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The FFT Moving Average (FFT-MA) Generator:
An Efficient Numerical Method for Generating

and Conditioning Gaussian Simulations1

Mickaële Le Ravalec,2 Benoı̂t Noetinger,2 and Lin Y. Hu 2

A fast Fourier transform (FFT) moving average (FFT-MA) method for generating Gaussian stochastic
processes is derived. Using discrete Fourier transforms makes the calculations easy and fast so that
large random fields can be produced. On the other hand, the basic moving average frame allows us to
uncouple the random numbers from the structural parameters (mean, variance, correlation length,. . . ),
but also to draw the randomness components in spatial domain. Such features impart great flexibility
to the FFT-MA generator. For instance, changing only the random numbers gives distinct realizations
all having the same covariance function. Similarly, several realizations can be built from the same
random number set, but from different structural parameters. Integrating the FFT-MA generator into
an optimization procedure provides a tool theoretically capable to determine the random numbers
identifying the Gaussian field as well as the structural parameters from dynamic data. Moreover, all or
only some of the random numbers can be perturbed so that realizations produced using the FFT-MA
generator can be locally updated through an optimization process.
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INTRODUCTION

In reservoir engineering, we are interested in the modeling of transport properties
such as permeability and porosity within a reservoir. As the true distribution of these
properties is unknown, we assume that they can be approximated from Gaussian
random fields or transforms of Gaussian random fields. In addition, those fields
must be constrained to dynamic data such as well pressures, production history,
and water cut. But the relations between dynamic data and permeability/porosity
distributions are nonlinear, making conditioning very difficult so that an iterative
solver is used. Then fluid flow simulations are performed for a large number of
random fields representing permeability and/or porosity distributions to capture the
range of possible dynamic behaviors. The set of alternative realizations provides
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a measure of uncertainty about the spatial distribution of permeability/porosity
values.

A traditional statistical method that produces Gaussian random fields is the
Cholesky decomposition of the covariance matrix. Its main advantages are simplic-
ity, ability to generate random numbers and achieve conditioning simultaneously
(Davis, 1987; Alabert, 1987) and ability to handle any point location pattern. How-
ever it is restricted to moderate point numbers. When generating a random field
over N points, covariance matrix dimensions areN× N. The greaterN, the less
tractable the decomposition of the covariance matrix. Practically, the Cholesky
decomposition method is limited to 1000 points. As it is of common practice in
reservoir characterization forN to be of the order of 106, other methods need to
be used.

The moving average method was developed to simulate one-dimensional
Gaussian random fields with stationary covariances (e.g., Journel, 1974). Then, it
was further extended by Oliver (1995) to two and three dimensions. This method
is very similar to the Cholesky decomposition. The only difference depends on the
decomposition technique. The moving average method requires that the covariance
function is expressed as a convolution product of a functiong and its transpose.
In this case, it is no longer necessary to tackle the numerical decomposition of
a large matrix. However, there is still an important difficulty: the computation of
functiong. Up to now, just a few particular covariance functions were investigated
(Oliver, 1995).

There are several other approaches often referred in the literature to simulate
random fields over a large number of points: the sequential Gaussian simulation
(Johnson, 1987; Gomez-Hernandez and Journel, 1992), the turning bands (TUBA)
method (Matheron, 1973; Mantoglou and Wilson, 1982), the continuous spectral
method (Shinozuka and Jan, 1972; Lantu´ejoul, 1994), and the discrete spectral
method based on the fast Fourier transform (FFT) method (Gutjahr, 1989; Pardo-
Iguzquiza and Chica-Olmo, 1993; Chil`es, 1995). It is outside the scope of this paper
to compare these approaches. To compare briefly: the TUBA and the continuous
spectral method are limited to particular covariance functions, but can be applied
to estimate random field values in any point of the reservoir (Blanc, Touati, and
Hu, 1998). On the contrary, the FFT method produces stochastic processes having
any kind of stationary covariance function, but only for equal-spaced gridding.
Extensions have been developed to combine the advantages of the TUBA and FFT
methods (Mantoglou, 1987).

