolution becomes finer, the total number of

cells to simulate increases and reducing the size of the

pattern allows to speed up the simulation. Moreover, the

second (expanded) variable being exhaustively known, a

smaller number of nodes in the pattern than for the first

(simulated) variable is sufficient to properly filter out

compatible regions in the training image. We propose the

following set-up. For the primary variable, the maximal

number of neighbors is divided by 2 only twice (so that this

number does not become too small, which could affect the

reproduction of the spatial structures),

NL ¼ N; NL�1 ¼
N

2


 �
; Nj ¼

N

4


 �
; for L� 2 > j > 0;

ð15Þ

and, for the second (expanded) variable,

eNj ¼
Nj

3


 �
; for any j: ð16Þ

Note also that one can impose that the maximal number of

neighbors does not fall below a prescribed minimal value

for any case.

3.1.4 Illustrative example of unconditional simulations
with pyramids

The proposed method is applied with the previous TI, L ¼
2 pyramid levels additional to the initial resolution and a

same reduction factor k for x and y directions and for every

level transition. The three main parameters for DeeSse are

set to N ¼ 24 (maximal number of neighbors), t ¼ 0:02

(acceptation threshold) and f ¼ 0:33 (maximal scanned

fraction), and adapted for each pyramid level as described

above. The results obtained with the reduction factor k ¼ 2

and k ¼ 3 are displayed respectively in Figs. 7 and 8. Note

that the top left image in Fig. 4 (resp. Fig. 5) is the given

TI and the top left image in Fig. 7 (resp. Fig. 8) is the final

result obtained by the algorithm sketched in Fig. 6.
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3.2 Accounting for conditioning data
with pyramids

Consider a set of conditioning data, also called hard data,

which consists in a set of points located in the simulation

grid and with known values for the simulated variable.

Such data is related to the original grid, and the value of

each data point is assigned to the cell in SG0 containing

that point.

As the simulation follows a hierarchical sequence

starting from the lowest resolution grid (SGL) to the the

finest resolution grid (SG0), it is blind to the conditioning

SG0 [size: 1000×320] SG0 = EXP (2,2)(SG1)

SG1 [size: 500 × 160] SG1 = EXP (2,2)(SG2)

SG2 [size: 250 × 80]

Fig. 7 MPS simulation (unconditional) using pyramids with L ¼ 2 (number of levels), and k ¼ 2 (reduction factor), based on the TI of Fig. 4.

Results at each level are displayed

SG0 [size: 1000×320] SG0 = EXP (3,3)(SG1)

SG1 [size: 334 × 107] SG1 = EXP (3,3)(SG2)

SG2 [size: 112 × 36]

Fig. 8 MPS simulation (unconditional) using pyramids with L ¼ 2 (number of levels), and k ¼ 3 (reduction factor), based on the TI of Fig. 5.

Results at each level are displayed
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cells lying in SG0 when simulating coarser levels. As

mentioned earlier, to tackle this hindrance we propose a

preliminary process that consists in spreading the condi-

tioning cells through each pyramid level. Note that the

conditioning information needs to be brought only in the

‘‘reduced’’ images SGj (as primary variable), since the

expanded images (fSGj, secondary variable) are computed

during the simulation process.

Let us first consider two situations to explain the main

ideas to propagate hard data information. On the one hand,

assume that conditioning points cover entirely a contiguous

area of the simulation grid. In this situation, the hard data

values can simply be propagated through the pyramid by

applying the reduce operation to this area. On the other

hand, consider an isolated conditioning point in the simu-

lation grid. In that case, one can not proceed as before,

because the values of the variable around that point are not

known. The idea is therefore to use MPS between two

successive pyramid levels, and simulate the variable in

some cells in the coarser grid conditioned to the finer grid

containing the conditioning cells. As the two involved grids

do not have the same size (change of support), the classical

MPS technique needs to be adapted. Following this idea,

information from sparse data is stochastically transfered

from one level to the next, therefore accounting for

uncertainty.

