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a b s t r a c t

Scientific curiosity, exploration of georesources and environmental concerns are pushing the geoscientific

research community toward subsurface investigations of ever-increasing complexity. This review explores

various approaches to formulate and solve inverse problems in ways that effectively integrate geological con-

cepts with geophysical and hydrogeological data. Modern geostatistical simulation algorithms can produce

multiple subsurface realizations that are in agreement with conceptual geological models and statistical rock

physics can be used to map these realizations into physical properties that are sensed by the geophysical

or hydrogeological data. The inverse problem consists of finding one or an ensemble of such subsurface re-

alizations that are in agreement with the data. The most general inversion frameworks are presently often

computationally intractable when applied to large-scale problems and it is necessary to better understand

the implications of simplifying (1) the conceptual geological model (e.g., using model compression); (2) the

physical forward problem (e.g., using proxy models); and (3) the algorithm used to solve the inverse prob-

lem (e.g., Markov chain Monte Carlo or local optimization methods) to reach practical and robust solutions

given today’s computer resources and knowledge. We also highlight the need to not only use geophysical

and hydrogeological data for parameter estimation purposes, but also to use them to falsify or corroborate

alternative geological scenarios.

© 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

Geophysical data help to understand geological processes and to

test scientific hypotheses throughout the Earth Sciences, while also

providing critical information and constraints for forecasting and

management of subsurface formations (e.g., oil and gas reservoirs,

mineral prospects, aquifers, and the critical zone). The processing of

virtually all geophysical surveys involves inversion, a computational

process in which measurement responses (e.g., signals in time and

space for seismic and electromagnetic data) are translated into multi-

dimensional images of physical properties (e.g., seismic wavespeed,

density, electrical conductivity) [124,165] or into properties of direct

relevance for geological applications (e.g., lithotype, porosity, fluid

saturation) [11–13]. Subsurface heterogeneity, signal attenuation, av-

eraging inherent to the underlying physics (e.g., diffusion), incom-

plete data coverage and noisy data limit the scale at which these

properties can be resolved [6].
∗ Corresponding author. Tel.: +41 21 692 4401; fax : +41 21 692 44 05.
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Solute transport in the subsurface can be highly sensitive to ge-

logical features (e.g., fractures [2] or connected high conductivity

orms [174]) at scales below the resolution limits offered by geophys-

cal sensing. Resolution-limited geophysical models alone are thus

ften inadequate for applications related to mass transfer in the sub-

urface (oil, gas, water). Even if improved geophysical acquisition sys-

ems and imaging algorithms allow resolving ever-finer details, fun-

amental resolution limits persist. At the high resolution necessary

or flow- and transport modeling, the geophysical inverse problem

as a possibly infinite set of solutions.

This non-uniqueness is traditionally overcome by using an op-

imization approach with a model regularization term, thereby

ocusing solely on model features that are necessary to explain the

eophysical data [32]. Such a regularization term generally lacks

eological justification and results in blurry models that are overly

mooth and geologically unrealistic [42]. One step forward is to arti-

cially introduce fine-scale information by adapting multi-Gaussian

eostatistical models that describe the correlation between two

oints in space throughout the volume of investigation (we refer to

hilès and Delfiner [23] for a general introduction to geostatistics).

owever, similar to the overly smooth models obtained by regular-

zed inversion, the multi-Gaussian framework is often insufficient to

http://dx.doi.org/10.1016/j.advwatres.2015.09.019
http://www.ScienceDirect.com
http://www.elsevier.com/locate/advwatres
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advwatres.2015.09.019&domain=pdf
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escribe realistic geological structure and especially those impacting

ow responses [49,57,89,95].

In many cases, the measured hydrogeological or geophysical data

an be complemented by ancillary information on the heterogeneity

f subsurface formations that is obtained from borehole data, analog

utcrops or databases of previously studied sites. Expert knowledge

s also important. For example, sedimentologists may provide geolog-

cal descriptions of the architecture of rock facies, their mutual spatial

elationships, geometrical constraints or rules of deposition. In appli-

ations where supporting data are sparse and the geological context

s unclear, it is perhaps even more important to assimilate and for-

ally test competing conceptual geological models [49,109,134].

This review describes existing approaches to incorporate prior ge-

logical understanding in the inversion of geophysical and hydrogeo-

ogical data to better predict subsurface flow- and transport processes

t relevant temporal and spatial scales. This assimilation problem is

t the forefront of many exploration, environmental, and research

hallenges of relevance for the Earth Sciences. Research in the area

s very active, but publications are widely spread over various disci-

line journals with little interaction across disciplines (e.g., oil/gas vs.

roundwater). Only a few attempts have been made to bridge these

ommunity gaps (e.g., [82]).

The presentation is structured as follows. Section 2 formulates

he inverse problem as the integration of the information offered by

eophysical and hydrogeological data, their relationship, and an un-

erlying conceptual Earth model. Section 3 describes approaches to

reate geologically realistic priors and how to generate geologically

ealistic realizations by sampling this prior. Section 4 introduces

pproaches on how to parameterize models and propose model

pdates that are representative samples of a geologically realistic

rior. Section 5 reviews how the inverse problem can be solved

n the general case using sampling techniques and under more

pproximate conditions using stochastic search and optimization.

ection 6 proposes two alternative strategies for bringing the various

ieces (Sections 3–5) together in solving practical field cases. Section

provides concluding remarks.

. The inverse problem

.1. General formulation

Tarantola and Valette [167] formulated the general nonlinear in-

erse problem as a combination of the information provided by N

ata, d, by a priori information about M model parameters, m, and

y theories that relate the two p(m, d). In the following, a slightly

ess general formulation is considered that is based on a traditional

ayesian framework [86].

The posterior probability density function (pdf) p(m|d) is

p(m|d ) = p(d|m )p(m)

p(d)
, (1)

here L(m|d) ≡ p(d|m) is the likelihood function that typically sum-

arizes the statistical properties of the error residuals between ob-

erved and simulated data and p(m) is the prior pdf. The evidence

(d) is important for model selection and averaging, but it can be

eglected when considering a fixed model parameterization. In this

ase, the unnormalized density suffices

p(m|d ) ∝ L(m|d )p(m). (2)

The solution to the inverse problem can be represented as a

losed-form expression of p(m|d), an approximation based on sam-

les from this distribution or one representative model obtained by

ptimization.
.2. The likelihood

The forward problem consists of simulating the data response dsim

f a proposed model mprop

sim = g(mprop). (3)

The forward simulator g( − ) typically involves numerical simula-

ions based on a physical theory (e.g., the advection–dispersion equa-

ion to predict tracer breakthrough curves or the electromagnetic

ave equation to simulate ground-penetrating radar responses).