Conditioning realizations to values measured at some locations is performed
either straightforwardly or using a traditional approach based on kriging (Journel
and Huijbregts, 1978). In this case, only linear relations are involved. However,
forcing the realizations to honor dynamic data, such as well pressures, is a difficult
task due to the nonlinear relations between the dynamic variables and the field
values.
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In this paper, we are going to focus on the use of the FFT algorithm because of
its efficiency and its ability to produce large Gaussian random fields with stationary
covariance functions. Using the same theoretical background, Gutjahr, Bullard, and
Hatch (1997) suggested that simulated fields be conditioned with kriging either in
the space or spectral domains. Yao (1998) built a different approach to avoid solving
the kriging system. She assumed, as Pardo-Iguzquiza and Chica-Olmo (1993)
did, that the amplitude of each spectral component of the random field equals its
variance. As a result, the amplitude spectrum can no longer be random: it depends
on the spectral density that is the Fourier transform of the covariance function. In
this case, the phase spectrum does not affect the covariance structure: it is uniformly
distributed between 0 and 2π . Then, Yao (1998) used the simulated annealing
algorithm to constrain the phases of the Fourier coefficients of the random field
realization.

This paper introduces a new generator for simulating Gaussian stationary
stochastic processes. It is very consistent with the gradual deformation method
(Hu, 2000) and turns out to be well suited to optimization problems. This generator,
called the FFT moving average (FFT-MA) generator, results from the combination
of the moving average method with the FFT algorithm. Because computations are
carried out through FFTs, simulations are fast and stable. Contrary to the conven-
tional spectral generator, the FFT-MA generator relies on randomness components
drawn in spatial domain. This very distinctive feature, inherent in the moving av-
erage approach, allows us to perturb the simulated realizations locally. We detailed
the implementation of the suggested algorithm in the first section, before focus-
ing on its advantages. The last section is dedicated to the analysis of a synthetic
example. We show how to take advantage of the FFT-MA generator to update a
reservoir model integrating newly obtained data.

DESCRIPTION OF THE METHOD

Moving Average

As mentioned earlier by Oliver (1995), the scheme of the moving average
method is pretty close to that of the Cholesky method. Let us recall briefly
the basics of the Cholesky approach. First, using the Cholesky algorithm, the
covariance matrixC is expressed as a product of upper and lower triangular
matrices:

C = LL t (1)

Matrix L is used to generate a Gaussian random fieldy with meanm and covariance
matrix C from a vectorz of uncorrelated random normal deviates distributed
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asN(0, IN):

y = m+ Lz (2)

When using the moving average method, we consider then-dimensional
covariance functionC instead of the covariance matrix. This covariance operator
is written as a convolution product of a functiongand its transpose (ğ(x)= g(−x)):

C = g ∗ ğ (3)

If the n-dimensional functiong can be calculated, a Gaussian random fieldy with
meanm and covarianceC is generated by the operation:

y = m+ g ∗ z (4)

z is an-dimensional field of uncorrelated normal deviates (also called “Gaussian
white noise”). It forms a basic building block in the construction of more compli-
cated realizations.

Both methods convolve normal deviates with a decomposition of the covari-
ance. However, for the first one, the numerical decomposition of the covariance
matrix is very computationally intensive for large fields. This size constraint is
avoided when using the moving average method, but determiningg can be a dif-
ficult task. For instance, the analytical calculation ofg for a spherical covariance
operator is an intractable problem in two dimensions (Oliver, 1995).

The FFT-MA Generator

For all these reasons, we decided to build a FFT-MA generator taking advan-
tage of the moving average framework, but also of the discrete spectral calculations.
Computingg turns out to be numerically unstable for some covariance functions.
This calculation is no longer necessary when using the FFT-MA algorithm. The
basic idea of this method is to determine the convolution productg∗ z in the
frequency domain.