Based on these two situations, we develop a method

accounting for any conditioning data set and consisting in

the two successive steps: (1) deterministic propagation

(Sect. 3.2.1), and (2) stochastic propagation (Sect. 3.2.2).

An illustrative example is given in Sect. 3.2.3.

3.2.1 Step 1: deterministic propagation of (dense) hard
data

First, every cell in SG0; . . .; SGL is initialized with a

missing value. The hard data points are assigned in SG0.

Then, the reduce operation REDðjÞ, for j ¼ 0; . . .; L� 1 is

successively applied, while accounting for the uninformed

cells in the following manner. A reduced value is computed

as a weighted average over cells from the grid at the pre-

vious level, by ignoring missing values (uninformed cells).

If the sum of the weights over the informed locations are

greater than or equal to a given constant C, the weights are

re-normalized and the weighted average value is computed

and set into the output cell, otherwise the output cell is left

as uninformed. In this paper, the threshold value C ¼ 0:6 is

used.

Following this step, dense informed regions in the

original level SG0 are spread in a deterministic way

through the pyramid. As this process is deterministic, this

step is done only once whatever the number of realizations.

3.2.2 Step 2: stochastic propagation of (sparse) hard data

After the step 1 above, the second step is applied succes-

sively for j ¼ 0; . . .; L� 1. A cell xjþ1 in SGjþ1 corresponds

to the cell xj in SGj on which the filter of the reduce

operation would be centered. Let Wjþ1 be the ensemble of

cells xjþ1 that are uninformed and for which the filter of

REDðjÞ centered at the corresponding cells xj covers at least

one informed cell in SGj. Then, the cells xjþ1 in Wjþ1 are

successively simulated, in a random order, and condition-

ally to the previous level. The simulation is done following

the direct sampling strategy, i.e. the patterns centered on

xjþ1 and on the corresponding node xj are retrieved, then

the cells yjþ1 in TIjþ1 are randomly scanned and the pat-

terns centered on yjþ1 and on the corresponding cell yj in

TIj are compared to those in the pyramid of the SG. The

maximal scanned fraction fjþ1 and the acceptation thresh-

olds tjþ1 and tj are set according to the level they refer to as

given in Eqs. (12) and (13), whereas the maximal numbers

of neighbors Nj and Njþ1 are defined as the half of N.

As this step involves simulations (stochastic process), it

is done for every new realization. Hence, the cells in the

ensembles Wj, j ¼ 1; . . .L, called also weak conditioning

cells, are populated by different values through the

ensemble of realizations.

3.2.3 Illustrative example of conditional simulation
with pyramids

The 2-step process described above is illustrated by an

example in Figs. 9 and 10. We consider the same TI and

the same DeeSse parameters as for the unconditional case

above (Sect. 3.1.4), and a conditioning data set (top left

image in Figs. 9 and 10) formed by two areas densely

informed at left and right in the grid, a 1-cell-width line in-

between, and 6 isolated points. The left column in these

figures shows the pyramid of the SG after the propagation

of conditioning information, and the right column the result

of the simulation at the end. Note that the ‘‘expanded’’

images in the pyramid are not shown, and that the final

result corresponds to the top right image.

3.3 Simulation of a categorical variable
with pyramids

In the two previous sections (Sects. 3.1, 3.2), MPS simu-

lation with pyramids has been presented in the case of a

continuous or binary variable. As the pyramids rely on

moving averages, they have to be applied to this type of

variable.

In the case of a multi-category (multi-facies) discrete

variable, the category values are abstract codes and do not
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correspond to ordered values, then computing moving

averages directly does not make sense. In the two next

sections, we propose two ways to extend the methodology

for categorical variables.