Assuming that measurement and modeling errors follow a Gaus-

ian distribution, the likelihood function is

(m|d ) = 1

(2π)
N/2det(CD)

1/2

×exp

(
−1

2
(g(m) − d − bD)

T
C−1

D (g(m) − d − bD)
)
, (4)

here CD is a covariance matrix given by the sum of the covariance

atrices describing modeling CT and observational errors Cd (e.g.,

165]) and bD = bT + bd describing bias terms associated with mod-

ling and observational error distributions that are not centered on

ero [64].

It is common practice to assume that both data and modeling er-

ors are uncorrelated, thus, making CD a diagonal matrix. This choice

s often made out of convenience and because it is challenging to

etermine proper error models of field data (observational and ge-

metrical errors) and forward solvers (simplified physics, numeri-

al approximations, effects of parameterization, etc.). Gaussian error

odels are very sensitive to outliers and alternative distributions, for

xample, symmetric exponentials may provide more robust results

e.g., [26]). Furthermore, replacing CD with a diagonal matrix and ig-

oring bias terms can lead to important inversion artifacts [64], but

etermining CD and bD can be very challenging in practice. One ap-

roach is to use a computationally expensive, but physically correct

orward simulator, to build an error model that is used in subsequent

nversions that rely on simplified forward models [64]. Another ap-

roach is to approximate these errors with an assumed functional

orm, while inferring parameter values (e.g., those in an autoregres-

ive model) during the inversion process [155].

Furthermore, statistical rock physics models can be included in

he likelihood function (e.g., [41]) to link physical properties (sensed

y geophysical data) and hydrogeological target properties. These re-

ationships are often more straightforward when dealing with time-

apse data (i.e., monitoring of geophysical variables over time). Statis-

ical rock physics is an area of active research. At present, the spatial

upport and correlation of the scatter in rock physics relationships,

heir scaling as a function of observational scale, and how parame-

ers vary in space are often largely unknown.

.3. The prior

In its simplest form, the M model parameters refer to mate-

ial properties in a regular mesh. In this case, the standard multi-

aussian description of the prior pdf p(m) takes a similar form as the

ikelihood function [165]

p(m) = 1

(2π)
M/2det(CM)

1/2
exp

(
−1

2
(m − m0)

T C−1
M (m − m0)

)
,

(5)

ith CM the model covariance matrix describing the spatial correla-

ion between model cells and m0 the expected value of the model

arameters. Assuming a multi-variate distribution of the prior will

trongly influence the spatial characteristics of the posterior solu-

ions. A Gaussian prior with a Gaussian likelihood function leads, in

he linear case, to an explicit pdf for the posterior which is also Gaus-

ian (e.g., [165]). Similarly, a Gaussian mixture prior with a Gaussian
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mixture likelihood gives an explicit expression for the posterior Gaus-

sian mixture pdf [60]. However, complex priors describing realistic

geological settings are often poorly described by an explicit pdf and

alternatives are needed.

3. Simulation of geologically-based prior model realizations

Hydrogeological subsurface heterogeneity has traditionally been

mostly modeled using multi-Gaussian spatial laws (e.g., [100]).

Such a representation has many advantages, including mathemati-

cal tractability and parsimony, since the spatial dependency between

points within a model is completely defined by its mean and covari-

ance function, which can be directly estimated from subsurface data.

In the 1990s, it became clear that this framework was insufficient to

adequately cover all possible heterogeneity patterns found in geo-

logical formations [57,90,177]. Inadequate heterogeneity models may

lead to systematic bias in model predictions and underestimation of

uncertainties, especially when large data sets are available [95,152].

This section focuses on different approaches to integrate geological

understanding in prior model realizations.

3.1. Geologically realistic heterogeneity models

In the framework of this paper, a subsurface model is consid-

ered geologically realistic when it explicitly integrates geological

understanding (expertise, outcrops, databases) in the form of rules,

patterns and geometries using quantitative methods of varying

complexity. For example, a mere interpolation of geological facies

is not considered a plausible geological model if it does not include

some general information about the facies architecture derived from

geological reasoning.

An important, but largely unanswered, question is how to de-

fine quantitative criteria to detect if the geometry and structures of

a given heterogeneity model are plausible? Expert knowledge can be

used to reject models that are too simplistic or do not include features

that are characteristic of a certain environment. For example, the ge-

omorphology of channels can be described by a set of morphomet-

ric indicators [73]. The comparison of such indicators derived from

proposed models and field observations could allow distinguishing

those that are more realistic than others. While this is a promising ap-

proach, general quantitative indicators and corresponding databases

of relevant indicators are still needed to provide objective criteria

(e.g., [91,93]).

3.2. Process-based modeling

Process-based modeling consists of simulating the geological pro-

cesses that lead to geological formations and the resulting internal

heterogeneity is obtained as a by-product of these processes [133].

Certain process-based simulators solve a set of partial differential

equations that describe sediment transport, compaction, diagenesis,

erosion, dissolution, etc. [51,101,128], others use cellular automata

(Fig. 1). Process-based simulations allow for analyzing processes that

are difficult or impossible to observe at the appropriate time and spa-

tial scales through physical experiments [51]. They also allow recon-

structions of geological patterns from the paleo-history of sedimen-

tary basins [58]. Their main limitations are that the data required

to constrain boundary conditions and source terms for a given site

are often not available and long computing times limit their useful-

ness for stochastic simulations and inversion. These techniques are

also poorly suited for conditioning to direct and indirect data and

therefore they are not described in more details here. Nevertheless,

process-based models are the most advanced tools available today to

produce geologically realistic models.
.3. Object and pseudo-genetic models

Object and pseudo-genetic methods provide structure-imitating

ealizations [102] and offer a compromise between numerical ef-

ciency and geological realism. A wide range of methods has

een proposed for different types of geological environments

38,92,130,140,153,171]. They usually decompose the heterogeneity

nto a set of individual structures (architectural elements) with sizes,

ositions and orientations drawn from statistical distributions. The

implest techniques consider only one element type (e.g., a sinusoidal

and channel, a fracture, or a clay lens) that the algorithm places

n space according to prescribed rules. Modern algorithms may in-

lude many architectural elements (e.g., channels, levees, crevasse

plays, clay drapes), the shapes of the objects are more flexible and

he relations between architectural elements are accounted for, as are

heir temporal evolution. For instance, a fracture model may include

racture growth and interactions that mimic mechanical processes

33]. Similarly, as shown in Fig. 2, the processes of channel evolu-

ion through time (e.g., sedimentation, avulsion) can be accounted

or while simulating the objects [111,138]. This leads to geological

imulations that are not only fast, but also realizations that display

similar degree of geological richness as those obtained by time-

onsuming process-based models. Such ideas have also been used

o develop 3D models of karst networks [10,144] by accounting for

re-existing geology, fracturing, and phases of karstification with-

ut solving the flow, transport, and calcite dissolution equations (see

ig. 3). This type of approach results in conduit geometries that are

ighly realistic and that are expected to better describe connectivity

nd groundwater flow than those obtained based on purely statistical

rguments.