First of all, we recap some properties associated to stationary random fields.
The Bochner (1936) theorem states that any stationary process has a covariance
functionC of the form:

C(x) =
+∞∫
−∞

S( f ) exp(2iπ f ·x) df (5)

S is the power spectrum or spectral density function: it depends on frequencyf .
The integral is an abbreviation for then-fold integral wheren is the dimension
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of the space. The covariance and power spectrum functions provide the same
information, but in different space.C is the inverse Fourier transform ofS, while
S is the forward Fourier transform ofC. Scan be expressed as

S( f ) =
+∞∫
−∞

C(x) exp(−2iπ f · x) dx (6)

Then-dimensional Fourier transform of an-dimensional convolution is the
product of then-dimensional Fourier transforms of each convolved function, that is,

F(g ∗ h) = F(g)F(h) (7)

As the covariance function is real and even, the power spectrum is real and
even too. In addition, an important property of stationary processes is the orthog-
onality of their spectral components (Priestley, 1981). Let us denoteY the Fourier
transform ofy−m. The expectation of the variance ofY is

E[Y( f )Y( f ′)] = E[G( f )Z( f )G( f ′)Z( f ′)] = G( f )G( f ′)E[Z( f )Z( f ′)]

=
{

0 if f 6= f ′

G( f )G( f ) = S( f ) if f = f ′
(8)

whereG andZ are the Fourier transforms ofg andz, respectively. This equality
holds becausez is a stationary random field with a dirac covariance measure (i.e.,
a Gaussian white noise). It ensures the positivity ofS( f ).

One of the most fundamental results in the theory of stationary processes is
that realizations are expressed not as Fourier transforms, but as Fourier–Stieltjes
transforms. Within this framework, the definition of continuous random processes
poses considerable problems. In fact, no such process exists, except in a highly
degenerate sense (Priestley, 1981). Instead of developing a continuous approach
as Oliver (1995), we prefer to focus on the discrete case in order to avoid that kind
of difficulty. This is one of the reasons why we use the FFT approach. In addition,
contrary to the continuous spectral method, it is unnecessary to determine the
square root of the covariance functiong. We only compute the Fourier transform
of g∗ z.

All of the previous results can be rewritten within a discretized framework.
For simplicity in notation, the development is presented in one dimension, but it
extends easily to two and three dimensions.

Because using Fourier transforms implies periodicity, the desired field is
oversized. Let us assume that we want to produce a stochastic process of sizeNdx
and N is the number of points anddx the sampling rate. Instead, we generate a
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process of sizeNdx+ lc, wherelc is the correlation length. After simulation, the
additional points are discarded. Therefore, the first and last points of the sequence
are uncorrelated.

Broadly speaking, we consider a sequence ofN1 equidistant points. The
corresponding frequency rate is selected carefully so that there is no aliasing. If
dx1 is the sampling rate, the frequency rate isdf1= 1/(N1dx1) and the frequency
range [−1/(2dx1); 1/(2dx1)]. Symmetry properties imply

S( j1) = dx1

N1∑
k1=1

C(k1) exp

(
−2iπ

k1 j1
N1

)
C(k1) = 1

N1dx1

N1∑
j1=1

S( j1) exp

(
2iπ

k1 j1
N1

)
(9)

F(g ∗ h) = 1

dx1
F(g)F(h)

The decomposition of the covariance operator is now straightforward. The
discretized power spectrumSis derived from the discretized covariance functionC.
Equation (3) can be rewritten as

S( j1) = 1

dx1
G( j1)G( j1) (10)

The only requirement on functiong is that Equation (3) is satisfied. As solutions to
this equation are not unique, additional constraints are considered to get functions
with particular forms (Oliver, 1995). In this case,G (henceg) is picked, so that

G( j1) =
√

dx1S( j1) (11)

Such a decomposition, that is said to be symmetric, is appropriate because the
Fourier transform of a convolution product is the product of Fourier transforms
and because the power spectrum is real, positive and symmetric.

Implementation

To generate unconditional Gaussian random fields, we proceed according to
seven steps.