3.3.1 Pyramids for the indicator variables of the categories

The first way to deal with a categorical variable is to build

one pyramid for the indicator variable of each category

(except one). Consider a n-category training image, with

categories c1; . . .; cn, and let TI be the original image, TIðkÞ

the binary image provided by the indicator of category ck,

SG0 (HD) [size: 1000×320] SG0 (simulated)

SG1 (HD) [size: 500 × 160] SG1 (simulated)

SG2 (HD) [size: 250 × 80] SG2 (simulated)

Fig. 9 MPS conditional simulation using pyramids with L ¼ 2

(number of levels), and k ¼ 2 (reduction factor), based on the TI of

Fig. 4. Left column) pyramid of the SG after dealing with hard data

(HD): in top image the 6 isolated HD points are exaggerated, in two

other images the green lines delineate cells informed after step 1

(deterministic); right column) results at each level

SG0 (HD) [size: 1000×320] SG0 (simulated)

SG1 (HD) [size: 334 × 107] SG1 (simulated)

SG2 (HD) [size: 112 × 36] SG2 (simulated)

Fig. 10 MPS conditional simulation using pyramids with L ¼ 2

(number of levels), and k ¼ 3 (reduction factor), based on the TI of

Fig. 5. Left column) pyramid of the SG after dealing with hard data

(HD): in top image the 6 isolated HD points are exaggerated, in two

other images the green lines delineate cells informed after step 1

(deterministic); right column) results at each level
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and TI
ðkÞ
j (resp. eTI

ðkÞ
j ) the ‘‘reduced’’ (resp. ‘‘expanded’’)

image representation of TIðkÞ at the pyramid level j. Then,

for a simulation with L pyramid levels additional to the

initial resolution, the considered images (variables) are

TI; eTI
ð1Þ
0 ; . . .; eTI

ðn�1Þ
0 at level 0,

TI
ð1Þ
j ; . . .; TI

ðn�1Þ
j ; eTI

ð1Þ
j ; . . .; eTI

ðn�1Þ
j at level j, for

j ¼ 1; . . .; L� 1, and

TI
ð1Þ
L ; . . .; TI

ðn�1Þ
L at level L.

For the simulation grid, the propagation of conditioning

data information is done for the same indicator variables.

Then the simulation procedure is similar to what was

presented previously but more variables are involved at

each level.

3.3.2 Pyramids for one representative continuous variable

Let c1; . . .; cn be the categories of the considered variable.

The previous method based on the pyramids of the indi-

cator variables of n� 1 categories can become slow when

n increases, because of the large number of variables to

consider at each pyramid level. One idea to avoid that is to

represent the original categorical image by one continuous

image, and then use the pyramid of this latter image to

guide the simulation. As a pyramid relies on moving

averages, we propose to build a representative continuous

variable such that close values correspond to most con-

nected categories in the TI.

First, the TI is quickly analyzed to compute the n� n

matrix T ¼ ðtijÞ counting the number of contacts / transi-

tions from each pair of categories through adjacent cells.

The coefficient tij is the number of times that two adjacent

cells in the TI grid have the categories ci and cj. Two grid

cells are considered adjacent if they share a face (or edge in

two dimensions) orthogonal to an axis direction (x, y or z)

involved in the moving average filter used to build the

pyramid. The matrix T is symmetric. It is then used to re-

order the list of categories as ci1 ; . . .; cinf g as follows.

(1) The indices k1 6¼ k2 corresponding to a maximal non-

diagonal coefficient in T is retrieved, and the vector

of indices I ¼ k1; k2ð Þ is formed.

(2) Let I ¼ k1; . . .; k2ð Þ be the current vector of distinct

indices of length m, 2 6 m\n. One searches for a

coefficient in the matrix T realizing the maximum

value among the non-diagonal coefficients having

two distinct indices and whose one of them is equal

to k1 or k2 and the other one not in the vector I. The

index k not in I of that coefficient is then prepend to I

if k1 is the other index, or append to I if k2 is the

other index.

(3) The step (2) is repeated until the vector I ¼
i1; . . .; inð Þ contains the index 1 to n, and the

corresponding list of re-ordered categories

ci1 ; . . .; cinf g is retrieved.

Finally, the continuous variable is obtained by transform-

ing the category cij at the j-th position in the re-ordered list

into the value ðj� 1Þ=n. Hence, the resulting continuous

variable is normalized in [0, 1] and its pyramid can be

directly built and used during the simulation process.