A current trend to simulate simple structures, such as the cen-

erline of a channel or the topography of a depositional surface, is

o use (within the pseudo-genetic method) more advanced spatial

tatistics. For example, training-image based methods (described in

ection 3.4) can be used in combination with process-based tech-

iques to train a multiple-point statistics (MPS) algorithm to model

obes that are stacked to create a deltaic structure [125] or a braided

iver system (Fig. 4). Images of real channels can be used to train MPS

ethods to simulate realistic channels within an object based simu-

ation approach [115].

Object-based methods can result in highly realistic descriptions

f subsurface heterogeneity. They are fast and can be conditioned

sometimes with difficulty) to local measurements. One of the main

ssues with this approach is that models are often specific for one

ype of geological environment only and a large number of parame-

ers need to be determined from analog sites, thereby emphasizing

he need for databases [44,91].

.4. Training image based models

A new class of structure imitating approaches emerged 20 years

go [62,114]. It uses a training image that represents a fully informed

escription of how the subsurface may look like, but with the lo-

ations of different repeating structures being unknown. The con-

ept of a training image can be seen as a vehicle to convey the prior

onceptual geological knowledge [89] that is to be combined with

ther sources of information (e.g., boreholes, outcrop, etc.) via the

imulation algorithm [18]. The first successful simulation algorithm

SNESIM) based on these ideas works with high order conditional

tatistics or multiple-point statistics (MPS) derived from the train-

ng image [160]. The training image is analyzed and the number of

ccurrences of each pattern is stored in a search tree. A pattern is de-

ned as a group of cells with certain values and a certain geometrical

elation. During the simulation, the search tree is used to estimate

onditional probabilities by retrieving all patterns that are compati-

le with the available data [160]. The SNESIM algorithm is restricted
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Fig. 1. Process-based simulations based on cellular automata that describe the topography of a braided system as a function of various controlling factors, such as bank erodability

(E), vegetation growth, and discharge [128]. This type of process-based models is very useful to answer scientific questions about the factors that control geological evolution.

Unfortunately, it is most difficult to condition process-based simulations to site-specific data since there is no direct deterministic link between the algorithmic variables and the

resulting simulated field.
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d

o categorical images with a few categories because of computational

memory) limitations. Several alternative and improved methods

ave been proposed (see review by Hu and Chugunova [75]). The

oncept of a training image opened up a whole set of possible sim-

lation methods. Indeed, why not use techniques derived from pat-

ern recognition, texture synthesis and machine learning algorithms

116]?

It is now possible to apply training image based techniques with

oth continuous and categorical variables [5,163,173]. For example,

he direct sampling algorithm allows simulations within a multi-

ariate framework with both categorical and continuous variables

119,123].

In the last ten years, the focus has been on making algorithms

ore efficient and better at reproducing patterns in the training im-

ge [161]. Parallel and graphics processing unit (GPU) versions of var-

ous algorithms have been implemented (e.g., [79,135,158,159,164]).

ew approaches derived from image analysis and pattern simulations

re currently explored [113] (Fig. 5).

Training image based techniques are general and can be applied,

n theory, to all kinds of geological environments. It is also straight-

orward to account for local conditioning data. The only requirement

s a suitable training image, but obtaining this image can be challeng-

ng [14,25,28,30,158]. Common approaches include using a process-
ased or an object-based method (see Sections 3.2 and 3.3; [28,112]),

utcrop data [81,96] or a pre-existing geological model [8,77]. It

hould also be acknowledged that certain continuous and elongated

eological structures are still difficult to model with current state-of-

he-art MPS methods.

Markov random fields (MRF), originally developed in statistical

hysics and image processing, have been used to define geologic prior

odels with spatially correlated categorical variables such as differ-

nt lithologies. For a spatial process, the Markovian property results

n the full conditional distributions being specified by the conditional

istribution given only the values in a spatial neighborhood, often

escribed on a grid or a lattice. MRF models are based on rigorous

athematical and probability theory foundations and can account for

ultiple point statistics. In this sense MRFs are parametric multiple-

oint statistical models. MRF models of moderate size can be sam-

led from with exact forward-backward algorithms but for large grids

arkov chain Monte Carlo sampling has to be used. This works in 2D

ut Markov chain Monte Carlo (MCMC) sampling becomes imprac-

ical in most 3D applications, as the convergence can be very slow.

wo modifications of the general MRF model have been used in reser-

oir modeling. In the so-called profile Markov models (e.g. [169]), the

epth dimension is separated from the lateral directions. The depth

imension is sampled by a direct solver like a forward–backward
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Fig. 2. Object based simulation of a fluvial system. Left: Evolution of a meandering river system after a period of 10,000 years [111]. Right: A 3D distribution of the facies resulting

from the same model (Data courtesy: Mines Paris Tech).

Fig. 3. Example of the simulation of the geometry of a karstic cave using a mixture of an object based technique and genetic concepts [144].
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[

algorithm while the MCMC sampler iterates over the 2D lateral di-

mensions. The convergence is much faster than a full 3D MCMC

sampling. Another subclass of MRF models that has seen some 3D

applications are the so-called Markov mesh models (MMM) that

make MRFs more applicable by introducing an ordering on the

grid. Markov mesh models are a type of partially ordered Markov

models, which consider the conditional distribution for a cell given

the cells with a lower order and not the entire general neighbor-

hood as in a MRF model. Stien and Kolbjornsen [157] show appli-

cations for MMM for facies modeling (see also Chapter 4 in [114]).

Although MRF models are based on a solid theoretical founda-

tion and only require a few parameters, it is challenging to con-

struct MRF models that produce geologically realistic realizations.