1. Building of the sampled covarianceC (Fig. 1).
2. Generation of the normal deviatesz on the grid.
3. Calculation of the Fourier transforms ofz andC, giving Z and the power

spectrumS, respectively.
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Figure 1. Sketch of the covariance sequence for a one-dimensional case.

4. Derivation ofG from S.
5. Multiplication ofG by Z.
6. Inverse Fourier transform of (G · Z) giving g∗ z.
7. Derivation ofy from Equation (4).

The sampling of the covariance function must be performed cautiously so
that the discrete covariance, hence the discrete power spectrum, are real and even.
The length of the covariance sequence is the same as the length of the field to
simulate. In the case of one-dimensional processes withN1 points, the covariance
sequence is (C(k1), k1= 1, N1) with k1= 1+ N1/2 characterizing the symmetry
axis. The building rules are (Fig. 1)

1. C(k1) is associated to the distance (k1− 1)dx1 whenk1≤ 1+ N1/2.
2. C(k1)=C(N1− k1+ 1) if N1 is odd andk1> 1+ N1/2.
3. C(k1)=C(N1− k1+ 2) if N1 is even andk1> 1+ N1/2.

Fourier transforms are computed using the Cooley-Tukey (1965) algorithm,
which is more efficient whenN1 is a product of small prime factors. Thus, real-
izations are oversized to avoid the correlation effects due to periodicity as stated
above, but also to avoid aliasing and to have dimensions that can be decomposed
in small prime factors. After simulation, the unneeded cells are removed.

STRENGTHS OF THE METHOD

First, this method is fast and flexible. As discussed above, it can handle any
permissible covariance as long as the field is stationary. Second, it is based on the
convolution of the square root of the covariance function with a Gaussian white
noise. That is: the structural parameters are separated from the random ones. Then,
different realizations with all the same covariance can be produced running the
simulation with the same square-root operator, but considering different normal
deviates. In addition, the structural parameters (as the correlation length) can be
also varied while keeping the same set of random numbers.
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Computational Efficiency and Numerical Stability

In order to point out the efficiency of the method with fairly large fields, we
perform a few runs over 200× 200 grids (Figs. 2–4). The covariance models that
we use are as follows for isotropic distributions:

Exponential model

C(h) = σ 2 exp

(
− h

lc

)

Gaussian model

C(h) = σ 2 exp

(
−
(

h

lc

)2)

Figure 2. Two-dimensional isotropic Gaussian random field with exponen-
tial covariance (grid: 200× 200 nodes; space step: 1; correlation length: 50;
mean: 0; variance: 1).
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Figure 3. Two-dimensional anisotropic Gaussian random field with Gaussian
covariance (grid: 200× 200 nodes; space step: 1; major correlation length: 50;
minor correlation length: 20; mean: 0; variance: 1).

Spherical model

C(h) = σ 2

(
1− 3

2

h

lc
+ 1

2

h3

l 3
c

)
h≤ lc

= 0 h> lc

Stable model

C(h) = σ 2 exp

(
−
(

h

lc

)α)
The h is the space lag,σ 2 is the variance andlc is the correlation length. Theα
is an exponent ranging between 0 and 2. Actually, 100 realizations are built for
all of these models. The results of the ensemble statistics are reported in Table 1.
The general trend demonstrates a reasonable behavior. The means of means and
variances are close to their theoretical values (0 and 1, respectively) and dispersion
is small.
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Table 1. Average Statistics of 100 Isotropic Two-Dimensional Realizations (Grid: 200× 200 Nodes;
Space Step: 1; Correlation Length: 50; Theoretical Mean: 0; Theoretical Variance: 1)

Covariance model Mean of means Variance of means Mean of variances Variance of variances

Exponential 5.75 10−2 3.79 10−2 0.97 2.03 10−2

Gaussian 2.47 10−2 4.51 10−2 0.94 4.60 10−2

Spherical −4.72 10−3 3.49 10−2 0.96 2.98 10−2

Stable (α= 1.5) 1.13 10−2 3.78 10−2 0.97 4.95 10−2

Figure 4. Two-dimensional isotropic Gaussian random field with spherical
covariance (grid: 200× 200 nodes; space step: 1; correlation length: 50; mean:
0; variance: 1).