3.4 Extension to more complex simulations

The pyramids can also be used to jointly simulate multiple

variables. In this situation, several variables (properties)

are defined in the TI and generated in the simulation grid.

For each variable, which can be categorical or continuous,

one pyramid is built and used during the simulation pro-

cedure. In particular, one can consider non-stationary TIs

with auxiliary variable(s) describing the non-stationarity

depicted by the main variable. The auxiliary variables are

usually exhaustively given in the simulation grid, which

allows to control which kind of structures are simulated

depending on the location.

Moreover, classical geometrical transformation (rota-

tion, scaling) are also compatible with the use of pyramids:

the rotation angle maps and/or the scaling ratio maps are

given for the simulation grid and propagated through a

pyramid. Note that to build a pyramid for angles, one

should use their sine and cosine in order to identify angles

with a difference of 360�, because moving averages are

applied.

Finally TIs containing uninformed cells can also be

considered by applying reduce and expand operations over

regions sufficiently informed. A simulation grid mask

indicating which cells have to be simulated can also be

propagated through the pyramid of the SG.

4 Results

In this section, MPS simulations are performed with dif-

ferent set-ups, using the algorithm DeeSse in classical

mode (without pyramids) or following the proposed

methodology based on pyramids. Four examples (E1–E4)

are presented below to demonstrate the capability of the

proposed method to handle various cases: binary variable

with and without conditioning data (E1), continuous vari-

able (E2), multi-category variable in three dimension (E3),

and multi-category variable with a non-stationary TI and

local geometrical transformations (E4). Pyramids are used

with L ¼ 2 additional levels, and a unique reduction factor

for every direction and level transition of k ¼ 2 and k ¼ 3.
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Moreover for multi-category variable (E3–E4), both

strategies presented in Sect. 3.3 to deal with the pyramids

are used. In each case, the realizations are compared with

the training images, visually and also with measures such

as variograms and connectivity properties. Advantages and

drawbacks of the use of pyramids are discussed, and the

performance in terms of computational time is given in

Sect. 4.5.

4.1 Example E1: binary simulations

As a first case, the illustrative examples presented in

Sect. 3.1.4 without conditioning data (E1-unconditional)

and in Sect. 3.2.3 accounting for conditioning data (E1-

conditional) are considered.

For the unconditional case, 50 realizations are gener-

ated: (1) not using pyramids, (2) using pyramids with L ¼
2 (number of levels additional to the initial resolution) and

k ¼ 2 (reduction factor for x and y direction and for every

level transition), and (3) using pyramids with L ¼ 2 and

k ¼ 3. The other parameters—N ¼ 24 (maximal number of

neighbors), t ¼ 0:02 (acceptation threshold) and f ¼ 0:33

(maximal scanned fraction)—are kept identical for the

three simulation set-ups.

In Fig. 11 (left), the TI and the first realizations in each

case are displayed. We observe that using pyramids helps

reproduce the spatial structures at every scale. Indeed, in

the TI, we can distinguish channels at two different scales:

main (larger) channels and thinner ones. In the realization

not using pyramids, the structures of these two scales are

mixed up. On the contrary, using pyramids allows to better

preserve this specific feature. This is emphasized on the

eroded images (Fig. 11, right) obtained by applying three

times the erosion operation onto the initial images. Such

operation consists in replacing the channel facies (code 1)

by the matrix facies (code 0) in every cell having at least

one of its four adjacent cells (left, right, above or below)

filled with the matrix facies. The eroded images show the

channelized structures, while the thin channels disappear.

The resulting images clearly show that the large scale

structures are better reproduced with the proposed method.