For instance, a large neighborhood is required to reproduce chan-

nel structures seen in reservoirs. With large neighborhoods, care-

ful approximations and intensive computing is required and MCMC
lgorithms tend to be very slow. Inferring the parameters from

parse data is also problematic and often the parameters are in-

erred from a training image. Directly using the training image

n multiple-point geostatistical algorithms offers a better practical

lternative.

.5. Variogram based models

Variogram-based approaches are widely used, but they are of-

en insufficient to capture the complexity of geological structures.

equential indicator simulations (SIS) [55] or transition probability

ased techniques, such as T-Progs [19], were remarkable advances in

he 1990s and they are still among the most popular techniques to

odel geological heterogeneity [36,46,108,142]. Unfortunately, they

annot properly reproduce curvilinear features, such as channels

160] or more complex structures and they do not include conceptual
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Fig. 4. Example of the simulation of successive topographies by using the direct sampling MPS approach, at each time step, to model the internal geological heterogeneity of

braided river systems [137].

Fig. 5. Training image based simulation of a continuous variable representing grain sizes using the image quilting approach. Left: Training image obtained from flume experiment;

Right: one simulation [113].
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eological information beyond simple constraints on the dimension

nd relations between structures. They are also limited in simulating

ealistic subsurface hydraulic connectivity, which often has consider-

ble impact on fluid flow.

A method of increasing popularity is the truncated pluri-Gaussian

pproach ([4,43,107]; see Fig. 6). Its principle is to model two (or

ore) multi-Gaussian fields with underlying variograms. These fields

re then transformed into a single categorical field using truncation

ules. The truncation rules offer a means to describe possible rela-

ions between geological facies. For example, in a fluvial environ-

ent it is possible to impose channels to be surrounded by levees,

hich in turn are surrounded by a flood plain (e.g., [118]). As com-

ared to SIS or T-Progs, the inference of the underlying variogram is

ore complex since the multi-Gaussian fields are not observed and

n iterative method must be employed. The advantage of the method

s that it requires only a very general geological concept. It can handle

trong non-stationarity along the vertical and horizontal directions

nd is capable of generating complex patterns. An issue is that the

ontact relations defined in the truncation rule are isotropic. For flu-

ial systems, this implies that levees are usually found all around the
 c
hannels, including at the top of the channels, which is geologically

nrealistic.

. Model parameterization and perturbation

.1. Introduction

The previous section described strategies to produce geologically

ealistic subsurface models. The present section focuses on how to

arameterize inverse problems and how to perturb model realiza-

ions to ultimately derive subsurface models that are geologically re-

listic and in agreement with site-specific data. For the simplest geo-

ogical models, only a few parameters are sufficient, such as the thick-

ess of a geological layer, the dip of a fault, or the diameter of a sand

ens. In these cases, solving the inverse problem is straightforward by

asically perturbing model parameters iteratively (e.g. [172]). How-

ver, in most cases the degree of complexity of the geological models

s much higher (see Section 3) and other techniques are required. In

articular, geological models may typically include millions of dis-

retized elements that need to be populated by parameter values.
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Fig. 6. Visual comparison of (a) a truncated pluri-Gaussian simulation and (b) a sequential indicator simulation [136]. The relations (contacts) between the facies are less erratic

on the truncated pluri-Gaussian simulation than on the sequential indicator simulation. For example, the blue facies is usually located in between the green or red and violet on

the left image, while all types of contact can be observed on the right picture. Nevertheless, the overall geological realism is low.
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Reducing the number of unknowns in the inverse problem is often

necessary to avoid prohibitive computing times, but it can be chal-

lenging to preserve geological realism when working with a low di-

mensional representation.

4.2. Model reduction

Model reduction aims at finding a model vector mred with

Mred << M that provides an equivalent representation (or at least

describes the most salient features of the subsurface heterogeneity)

of the model vector m that describes the subsurface at the highest

possible resolution (e.g., Fig. 5). In general terms, model reduction

consists in defining a mapping function f(–) between m and a lower-

dimensional mred

mred = f (m). (6)

Model reduction is traditionally achieved by defining regions of

constant properties or relying on the framework of multi-Gaussian

fields using various schemes (see review by de Marsily et al. [35])

such as pilot points [141], self-sequential calibration [56], or gradual

deformation [74].

Another approach consists of analyzing a set of geological mod-

els (see Section 3) using image compression techniques. Examples

include the use of wavelets [146], Karhunen–Loeve or Discrete Co-

sine Transforms [85], or Singular Value Decomposition (SVD and K-

SVD) [98]. The main advantages of those transforms are their gener-

ality and numerical efficiency. In these cases, the mapping is usually

based on a linear combination of base vectors that are gathered in a

matrix F:

mred = Fm. (7)

A possible extension of this framework is kernel based Principle

Component Analysis (KPCA; [151]) which introduces non-linearity

and therefore more flexibility in the transform, but renders the back-

transformation (termed pre-image problem) more complex. In all

cases, the back transformation usually produces a continuous field

and not a discrete map of facies. Therefore, the examples available so

far in the literature are restricted to rather simple geological models

(e.g. [97,151]).

4.3. Prior-based model perturbation

It is essential to consider the spatial characteristics of the geolog-

ically realistic models when making model proposals mprop. A per-

turbation or transition technique is thus needed that allows moving,

during the inversion process, from a current model mpres to mprop

while preserving most of the model structure:

mprop = f (mpres). (8)

The function f ( − ) is a perturbation mechanism that is not nec-

essarily formulated analytically.
We first illustrate this principle using the multi-Gaussian case. In

he gradual deformation method, a proposed model mprop is obtained

sing the linear combination

prop = mprescos(θ) + mrandomsin(θ), (9)

here mrandom is a random realization of a multi-Gaussian field and

is an angle. This weighted sum ensures that the proposed model

prop belongs to the Gaussian prior. The difference compared with

pres grows with θ and mprop becomes independent of mpres when

= 90◦. It is straightforward to extend the gradual deformation to

runcated Gaussian and pluri-Gaussian fields [76]. The same princi-

le can also be generalized to combine the uniform random numbers

hat are underlying most stochastic techniques, for example, to de-

orm object-based simulations of fractures [87].