Variable Uncoupling

We presented the separation between random numbers and structural param-
eters as an advantage. It implies that any of these numbers and parameters can be
perturbed with no effect on the others. This feature confers great flexibility to the
FFT-MA generator and is potentially of great interest to refine reservoir modeling.
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It allows us to envision inversion processes inferring the structural parameters
such as mean, variance, and correlation length, as well as the random numbers
describing the permeability/porosity distributions.

Perturbing the Random Numbers

In this section, we propose to modify the random numbers. The convolution
product introduced by the method of moving average involves a fieldz of uncor-
related random deviates. An independent random deviate is associated with each
cell of the grid overimposed on the field. We assume that the covariance model is
known: the Fourier transformG of its square root is calculated once and remains
unchanged. A first realization is provided for a givenz field. The following step
consists in repeating the simulation for a fieldz′ that derives from the perturbation
of z. We can replace the values ofz for all of the cells or only for some cells. In
the case investigated here, we choose to draw new deviates for a selected region
identified by a window in Figure 5. Running the simulation again produces a new
realization. In order to boost the differences in the pictures, we apply the truncated
Gaussian method (Galli and others, 1994) to the generated realizations. Then, the
Gaussian field is turned into a facies field. For instance, in Figure 5 the reservoir is
assumed to be constituted of two distinct facies with surface fractions 0.4 and 0.6.

In such conditions, both realizations respect the same covariance function.
They look the same except where the normal deviates were modified. Actually, the
truly modified area is larger than expected because of correlation effects. The cells
at the border of the selected area are attributed new random deviates. They affect
the field values in the grid cells as far as a correlation length. This drawback is also

Figure 5. Two-dimensional isotropic truncated Gaussian random fields produced from identical
normal deviates everywhere except in the window (grid: 200× 200 nodes; space step: 1; covariance
model: Gaussian; correlation length: 20; mean: 0; variance: 1; window size: 60× 60 nodes).
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Figure 6. Comparison of a normal realization with a perturbed one. The perturbation is
due to the variation in a single component of the underlying vector of independent normal
deviates. (mean: 0; variance: 1; covariance model: Gaussian; correlation length: 30).

obvious in Figure 6. A one-dimensional realization with mean 0, variance 1 and
a Gaussian covariance model is generated over the range [1 100] from an initial
set of independent normal deviatesz. The correlation length is 30. Then a single
component ofz is modified (the 50th one) and a new realization is simulated from
the perturbedz. The input structural parameters are unchanged. Again, both real-
izations are similar except over the area centered at the perturbed point. The radius
of this area roughly equals the correlation length. Actually, perturbing a single
component ofz involves changes over the whole field. However, the farther away
the points are from the perturbed one, the smaller change there is in the simulated
Gaussian field (Fig. 6). It can be noticed that when the local perturbation is re-
stricted to a single point, the simulated Gaussian field is modified as if submitted
to a pilot point (RamaRao and others, 1995).

Such an approach could be used to improve the efficiency of optimization
algorithms as will be shown in the last section, because it generates perturbed
realizations with all the same covariance. Thus, it is unnecessary to include a term
into the objective function for matching a specified covariance as traditionally
done (Deutsch and Cockerham, 1994). In addition, the FFT-MA algorithm makes it
possible to update a reservoir study and refine the existing reservoir model. Indeed,
newly obtained data could be accounted for through an optimization procedure
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Figure 7. Two-dimensional isotropic truncated Gaussian random fields produced from identical nor-
mal deviates, and an increasing correlation length (grid: 200× 200 nodes; space step: 1; covariance
model: Gaussian; correlation length: 20–30–40, mean: 0; variance: 1; window size: 60× 60 nodes).

perturbing the reservoir model onlylocally. The ability of the FFT-MA generator
to produce locally modified realizations results from the use of the moving average
method as the basic framework.