The connectivity function along the x-axis corroborates

this observation (Fig. 12). For a binary medium repre-

sented by an indicator function I, one defines the connec-

tivity function

sðhÞ ¼ Probðu $ uþ hjIðuÞ ¼ Iðuþ hÞ ¼ 1Þ; ð17Þ

)semit3(dedorEIT

)semit3(dedorEsdimarypgnisuton.miS

Sim. using pyramids, L = 2, k = 2 Eroded (3 times)

Sim. using pyramids, L = 2, k = 3 Eroded (3 times)

Fig. 11 Example E1-unconditional—comparison of simulations using

or not pyramids. Left column) the TI (top), one unconditional

realization not using pyramids (2nd row) and using pyramids with

L ¼ 2 and k ¼ 2 (3rd row), resp. k ¼ 3 (bottom). Right column)

eroded images of the images at left
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τx(h) for the original images τx(h) for the images eroded 3 times

Fig. 12 Example E1-unconditional—connectivity function along x-

axis for the original images (left) and the eroded images (right), for

the TI (blue line) and the 50 realizations of each set-up: without

pyramids (gray), using pyramids with L ¼ 2, k ¼ 2 (green), using

pyramids with L ¼ 2, k ¼ 3 (red); the solid line represents the

median, and the filled area the 5–95 percentile range

Sim. not using pyramids

Sim. using pyramids, L = 2, k = 2

Sim. using pyramids, L = 2, k = 3

Fig. 13 Example E1-conditional—simulations using or not pyramids. Left column) one unconditional realization not using pyramids (1st row)

and using pyramids with L ¼ 2 and k ¼ 2 (2nd row) and k ¼ 3 (3rd row). Right column) pixel-wise mean over 50 realizations in each case
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as the probability that two grid cells distant of a vector h (in

number of cells) and belonging to the set of locations I ¼
1ð¼ fu j IðuÞ ¼ 1gÞ are connected (u $ uþ h). Two cells

are connected if there exists a path of adjacent cells within

the set I ¼ 1 linking the two nodes. Note that this function

is written sxðhÞ if h is parallel to the x-axis. All channel

pixels are connected in the TI, then the connectivity

function is a constant equal to one (Fig. 12, left). The

figure shows that using pyramids allows to better preserve

the connectivity along the x-axis. Moreover, according to

this measure, the reduction factor k ¼ 2 performs in a

slightly superior way compared to k ¼ 3.

For the conditional case, the hard data set used in

Sect. 3.2.3 is considered. Some results using or not pyra-

mids are compared in Fig. 13: one conditional realization

(left column) and the pixel-wise mean over 50 realizations

(right column) are shown for each case. In each case, the

results are consistent with the hard data points. However,

the use of pyramids results in a lower variability, as we can

observe on the mean maps (in the bottom right of the grid

for example), with a greater impact when using the

reduction factor k ¼ 3.

4.2 Example E2: simulation of a continuous
variable

In this example, we use a 256� 256 continuous TI repre-

senting a texture of brick wall in grayscale (from Brooks

and Dodgson (2002)). Again, 50 realizations of size 500�
500 are generated: (1) not using pyramids, (2) using

pyramids with L ¼ 2, k ¼ 2, and (3) L ¼ 2, k ¼ 3, while

keeping the DeeSse parameters N ¼ 32, t ¼ 0:02 and f ¼
0:2 unchanged. The TI and the first realization in each case

are displayed in Fig. 14.

For the TI, and the first realization of each simulation

set-up, the variogram map for the lag vectors ðhx; hyÞ,
� 200 6 hx; hy 6 200, is computed (Fig. 15). The variance

for every set-up is displayed as box-plot and compared to

Fig. 14 Example E2—TI (256� 256) and simulations using or not pyramids (500� 500)
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the variance of the TI on Fig. 16. Moreover, we compute

the curves C and Cc as global connectivity measures (Re-

nard and Allard 2013), which are defined as follows. Let X

be a continuous image. For a real value v, let Iv be the

binary image obtained by applying a threshold to X: for any

cell u, IvðuÞ ¼ 1 if XðuÞ\v and IvðuÞ ¼ 0 otherwise. Then,

the number CðvÞ is defined as the probability that two cells

sdimarypgnisuton.miSIT

Sim. using pyramids, L = 2, k = 2 Sim. using pyramids, L = 2, k = 3

Fig. 15 Example E2—variogram maps for the TI and the first realization of each set-up