The probability perturbation method (PPM) is similar to the grad-

al deformation method in principle but offers a different perspec-

ive [15,17]. Instead of combining simulations directly or modifying

he underlying random numbers, PPM takes a linear combination of

wo probability fields to obtain a single probability field that is then

sed as soft data to guide MPS simulations. This model perturbation

echnique is rather general and applicable for object based, pluri-

aussian, and MPS models. Consider the case with a single global

erturbation parameter r with m a binary model. To achieve a per-

urbation, the current realization is perturbed using a model of prob-

bilities p defined on the same grid as m:

(r, m) = (1 − r) mpres + r pm, (10)

here pm is the marginal distribution, in this case simply the global

roportion. This probability model is then used as soft probability

o generate a new realization. The value of r regulates the degree of

odel perturbation from one model realization to another (Fig. 7).

o allow for more flexibility in the perturbation, regions, each with a

ifferent r, can be introduced. This achieves a regional perturbation

here some regions may change more than others. Grana et al. [61]

sed the PPM method to generate facies realizations conditioned to

eismic data, but the geologic prior was described simplistically by a

ariogram based model.

It is not always possible that the perturbation mechanism (Eq. (8))

an be defined analytically. It is then necessary to obtain mprop by res-

mulating a fraction of the model cells in mpres conditional to those

hat are left unchanged. The simplest transition between two models

s simply to re-simulate one random model cell at a time, but this is

ery slow as many transition steps are needed to create a significant

odel perturbation. To accelerate the transition, the blocking mov-

ng window method re-simulates a whole portion of the model do-

ain at each iteration (Fig. 8), while the remaining part of the model

omain and all field observations are kept as conditioning data. The

ocation, and possibly the dimension of the window (usually a rect-

ngle), is changed randomly. This approach was pioneered by Fu and

ómez-Hernández [3] for multi-Gaussian fields, before being applied

o MPS simulations [50,65,66].
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Fig. 7. Example of perturbations from one MPS realization drawn from the prior into another prior sample by means of the probability perturbation method (adapted from [114]).

Fig. 8. The blocking moving window method uses sequential resimulation of a part of

the domain [66].
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In contrast to the blocking window method, the Iterative Spatial

esampling (ISR) method [117] consists of re-simulating grid cells

hroughout the model domain. At each step, a fixed number of ran-

om points are selected and used as conditioning data for the next

teration. The perturbation is large when there are few conditioning

oints and small when there are many conditioning points. The loca-

ion of the conditioning points can be completely random or focused

n regions were the model is expected to be reliable [88].

. Inversion with complex priors

The inverse problem can be solved under different limiting as-

umptions. The formulation can be rigorous and hence often slow,

r simplistic and possibly inaccurate. It is important to use a formu-

ation that is adapted to the problem at hand and the available com-

uting resources. This can be addressed by considering algorithms

hat allow varying the trade-off between competing elements of the

nverse problem. For a given computational budget, it is often reveal-

ng to analyze the results obtained by varying the error description,
he accuracy of the forward model, the rock physics relationships, the

raining image and the inverse algorithm itself.

Below, we briefly introduce three basic categories of approaches

o solve inverse problems: sampling based methods, stochastic search

ethods and optimization methods.

.1. Sampling based methods

Sampling based methods aim at approximating p(m|d) by draw-

ng random samples from this distribution. This is either done by

valuating random and independent samples from the prior or by

mportance sampling that preferentially sample significant areas of

(m|d).

Rejection sampling is the only exact sampler, but it is often com-

utationally infeasible. It proceeds by repeating the following two

teps

(1) Draw a sample mprop from p(m)

(2) Accept this proposal as a draw from p(m|d) with probability

p = min

{
1 ,

L(mprop|d )

SL

}
, (11)

here SL is the supremum of the likelihood function, which is gener-

lly unknown and must therefore be set to a large value. In a recent

ase study, Dorn et al. [39] used rejection sampling to obtain a set

f discrete fracture network models that agreed with both hydrogeo-

ogical and geophysical data. The rejection sampler works well if the

rior model space is small, but is unfeasible for most practical appli-

ations. Rejection sampling is primarily used as a benchmark sampler

o evaluate the performance of other sampling methods.

Markov chain Monte Carlo (MCMC) methods, such as Metropolis

ampling [67] or Gibbs sampling [52] can be used to sample from the

osterior distribution. A chain of model realizations are generated, in

hich mprop is dependent on the previous model mpres. A very simple

ay to inject such dependency in spatial models is to retain some part

f the previous realization as conditioning data (see Section 4.3).

Mosegaard and Tarantola [126] developed an extended version of

he Metropolis algorithm that is applicable to large spatial problems
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Fig. 9. Comparison of Metropolis sampler (using iterative spatial resampling) with rejection sampling. (a) Reference Facies model, (b) corresponding synthetic amplitude data, (c)

ensemble average of the rejection sampler, and (d) ensemble average of the Metropolis sampler. Shown are the two well locations (white lines) where facies conditioning data are

present. The rejection sampler required about 100,000 forward model evaluations while the Metropolis sampler took only 500 evaluations (from [88]). The prior model consists of

a realization generated from a training image (not shown).
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with complex priors, whose analytical form is not available. In partic-

ular their method can be applied to MPS-based priors. It proceeds by

repeating the following three steps

(1) Re-simulate parts of mpres using any algorithm that produce

geologically realistic models (e.g., an MPS algorithm) to obtain

mprop (see Section 4.3)

(2) Accept mprop with probability

p = min

{
1 ,

L(mprop|d )

L(mpres|d )

}
(12)

(3) If accepted then mpres ← mprop

Conditional simulations ensure that mprop is drawn from p(m). It

is possible to optimize the acceptance rate by determining the appro-

priate size of the blocking moving window or the fraction of model

cells to be updated in the ISR method (Section 4.3). Fig. 9 shows an

application of the Metropolis sampler with iterative spatial resam-

pling. The data are the seismic responses modeled using an approxi-

mate 2-D Born filter on the MPS realizations where seismic velocities

differ considerably between facies (channel/background). The results

of the Metropolis sampler compare well with the rejection sampler.

Ulvmoen and Omre [169] used Markov random fields to define

a prior model for lithologies, and then used block Gibbs simulation

to sample from the posterior, conditioned to seismic amplitude ver-

sus offset (AVO) data. In a hierarchical Bayesian setting, Rimstad and

Omre [143] also relied on Markov random fields for the prior and used

MCMC to sample from the posterior distribution of facies and rock

properties conditioned to seismic data. The likelihood function con-

sists of rock physics relations and a linearized convolution model for

the seismic data.