Perturbing the Structural Parameters

Let us focus on the structural parameters. In the following example (Fig. 7), we
generate several realizations from identical input parameters, except the correlation
length. The field of normal deviates, the mean and the variance are unchanged
whereas we consider an increasing correlation length. Again, to make the figures
simpler, we consider 2 facies with surface fractions 0.4 and 0.6. We notice that the
general pattern is kept over the simulations. When the correlation length increases,
heterogeneities tend to join to constitute largest heterogeneities. This result was
expected because realizations are simulated from the same normal deviate fieldz.

This degree of freedom as for the structural parameters is of primary interest,
because the measured data are usually insufficient to infer accurately the structural
parameters. The structural parameters and the random numbers could be perturbed
simultaneously in an optimization process.

Comparison with Other Methods

The properties described above are based upon the separation of the structural
parameters from the random ones (i.e., the normal deviates). They are typical of
moving average and Cholesky methods that involve independently a covariance
kernel and a Gaussian white noise. First of all, they confer a great flexibility
for conditioning realizations. Among the possible choices, we prefer the moving
average method combined with the FFT algorithm. The decomposition of the
covariance operator was shown to be straightforward in the discrete spectral domain
and the convolution product in the space domain gets a simple product in the
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spectral domain. As a result, using FFTs leads to fast and efficient generations of
large stationary processes.

In this paragraph, we discard the advantages due to parameter uncoupling and
compare the method described in this paper with referenced generators using FFTs
(Gutjahr, 1989; Pardo-Iguzquiza and Chica-Olmo, 1993). The main difference de-
pends on the way we work in the space and the spectral domains. In our case, we
generate the independent random numbers in the space domain. On the contrary, the
other FFT generators rely on the decomposition of the field into independent spec-
tral components: the independent random numbers are generated in the spectral
domain. This is of primary importance for conditioning. If we except the kriging
method proposed by Gutjahr, Bullard, and Hatch (1997), to our knowledge the
only conditioning procedure when using FFTs is due to Yao (1998). She performs
conditioning fixing the spectral phases with a simulated annealing approach. The
forward and backward discrete Fourier transforms imply that each of the space
components is a linear combination of the spectral components. When fixing a
single spectral component, she affects all the space components. The method that
we presented is just the opposite because we propose to constrain the realization
fixing the independent random components in the space domain. Conditioning a
single random number has distinct meanings depending on the method. In the case
of the approach developed by Yao (1998), it is associated with a perturbation of
the whole field in the space domain. In our case, it corresponds to a local per-
turbation of the field in the space domain. Additionally, the FFT generator used
by Yao (1998) is a “degenerate” version of the one introduced by Gutjahr (1989).
The spectral components are built drawing phase shifts from a uniform distribu-
tion instead of real and imaginary parts from Gaussian distributions. Thus, this
“degenerate” generator provides an approximation to a Gaussian field whereas the
FFT-MA method gives a Gaussian random field.

NONLINEAR CONDITIONING

Stochastic Optimization Approach

Before running conditioning, it is worthwhile recalling what we want to
achieve. Basically, an optimization procedure attempts to minimize an objective
function that measures the misfit between a “true” model and a “guessed” one. It is
formed from the weighted sum of the squared differences. Although Oliver, Cunha,
and Reynolds (1997) stated that we should not try to produce legitimate condi-
tional realizations by matching the covariance function exactly, several authors
(Pérez, 1991; Deutsch, 1992; Gupta, 1992; Ouenes, 1992) suggested to include a
term into the objective function for matching a specified covariance model. Min-
imizing the objective function is equivalent to reducing the misfit (1) between
the production data calculated from the guessed model and the actual production
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data and (2) between the covariance function (or variogram) calculated from the
guessed model and the one inferred from the data (Deutsch and Journel, 1992).
This approach hides a major difficulty: there is no simple way to estimatea priori
the weight attributed to the covariance term in the objective function relative to the
other kinds of data. Most of the time, this weight is just an empirical parameter.