Fig. 16 Example E2—variance

for the TI (blue line) and the 50

realizations of each set-up
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randomly chosen in the set Iv ¼ 1 are connected, which is

computed as

CðvÞ ¼ 1

n2p

XNðIvÞ

i¼1

n2i ; ð18Þ

where NðIvÞ is the number of connected components in the

set Iv ¼ 1, np is the total number of cells in this medium,

and ni is the number of cells in its i-th connected compo-

nent. The number CcðvÞ is defined in a similar way from

the complementary image Icv , defined as IcvðuÞ ¼ 1� IvðuÞ
for any cell u. The two curves C and Cc are obtained by

taking various threshold values between the minimum and

the maximum values in X. These curves are displayed for

the TI and each simulation set-up in Fig. 17 (bottom row).

We observe for this example that enabling pyramids

helps reproduce the structures of the TI. The variogram

map of the TI is better reproduced when pyramids are used.

This is true in particular for short ranges (center of the

maps) and especially in the horizontal direction. Moreover,

the variance of the TI is underestimated in the standard

simulations, whereas the use of pyramids allows for a good

estimation. Finally, the C- and Cc-curves show again the

advantage of using pyramids, which allows a better

reproduction of the TI characteristics. In this case and

based on these statistics computed over 50 realizations, the

reduction factors k ¼ 2 and k ¼ 3 imply similar results.

4.3 Example E3: three-dimensional simulation
of a categorical variable

A 4-category three-dimensional TI of size 100� 94� 60

representing channels with levees (Fig. 18, top left) is used

and 50 realizations of dimensions 75� 150� 50 are gen-

erated for each of the five simulation set-ups: (1) not using

pyramids, (2a) using pyramids with L ¼ 2, k ¼ 2 and based

on the indicator variables of categories (Sect. 3.3.1), (2b)

Γ(v Γ) c(v)

Fig. 17 Example E2—connectivity curves C and Cc, for the TI (blue

line) and the 50 realizations of each set-up: without pyramids (gray),

using pyramids with L ¼ 2, k ¼ 2 (green), using pyramids with

L ¼ 2, k ¼ 3 (red); the solid line represents the median, and the filled

area the 5–95 percentile range
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using pyramids with L ¼ 2, k ¼ 2 and based on a repre-

sentative continuous variable (Sect. 3.3.2), and (3a, 3b)

same set-ups as the two previous ones but with k ¼ 3. The

DeeSse parameters are set to N ¼ 32, t ¼ 0:05 and f ¼ 0:3

for each case. One realization for each case is displayed in

Fig. 18. Visually, the simulations appear a little bit

‘‘smoother’’ with the reduction factor k ¼ 2 compared to

the results with k ¼ 3.

The proportion of each facies code is computed for the

TI and each realization, and shown in Fig. 19. We observe

that the proportion of facies codes are better reproduced

when pyramids are used with the technique (a). The

sdimarypgnisuton.miSIT

Sim. using pyramids, L = 2, k = 2 (a) Sim. using pyramids, L = 2, k = 3 (a)

Sim. using pyramids, L = 2, k = 2 (b) Sim. using pyramids, L = 2, k = 3 (b)

Fig. 18 Example E3—4-category TI (100� 94� 60) (courtesy of Total S.A.), and simulations using or not pyramids (75� 150� 50);

a pyramids based on the indicator variables of categories, b pyramids based on a representative continuous variable
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technique (b) fails to reproduce the facies code 3, which

has the smallest proportion in the TI and becomes almost

absent in the simulations.

The facies code 2 is the facies in the center of the

channels whose main direction is the y axis. Then, we

check the quality of the simulations with respect to the

connectivity function syðhÞ (Eq. 17) along this axis and for

the indicator variable of this facies. These curves are dis-

played in Fig. 20, and we observe that the connectivity

along the y-axis is much longer when using pyramids. In

particular, most of the realizations without pyramids do not

contain any traversing channels from one border to the

other. The use of pyramids allows to remediate to this

problem.