One problem with the extended Metropolis algorithm is that the

acceptance rate of proposals often becomes very low, and the algo-

rithm becomes inefficient, when using many model parameters and

large data sets. This can be avoided by using only small model up-

dates, but this increases the risk of the chain getting stuck in local

minima. More efficient MCMC algorithms exist that use local gradi-

ents in the likelihood function (stochastic Newton; e.g., [120]), several

chains with different temperatures (parallel tempering; e.g., [149]),

the history of sampled points (adaptive MCMC; e.g., [63]) or the state

of parallel chains to make efficient model proposals (differential evo-

lution; e.g., [170]), etc. However, adapting these methods in the con-

text of geologically realistic priors is non-trivial. Recently, Lochbühler
t al. [110] used an ensemble of training images to define a reduced

odel parameterization and a prior distribution in terms of summary

tatistics. They combined adaptive MCMC, differential evolution and

ubspace sampling as implemented in the DREAM(ZS) algorithm [105]

o invert for the porosity field and a rock physics transform using

rosshole geophysical data.

.2. Stochastic search methods

One of the problems with sampling methods is the CPU time.

CMC methods are very slow, and they become impractical for appli-

ations where the forward model takes a few hours to run. Simplifi-

ations are thus often needed to address realistic three-dimensional

ase-studies, but it is generally unclear which are the assumptions

hat can be made and those that should be avoided. Intuition built

rom low-dimensional examples is often not applicable in high pa-

ameter dimensions.

Stochastic search methods are designed to find the global min-

mum of an objective function and they have been used widely

or geophysical applications. These methods include simulated an-

ealing techniques (SA), genetic algorithms (GA), the neighborhood

earch algorithm (NA) and particle swarm optimization (PSO). Sen

nd Stoffa [156] give an overview of global optimization methods and

heir applications in geophysical inversion. Stochastic search based

ethods are faster than sampling methods, but only sample approx-

mately from the posterior pdf. They provide multiple realizations

hat:

• are samples from the spatial geological prior as specified with any

of the methods in Section 3;
• the data are matched up to a specified error level defined through

an objective function.

Often, the major subjectivity in inversion lies in the choice of the

rior. When the model formulation itself is highly subjective one may

uestion the need for rigorous sampling and it might become inter-

sting to instead explore multiple realizations obtained by stochastic

earch methods. An example of this approach is given by Gonzalez

t al. [59] who used a training image and multiple-point simulations

o create samples from the prior. These are then matched to seis-

ic data within a specified error level, giving multiple realizations

hat honor the spatial geologic prior. Their algorithm uses a sequen-

ial trace-by-trace approach, with rock physics relations and convolu-

ional seismic forward modeling. Below, we provide further examples
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Fig. 10. (a) A reference model and ((b) and (c)) MAP solutions with different weights

given to patterns found in a training image. With a sufficient weight, it is possible to

obtain (c) models that are consistent with the training image patterns (from [106]).
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f stochastic search methods in presence of a geologically realistic

rior.

The Neighborhood algorithm (NA, [147,148]) was originally pro-

osed for seismological inverse problems and later applied to flow

nverse problems [24]. The method derives an approximate misfit

urface using previously evaluated misfit functions, and, based on

he approximate misfit, identifies multiple parameter combinations

hat are likely to achieve a minimum misfit. The approximate misfit

urface is constructed by compartmentalizing the model space into

oronoi cells. The neighborhood algorithm was originally designed

or parameterized problems, where parameters could, for example,

e object shape parameters, or layer parameters, all listed as a vector.

n case of geological prior formulated with training images, Suzuki

nd Caers [162] extended NA to priors involving MPS training images

y parameterizing the problem using distances between model real-

zations. NA only requires the definition of a distance to move about

nd search for models sampled from the prior with low misfit. Suzuki

nd Caers [162] used this approach to solve a multiphase subsurface

ow inverse problem with a set of 81 training images representing

lternative prior geological scenarios.

The ensemble Kalman filter (EnKf; [1,45,72,131]) is an approach

o data-based forecasting that has recently gained attention for sub-

urface inverse problems. EnKf is a recursive filter operation where

mismatch in the data is used to adjust the model by a linear up-

ate operation. In its most basic formulation, EnKf assumes a multi-

aussian distribution on model and data variables and a linear re-

ationship between all variables. Several authors have studied these

imitations and proposed extensions of the EnKf in cases when the

rior geological uncertainty can no longer be realistically modeled

ith a multi-Gaussian distribution. Sarma and Chen [150] proposed

machine learning approach whereby the EnKf is applied after a ker-

el transformation, possibly including a Karhunen–Loeve expansion

151]. The problem with this approach lies in the back-transformation

to the actual model space). This back-transformation is non-unique,

ence constitutes an inverse problem on its own, subject to the same

eological constraints as the initial problem. Jafarpour and Khod-

bakhshi [84] applied the EnKf to soft (auxiliary) variables that con-

rols the generation of geostatistical realizations (in their case MPS

odels). Hu et al. [78] proposed to apply the EnKf to the uniform

andom numbers used to generate the geostatistical realizations by

eans of a gradual deformation-based parameterization. Other ap-

roaches rely on transforming the non-Gaussian local distributions

nto Gaussian ones on which then the EnKf can be applied [176]. Al-

ernatively, Zhou et al. [175] proposed a pattern-based search method

n combination with direct sampling [119] to directly generate an en-

emble of realizations that match the data and reflect geological pat-

erns. In that spirit, they only retain the idea of using an ensemble

ut do not rely on linear updates or transformation of space. While

he linear, Gaussian form provides (multi-Gaussian) posterior uncer-

ainty that is well understood, the extended techniques only offer

artial and approximate posterior uncertainties.

.3. Optimization methods

In some practical cases, it may be useful to obtain just one solu-

ion, for example, the solution m that corresponds to the maximum

f p(m|d) or a maximum a-posterior (MAP) solution. Lange et al. [106]

efined a MAP solution for TI-based priors in a way that is reminis-

ent of methods of regularization for solving inverse problems [168]:

data mismatch term is coupled with a regularization term with the

im to induce some desired property onto the solution:

MAP = argmin
m

(
1

2
‖g(m) − dobs‖2

CD
+ αh(m)

)
, (13)
here the subscript indicates that the data are weighted with re-

pect to CD. In traditional regularization, h(m) is often used to induce

moothness by a discretized gradient operator and the weight α is

sed to regulate the degree of smoothness. In Lange et al. [106], the

ormulation is generalized to consider regularization with respect to

he training image. Instead of stating a degree of smoothness (such

s by means of a covariance or derivatives), the MAP solution is en-

orced to have patterns similar to the training image. The function

(m) is defined to be a measure of dissimilarity between the training

mage patterns and the patterns of any realization generated from

t. To obtain a summary of pattern frequencies, one can use a multi-

oint histogram, which consists of a simple counting of the occur-

ence of pixel-configurations within a given template or neighbor-

ood. A squared difference in counts would then form such a function

(m). Perturbation methods such as simulated annealing can be used

o find the MAP solution. Fig. 10 shows clearly the influence of the

egularization, where a MAP solution with insufficient regularization

eviates from the training image patterns and provides unrealistic

ooking solutions.