In this paper, we assume that it is reasonable to generate Gaussian fields
that match a selected covariance model. We suggest using the FFT-MA method
to produce unconditional realizations and then to apply the gradual deformation
rule (Hu, 2000) to perform conditioning. It allows us to perturb realizations while
keeping them automatically consistent with the desired covariance function. The
main consequence is that there is no need to include an additional term into the
objective function for matching the covariance function. The gradual deformation
method involves a smooth and continuous perturbation of an initial realization as a
function of a parameter termedρ. A variation inρ provides a new realization still
keeping the same spatial statistical characteristics. This perturbation method was
used by Roggero and Hu (1998) to modify a Gaussian fieldy. These authors did not
separate the random numbers from the structural parameters so that they could only
consider the deformation of the entirey field with constant structural parameters.
In our case, the gradual deformation method can be applied to modify all or some
of the independent normal deviatesz. Moreover, the structural parameters can be
perturbed simultaneously.

Let us consider two sets of independent normal deviates randomly drawn and
denotedz1 andz2, respectively. A new set of independent normal deviatesz is built
on the basis of the gradual deformation relation (Hu, 2000):

z= z1 cos(πρ)+ z2 sin(πρ)

The structural parameters are assumed to be known and used to identifyG. Let
us noteZ the Fourier transform ofz. Introducing the inverse Fourier transform of
G · Z into Equation (4) provides a new realization. Conditioning to production data
is performed by estimating the parameterρ that minimizes the objective function.
As explained above, this objective function depends only on well data. Distinct
optimization algorithms can be implemented to identify at least a local minimum
of the objective function. In the example presented in the following section, we use
the golden section search method that is appropriate for one-dimensional problems.
The last iteration of the optimization process provides an “optimal”ρ—that is, an
“optimal” set of independent normal deviatesz.

However, considering only the realization chain built fromz1 andz2 would
limit the way we investigate the space of possible normal deviate sets. As a result,
we create a sequence of several similar chains. Each chain is the basis of an
optimization problem: an “optimal”z must be characterized fromz1 andz2. The
“optimal” z identified at the end of the optimization problemi is used as input
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data in place ofz1 in the optimization problemi + 1. A new set of independent
normal deviates is generated in place ofz2 for each new chain. Finally, the sequence
supplies the user with an “optimal”z.

If the structural parameters were unknown, the followed approach would
be very similar. We would still consider a sequence of optimization problems.
However, instead of changing only the normal deviates, we would also modify the
parameters definingG (and meanm if necessary) into the optimization problem
and from an optimization problem to the following one.

In this paper, we focus on the spatial continuity of the realizations of er-
godic random functions. The ensemble statistics—that is, the statistics over a set
of realizations of an ergodic random function—depend on whether the realiza-
tions are conditioned or not. However, the spatial statistics of these realizations
are unchanged. As explained above, the conditional realizations are built so that
they have the same spatial mean and covariance as the unconditional realizations.
However, the ensemble moments change. This subject will be addressed more
precisely in a future paper.

A Synthetic Example

In this last section, we focus on a synthetic example. Again to simplify visual-
ization, we propose to produce facies maps constrained to geometric permeability
averages. These averages are computed against radius from a center cell (Fig. 8).

Reference Realization

First we build a reference facies map (Fig. 9) discretized over a 50× 50 grid.
The size of a cell is 100× 100 m. We selected a stable anisotropic variogram with
an exponentα= 1.5. Thus, the smoothness of the generated field is intermediate

Figure 8. The average permeability is calculated for a
centered growing area of radiusr .
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Table 2. Characteristics of the Facies

Facies k (md) Surface fraction Color

1 100 0.40 Black
2 5 0.15 Gray
3 40 0.45 White

Figure 9. Facies map resulting from the optimization process compared to the reference and
initial maps (the whole map is distorted).

between the exponential one (α= 1) and the Gaussian one (α= 2). The correlation
lengths are 1500 m along the (1,−1) axis and 1000 m along the orthogonal axis. As
explained above, the truncated Gaussian method is applied to turn the continuous
Gaussian fieldy into a three-facies field. The characteristics of the facies are
reported in Table 2. We assume that three wells (W1, W2, and W3) are drilled into
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the reservoir and reference geometric permeability averages are estimated for all
of them against radius.