4.4 Example E4: complex simulation

This example shows that using pyramids allows for com-

plex simulation set-ups. We consider a 1000� 700 bi-

variate TI composed of a categorical variable (4 facies) and

an auxiliary continuous variable describing the non-sta-

tionarity present in the facies image consisting in a hori-

zontal trend according to the facies code 0 (blue) and 1

(light blue) (Fig. 21). We propose to generate realizations

of the categorical variable in a simulation grid of size

700� 700, where some cells in the borders are masked

(not simulated), with rotations of the structures present in

the TI according to the map of Fig. 22 (left), and by con-

trolling the features of the blue (background) facies code 0

and 1 by giving the auxiliary continuous variable of Fig. 22

(right). The gray cells in the maps of Fig. 22 correspond to

masked cells.

In this situation, bi-variate simulations are done, where

the continuous variable is exhaustively known (every cell

is indeed a conditioning cell). Simulation using pyramids

involves a pyramid for the angle map, the mask map, and

both variables. For the categorical variable, one can use

either the technique based on the indicator variables of

categories (a) or based on a representative continuous

variable (b). One realization is displayed in Fig. 23 for the

following cases: (1) not using pyramids, (2a, 2b) using

pyramids with L ¼ 2, k ¼ 2, and (3a, 3b) L ¼ 2, k ¼ 3. The

DeeSse parameters are set to N ¼ 8; 32 for the auxiliary

variable and the categorical variable respectively, t ¼ 0:02

for both variables and f ¼ 0:3 for each case.

Although subjective, based on a visual inspection, the

set-up (2a), i.e. simulation using pyramids with L ¼ 2, k ¼
2 and based on the indicator variables of categories, gives

the realization of the best quality: channels are smoothly

reproduced, less broken than with other set-ups. We also

observe that the technique based on a representative con-

tinuous variables to deal with the pyramid of the

Proportion of facies 0 (background) Proportion of facies 1 (blue)

Proportion of facies 2 (channel center) Proportion of facies 3 (red)

Fig. 19 Example E3—facies proportion for the 50 realizations of each set-up; a pyramids based on the indicator variables of categories,

b pyramids based on a representative continuous variable; the horizontal line corresponds to the proportion in the TI
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Fig. 20 Example E3—connectivity function along y-axis for the

indicator variable of the facies code 2, for the TI (blue line) and the 50

realizations of each set-up: without pyramids (gray), using pyramids

with L ¼ 2, k ¼ 2 (green), using pyramids with L ¼ 2, k ¼ 3 (red);

the solid line represents the median, and the filled area the 5–95

percentile range; left column) pyramids based on the indicator

variables of categories, right column) pyramids based on a represen-

tative continuous variable

elbairav.xua:ITseicaf:IT

Fig. 21 Example E4—bi-variate TI ð1000� 700Þ
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categorical variable (cases 2b, 3b) does not allow for a

proper reproduction of the spatial features given in the TI:

the channels are much more broken than with the other

technique, and as for the previous example, the less fre-

quent facies in the TI tends to disappear in the simulations.

4.5 Computational performance

Table 1 shows the real elapsed time in seconds for each of

the previous examples and for each simulation set-up. All

tests were conducted in parallel with 8 CPUs of type In-

tel(R) Xeon(R) CPU E5-2683 v4 @ 2.10GHz.

Note that the examples E1-uncond., E1-cond., E2 and

E3 were runned with 50 realizations, the example E4 with

10 realizations, and the computing times presented in the

table are given for one realization, obtained by simply

dividing the whole elapsed times of the runs by the number

of generated realizations. Every run comprises some pre-

processing computations (done only once) consisting

essentially in normalizing the TI and building the pyramid

of the TI (when this option is used), see the left part of

flowchart in Fig. 6. The computing time of the pre-pro-

cessing part had been estimated in each case by simply

running the program with zero realization (but doing the

pre-processing steps) on the same type of machine with

also 8 CPUs, and retrieving the elapsed time: less than 1s

for the three set-ups of examples E1-uncond., E1-cond.,

and E2, also less than 1s for the five set-ups of example E3,

and about 1s for the five set-ups of example E4. This is

quite fast because the reduce and expand operations per-

formed for building the pyramid are fully parallelized.