. Workflows

.1. Introduction

The inversion of data and the creation of subsurface models that

match” the data is rarely an end goal. Practical field applications

tart with a purpose or decision question: what are the subsurface

ydrogeological models ultimately used for and what decisions are

equired? Such a question of purpose leads to a number of possible

ollow-up questions. What subsurface structures impact this decision

he most? What are the most useful data to answer a scientific ques-

ion or characterize a target of interest? For example, should the fo-

us be on static geophysical data (i.e., acquisition at one given time)

hat mainly provide information about the geological structure, or

ime-lapse data that are better suited to inform about dynamic pro-

esses? What is the best combination of geophysical and traditional

ydrogeological data (i.e., pumping tests, tracer tests)? What is the

elative value of emerging techniques that provide extensive high-

esolution data on hydrogeological properties (e.g., [9]) compared

ith upscaled and more integrated data (e.g., geophysics, tracer and

umping tests)? What is the relative information content of the prior

ith respect to the data? If the prior is uncertain (this is always the

ase), is it better that the final solutions are potentially more affected

y the prior than tens of thousands of seismic traces or extensive hy-

raulic tomography tests? Or, should the immense richness of seismic
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Fig. 11. Scheme for a general workflow on stochastic inversion and uncertainty analysis.
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data dominate over geological knowledge? These questions can only

be appropriately addressed by considering flexible workflows.

Alternative workflows for the joint inversion of several data

sources have recently been proposed by several authors both in

the groundwater and petroleum literature (e.g. [13,22,40,48,68,70]).

These authors cover the methodological aspect of joint use, whether

through sequential or joint assimilation of data sources. Most work-

flows do not cover or include geological information sources and un-

certainty assessment is primarily on the geophysical and rock physics

aspects of the inverse problem. Below, we describe two alternative

ways of thinking that capture most ideas in the combined literature

that we elaborate upon in the next section:

• A top-down, Popper–Bayes workflow: the modeling focus lies on

the hydrogeological/geological prior model and how data, both

geophysical and hydrogeological, can be used to falsify geological

concepts and reduce an initially large prior uncertainty.
• A bottom-up, data-focused workflow: the focus lies on data inver-

sion, whether sequential or joint, and prior geological models are

used either as constraints to the inversion or to downscale inver-

sion results into high-resolution geological/hydrogeologic models

for forecasting.

6.2. Top-down, Popper–Bayes

Tarantola [166] proposed to combine Popper’s philosophy of falsi-

fication with Bayesian information theory in a geophysical context. In

such an approach, the focus lies on rejecting scenarios that are incom-

patible with the data rather than on constructing models that match

the data as well as possible (see also Oreskes et al. [132] and Linde

[109]). To make this practical, it is necessary to construct a very wide

prior of geological models that include a large set of possibilities. Such

methodologies are mostly lacking in the inversion literature because

it calls on a very different way of doing scientific analysis and syn-

thesis: geological interpretation of all available data such as, for ex-

ample, depositional genesis in the case of sedimentary environments

(e.g., [69]).

Fig. 11 provides a broad overview of a strategy to achieve uncer-

tainty and risk quantification in three stages based on the Popper–

Bayes’ concept. As such, it is not a formal methodology, but outlines
ossible combinations of methodologies depending on specific field

hallenges.

.2.1. Geological prior model construction

Even in the construction of a wide geologically realistic prior, data

nter the equation, in particular data obtained from drilling, logging

nd from geophysics. Geological reasoning does not happen in a vac-

um and data should be used at this stage, but such usage is only for

nterpretation, not for inversion. For example, geophysical amplitude

ata can be used as it may reveal interpretable morphologies and

hapes, although only at the resolution of that data or within a lim-

ted extent of the domain. From these data and the geological context,

eologists collect information leading to statements about the possi-

le nature of the depositional environments (alluvial, fluvial, deltaic,

arbonate mound, etc.). None of these various alternatives should be

liminated a priori if data or context does not clearly support this.

ithin each system, variations exist due to sub-classifications within

hat system (see [91]) or variations in certain parametric descriptions

f the system. Analog databases, for example, on proportions, paleo-

irection, morphologies and architecture of facies bodies or geolog-

cal rules of association [44,53] for various geological environments

FAKT: [27]; CarbDB: [91]; WODAD: [94]; Paleoreefs: [99,138]) can

e consulted to define prior distributions about geometries and spa-

ial distribution of geobodies. From a modeling perspective, one may

onsider two levels of uncertainty: the uncertain style or classifica-

ion, often termed “geological scenario” [37] and variations within

hat style. Boolean simulation methods and codes [[38,71,112],[121]]

s well as process-mimicking codes (e.g. [7,139]) can then be used

ither as prior model parameterization or for generating training im-

ges based on a selected style and on a set of sample parameters.

or visualization and quality check unconditional realizations can be

enerated, in a hierarchical fashion: depositional style/geological sce-

ario → geological parameters → 3D model realizations.

The rock physics properties can then be defined within layers or

eobody types. The rock physics properties are often modeled using

ore traditional semi-variogram based methods, hence the parame-

erization at that level is in the form of univariate statistical param-

ters (histogram) and semi-variogram parameters (variogram type,

anges, anisotropy ratios). As for the geological scenarios, the prior
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arameters of those statistical distributions can be derived from ex-

sting databases (e.g., [29]).