Primary Reservoir Study

At this point, we forget everything about the reference reservoir, except the
structural parameters and the reference average permeabilities. Our purpose is to
produce a realization that allows us to duplicate the reference data. In other words,
we want to generate a set of normal deviatesz that provide a facies map constrained
to the reference geometric permeability averages. Basically, we consider a starting
guessz1 (Fig. 9) and apply the deformation method combined within an optimiza-
tion sequence as described in the previous section. In addition, all the generated
realizations are conditioned to the facies observed in W1, W2, and W3. As for
parameterρ, it affects all of the normal deviatesz1 (andz2). The optimization for
each realization chain is dedicated to the minimization of the objective function
againstρ (Fig. 10). The final optimization results in a predicted facies map (Fig. 9)
for which we calculate the geometric permeability averages centered in W1, W2,
and W3. Those are compared to the reference geometric permeability averages
(Fig. 11). We observe that the predicted data are consistent with the reference
ones, especially for W1 and W3.

Figure 10. Normalized objective function against the number of optimization units when
matching the data for W1, W2, and W3.
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Figure 11. Comparison for W1, W2, and W3 of the reference geometric permeability aver-
ages (black circles) with those calculated for the starting map (dashed lines) and the predicted
one (solid lines).

Updated Reservoir Study

Now, we assume that a new well, termed W4 (Fig. 12), is completed so
that additional geometric permeability averages are available. We aim at updating
the facies map predicted from the first study by integrating the new data. An
optimization sequence similar to the previous one is run again providing an updated
predicted map (Fig. 12). The starting realization for this second characterization
study differs slightly from the previously predicted realization around well W4
(Fig. 9). So far, the predicted realization was not constrained to the reference facies
at well W4. Compared to the primary characterization study, a difference deserves
to be pointed out. In this case, we do not perturb all the normal deviates, but only
the ones located in the right part of the map. As a result, average permeabilities first
predicted for W1 and W3 are preserved. On the right side, the facies distribution is
modified sequentially so that the objective function measuring the misfit between
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Figure 12. Facies map resulting from the optimization process compared to the reference and
initial maps (only the right side of the map is distorted).

the reference and predicted data for W2 and W4 decreases (Fig. 13). Only the area
around W4 could have been changed, but Figure 11 outlines that the agreement
between the reference and calculated data for W2 was not so good. That is the
reason why we perturb the normal deviates within all the right side of the map. The
resulting average permeabilities are consistent with the reference ones (Fig. 14).

CONCLUSIONS

We want to emphasize that the FFT-MA generator is fast and flexible.

1. It is fast for producing unconditional realizations. Generating a random
field over about 106 cells requires a dozen of seconds with a Sun station
(Ultra Sparc 30).
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Figure 13. Normalized objective function against the number of optimization units when matching
the data for W3 and W4.

Figure 14. Comparison for W3 and W4 of the reference geometric permeability averages (black
circles) with those calculated for the starting map (dashed lines) and the predicted one (solid lines).
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2. The Fourier transform ofg∗ z is calculated easily. We no longer need to
compute the square root of the covariance operator as well as the convo-
lution product in the space domain.

3. It uncouples the random numbers (identified as the normal deviates) from
the structural parameters. This property implies several advantages when
performing optimization. First, it is no longer necessary to introduce an
additional term into the objective function for matching the variogram
because only realizations consistent with the desired variogram are built.
Second, all or only some of the normal deviates can be perturbed so that the
realization can be distorted only in selected areas. The ability to perform a
local perturbation is new compared to the conventional spectral generators.
Last, the random parameters can be modified, but also the structural ones
so that a general inversion procedure can be envisioned (Le Ravalec, Hu,
and Noetinger, 1999).
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