Thus, it is important to notice that the elapsed times dis-

played in Table 1 can be ‘‘fairly’’ compared, since the time

required by the pre-processing computations is negligible.

For the three first examples (E1-uncond., E1-cond., E2),

the runs using pyramids are faster, with a larger gain with

the reduction factor k ¼ 3. For the categorical cases (ex-

amples E3 and E4), the technique using the pyramids based

on the indicator variable of categories (a) is slower than the

standard DeeSse without pyramids, but the technique based

on a representative continuous variable (b) is faster.

Guiding the simulation with a lower resolution repre-

sentation allows reducing the number of neighbors (in

searched patterns) during the simulation and accelerating

the algorithm. A noticeable exception is the multi-cate-

gorical case (a), because the number of simulated variables

in the pyramid levels is larger. Using the re-numbering

technique (b) accelerates the algorithm at the cost of a loss

of quality in the results.

In summary, according to the observations made for

each example in the previous sections, enabling pyramids

is almost always advantageous because it allows most often

for the generation of realizations of better quality in less

time.

elbairav.xua:dirg.miSelgna:dirg.miS

Fig. 22 Example E4—input for simulation grid ð700� 700Þ
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Sim. not using pyramids

Sim. using pyramids (a), L = 2, k = 2 Sim. using pyramids (a), L = 2, k = 3

Sim. using pyramids (b), L = 2, k = 2 Sim. using pyramids (b), L = 2, k = 3

Fig. 23 Example E4—simulations using or not pyramids ð700� 700Þ
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5 Conclusions

In this paper a new methodology for multiple-point

statistics (MPS) simulation is proposed. It consists in (1)

building a pyramid for the training image (TI), i.e. suc-

cessive representations at lower resolutions of the original

image by computing moving averages based on a Gaus-

sian-like kernel (reduce operation), and (2) performing

successive MPS simulations in each pyramid level, from

the lowest resolution to the original (finest) resolution,

while the link between two levels is obtained by expanding

the result of the simulation to the finer level (expand

operation, pseudo-inverse of the reduce operation), the

expanded image serving as conditioning variable. The

direct sampling algorithm DeeSse is used as it handles joint

simulations. The categorical variables can be addressed in

two ways, considering one pyramid for the indicator vari-

able for each category except one, or with one pyramid for

a representative normalized continuous variable built with

respect to the most frequent contacts between the cate-

gories. The latter approach guides the simulation more

approximately but is faster.

The examples show that multi-resolution images

(pyramids) allow to obtain simulations of better quality.

The proposed method helps catch the structures at different

scales. Most often the spatial features of the TI are better

reproduced in terms of connectivity properties. The main

drawback of the use of pyramids is that it results in a lower

variability in the realizations. Moreover, using a larger

reduction factor—or equivalently a wider kernel—for the

pyramids, which involves more blurred images at coarser

resolutions, speeds the algorithm up but tends to deteriorate

the quality of the results. Hence, a reduction factor of k ¼ 2

is recommended for the level transitions. Note that the

number L of coarse levels in the pyramids should be chosen

such that the dimensions (in number of cells) of the lowest

resolution grid become not too small, providing enough

patterns repetitions and making the MPS simulations

reliable.

In terms of computational time the use of pyramids is

also beneficial in most of the situations compared to the

standard simulation without pyramids, except for the multi-

categorical case based the indicator of the categories.

The wide flexibility of the DeeSse algorithm is kept with

the implementation of the pyramids. It handles categorical

and continuous variables, multi-variate simulation, non-

stationarity, and geometrical transformation given by

scaling or rotation of the TI features.

Finally, it is important to notice for the user that the

integration of the pyramids approach in the DeeSse algo-

rithm does not affect its usability. Indeed, only the number

of pyramid levels and the size of the Gaussian filter (re-

ducing factors) are additionally required as input, the

simulation parameters—number of neighbors, acceptation

threshold, maximal scan fraction—involved in the simu-

lation at each pyramid level being automatically computed.
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