.2.2. Sensitivity and corroboration

In the second stage the important question of “what matters?”

sensitivity) and “is it possible?” (corroboration and rejection) are

ackled. At this level, the focus is not on matching data. In sensitiv-

ty analysis, one will need to account for other types of uncertainties,

ot just depositional/geological ones. These uncertainties include:

tructural geological (if faults exist, see [16], Chapter 8 for a review),

ock physics relationship uncertainty [122] and dynamic flow uncer-

ainty (including boundary conditions, initial conditions, fluid prop-

rties, relative permeability, etc.). Sensitivity may be calculated with

espect to data responses or to forecast responses/decision variables

nd often requires forward modeling. Note that a joint sensitivity of

ll parameters is required as many parameters across the various dis-

iplines involved (geology, geophysics and flow) may interact with

ach other [47]. Sensitivity may allow for significant model reduc-

ion as insensitive model parameters can be assigned constant values.

second geological model reduction may occur through corrobora-

ion. In the Popper–Bayes philosophy, uncertainty in the geological

odel is stated as independently as possible from subsurface data.

s a consequence, the relationship between this wide prior and the

ata needs to be assessed to identify inconsistent geological assump-

ions (invalid scenarios) and/or to discover the most likely scenarios.

uch screening does not require inversion, instead it focuses mostly

n the scenario level of geological uncertainty. As such, it could rely

n extracting features and global patterns from the geophysical data

e.g., wavelet coefficient histograms) and comparing them with the

ame features extracted from forward modeling responses from se-

ected prior model realizations. In that context, a conditional proba-

ility can be estimated for each scenario from a few forward models

ased on differences between simulated responses and actual data

134,154]. Note that in practice (as indicated in Fig. 11), one may need

o iterate between geological prior model construction and sensitiv-

ty/corroboration, since it may occur that the stated prior cannot ex-

lain the data (prior model vs. data inconsistency).

.2.3. Inversion

The broad geological prior initially stated may now have been re-

uced through sensitivity analysis and corroboration to a reduced

rior model, with possibly prior probabilities associated to certain

eological scenarios. At this stage one also has gained more insights

nto the model-data-forecast relationships and thus confidence that

nversion methods (Section 5) will be successful in matching the data.

We argue that a Popper–Bayes approach is often highly relevant

or catchment or reservoir scale problems. This workflow is also

uitable for cases where non-geological modeling elements, such as

ock physics uncertainty, boundary and initial condition uncertainty,

hemical/physical uncertainty of fluids are prevalent. In such cases,

onstraints can be added to the inversion to ensure geological plausi-

ility of the inverted model.

.3. Bottom-up, data-focused workflow

The previous workflow is particularly relevant when subsurface

eological heterogeneity plays an important role and the geophysical

nd hydrogeological data are not constraining enough to accurately

mage the subsurface. In other cases, there is considerable confidence

n the nature of geological scenarios and only minor (parameter)

ariations within one single scenario are needed to describe uncer-

ainty. Often this is true when considering practical problems that

ccur over smaller domains such as contaminated sites or the sur-

oundings of a well. The bottom-up workflow can be separated into

equential and joint inversions [13].
In sequential (hydro)geophysical inversion, geophysical data are

rst inverted to provide physical properties; then, rock physics is used

o convert (deterministically or stochastically) the inverted physical

roperties into geophysical scale reservoir/hydrogeological proper-

ies which may be further downscaled using geostatistical techniques

e.g., [[21,31],[145]]). The sequential approach has been used widely

or hydrocarbon reservoir modeling to integrate geophysical, well log

nd core data. This is often the most straightforward approach to use

eophysical data for hydrogeological purposes and it may provide

seful results. The main criticisms of the sequential approach are (1)

hat the resolution limitations of the geophysical models are typically

gnored in the rock physics mapping and this may lead to unphysical

esults, such as, loss of mass [34]; (Moysey et al. [127] attempted to

orrect the rock physics mapping by accounting for resolution limi-

ations by numerical simulations); (2) it is difficult to constrain the

eophysical inversion to hydrogeological constraints [48] and (3) the

stimates are biased if the rock physics relationship is non-linear [12].

Joint (hydro)geophysical inversion relies on first constructing geo-

tatistical realizations of reservoir/hydrogeological properties, then

onverting those properties to physical properties and forward geo-

hysical modeling for stochastic Bayesian inversion by sampling (e.g.,

20,70,80,83]) or optimization (e.g., [103,104]) methods. To illustrate

his approach, let us consider the simple case when the prior infor-

ation is described in terms of the hydrogeological target properties

hydrogeology, the model realizations of these target properties can

hen be mapped into physical fields mgeophysics using an appropriate

ock physics relationship, p(mgeophysics|mhydrogeology). The simulated

eophysical forward response of this proposed physical property field

an then be compared with the observed geophysical data, dgeophysics.

n this situation, the posterior pdf is proportional to:

p(m|d) ∝ p(mhydrogeology)p(mgeophysics|mhydrogeology)

× L(mgeophysics|dgeophysics). (14)

It is seen that the inverse problem is essentially the same as in

q. (2), except for the rock physics relationship, and all the ap-

roaches described in Section 5 can be used.

. Concluding remarks

A large suite of tools is available to obtain increasingly realistic

ubsurface models that are conditioned to large sets of hydrogeolog-

cal and geophysical data. However, their effective use in challeng-

ng field settings is still largely in development and computing lim-

tations are often an issue when targeting realistic 3-D realizations

nd large data sets. To conclude this review, we want to highlight a

ew directions that could constitute important lines of research in the

ext decade. One crucial point is that it is often unclear to what ex-

ent small imperfections in our increasingly complex statistical and

hysical models affect predictions and uncertainty estimates. It is

lso important to find practical ways to use a Popper/Bayes perspec-

ive to assess which conceptual geological models that are in agree-

ent with the available hydrogeological and geophysical data. If no

odels are found that agree with the data, this implies that there

re aspects in the models that need to be improved. This iterative

rocess is important to better describe geological heterogeneity, geo-

hysical forward solvers, rock physics models and noise character-

stics. To empower the data focused workflow, there is a need to

nd appropriate model reduction techniques that allow represent-

ng realistic geological heterogeneity in a relatively low-dimensional

pace. Another alternative could be to combine accurate, but com-

utationally demanding, forward solvers with an approximate solu-

ion allowing to select efficiently the promising candidates among a

et of possible geological models [54]. While there is already a set

f methods available to perturb geological models while preserving

he geological structures, it is still very difficult to make these per-

urbations efficient in the sense that they decrease rapidly the data
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residuals. One way to improve this could be to use explicit formu-

las to relate the sensitivity of the forward problem to changes in the

geometry of local inclusions in heterogeneous materials as recently

proposed by Noetinger [129]. We emphasize that the goal of geologi-

cal realism in hydrogeophysical inverse modeling is not per se to cre-

ate geologically realistic earth models, but to enable more informed

conclusions and decisions under uncertainty.
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