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[1] Measurements are often unable to uniquely characterize the subsurface at a desired
modeling resolution. In particular, inverse problems involving the characterization of
hydraulic properties are typically ill‐posed since they generally present more unknowns than
data. In a Bayesian context, solutions to such problems consist of a posterior ensemble of
models that fit the data (up to a certain precision specified by a likelihood function) and that
are a subset of a prior distribution. Two possible approaches for this problem are Markov
chain Monte Carlo (McMC) techniques and optimization (calibration) methods. Both
frameworks rely on a perturbation mechanism to steer the search for solutions. When the
model parameters are spatially dependent variable fields obtained using geostatistical
realizations, such as hydraulic conductivity or porosity, it is not trivial to incur perturbations
that respect the prior spatial model. To overcome this problem, we propose a general
transition kernel (iterative spatial resampling, ISR) that preserves any spatial model
produced by conditional simulation. We also present a stochastic stopping criterion for
the optimizations inspired from importance sampling. In the studied cases, this yields
posterior distributions reasonably close to the ones obtained by a rejection sampler, but
with a greatly reduced number of forward model runs. The technique is general in the sense
that it can be used with any conditional geostatistical simulation method, whether it
generates continuous or discrete variables. Therefore it allows sampling of different priors
and conditioning to a variety of data types. Several examples are provided based on either
multi‐Gaussian or multiple‐point statistics.
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resampling, Water Resour. Res., 46, W11530, doi:10.1029/2010WR009274.

1. Introduction

[2] Integrating state variables in hydrogeological site char-
acterization by solving an inverse problem continues to be
an important topic of investigation [Carrera et al., 2005;
Hendricks‐Franssen et al., 2009; Liu et al., 2010; Zimmerman
et al., 1998]. Indeed, inverse problems are a crucial aspect of
groundwater modeling since they are used to validate or inval-
idate certain geological scenarios [Ronayne et al., 2008] as
well as to reduce model uncertainty for engineering prediction
and decision making problems [Alcolea et al., 2009]. As such,
models need to not just match the data, they also need to be
predictive, a property that is difficult to objectively verify
[Ballin et al., 1993; Subbey et al., 2004]. Conditioning models
to points data (localized measurements of the variable of inter-
est) is addressed very efficiently by most geostatistical simu-
lation algorithms [Deutsch and Journel, 1992; Remy et al.,
2009]. In this paper, we refer to conditioning models to indi-
rect state variable data (such as heads).

[3] Problems involving flow in underground media typi-
cally present more unknowns than data. For example,
modeling hydraulic conductivity or porosity on an entire
domain, based only on local head measurements or tracer
tests, is typically an ill‐posed inverse problem [Carrera
et al., 2005; De Marsily et al., 2005; Yeh, 1986]. Ill‐
posedness means that multiple solutions are possible, and
characterizing the uncertainty spanned by these multiple so-
lutions is often critical in real field engineering use of these
models. Other consequences of ill‐posedness can be that a
solution does not exist or is instable with regard to small
variations in the input data [Carrera and Neuman, 1986]. In a
Bayesian framework, these issues are dealt with by obtaining
a posterior distribution given a certain prior distribution and a
likelihood function. In this respect, onlyMarkov chainMonte
Carlo (McMC) methods have been shown to sample with
reasonable accuracy from this posterior [Mosegaard and
Tarantola, 1995; Omre and Tjelmeland, 1996], i.e., to gen-
erate model realizations that (1) match the points data and the
indirect state data, (2) reproduce for each inverse solution
some prior statistics (e.g., a spatial covariance) and (3) sample
correctly from the posterior as imposed by Bayes’ rule. Most
gradient‐based/optimization techniques [De Marsily et al.,
1984; Gomez‐Hernandez et al., 1997; Hernandez et al.,
2006; RamaRao et al., 1995; Vesselinov et al., 2001] do not
completely fulfill these three requirements.
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[4] However, in many real‐case problems, geostatistical
simulations and evaluations of the forward problem are so
CPU demanding that traditional McMC methods are not
applicable. Some models used in hydrogeology contain
millions of cells [Mariethoz et al., 2009]. In petroleum
engineering, the problem is even more acute since high‐
resolution models are used to simulate complex phenomena
of multiphase, density‐driven flow. The approach often
adopted is then to calibrate (optimize) one realization at a
time using optimization techniques.
[5] Therefore, depending on the computational burden

involved, it may be appropriate to perform either Bayesian
inversion (McMC) or optimization of one realization at a
time (less CPU demanding but not consistent with Bayes’
rule). The framework we present in this paper (iterative
spatial resampling, ISR) allows dealing with both Bayesian
inversion and optimization aspects. It is emphasized that our
method is applicable in conjunction with any conditional
geostatistical simulation method, whether it relies on
hypotheses of multi‐Gaussianity or not, and whether it
generates continuous or categorical variables. In addition,
we present a stopping criterion for optimizations, inspired
from importance sampling, which allows approximating the
posterior distribution at a lesser cost.
[6] This paper is organized as follows. Section 2 intro-

duces the concept of perturbation by ISR, explores its prop-
erties for both Bayesian inversion and optimization, and
performs numerical tests. Section 3 applies the method on a
synthetic heterogeneous channelized aquifer to evaluate the
posterior distribution using both Bayesian and optimization
approaches.

2. Methodology

2.1. Bayesian Framework

[7] Formulated in Bayesian terms, the hydrogeological
inverse problem consists of obtaining samples from a pos-
terior distribution of models f (m|d) conditioned to a set of
observed state data d:

f mjdð Þ ¼ f djmð Þf mð Þ
f dð Þ : ð1Þ

In that formulation, the prior distribution f (m) can be sam-
pled by performing stochastic realizations not conditioned to
the state variables d. The likelihood function L(m) = f (d∣m)
defines the probability of observing the actual measured
state variables d (the data) given a certain model m. It is a
measure of how good the model m is in fitting the data.
Computing the likelihood of a model L(m) generally requires
running a forward problem, denoted d = g(m). Choosing a
particular likelihood function essentially amounts to deciding
what is meant by “good‐enough fit”. It is a modeling decision
that can be based on the distribution of measurement errors
(which can be known for certain measurement devices) or can
be subjectively taken. The very existence of the posterior
relies on a likelihood function being defined, and this is the
prerequisite of any Bayesian inversion. Hence, all methods
presented in this paper assume that the likelihood function is
given. Note that all optimization methods (Bayesian or not)
need to define what a “good‐enough fit” is, either under the
form of a likelihood function or by choosing some kind of
stopping criterion for search algorithms.

[8] Tarantola [2005] gives a comprehensive overview of
the available exact methods to obtain samples representative
of f (m∣d). Among them, rejection sampling [von Neumann,
1951] and Metropolis sampling [Metropolis et al., 1953] are
often used. None of these methods requires the definition of
the density f (d). Rejection sampling is based on the fact that
f (m∣d) is a subset of f (m), and therefore it can be evaluated
by subsampling the prior. The approach consists in gener-
ating candidate models m* that are samples of f (m) and to
accept each of them with a probability:

P m*ð Þ ¼ L m*ð Þ
L mð Þmax

; ð2Þ

where L(m)max denotes the supremum, which can be any
number equal to or above the highest likelihood value that
can be taken by L(m). Note that a higher supremum does not
affect the accuracy of the sampling, but it can dramatically
affect its performance. The distribution of the resulting
samples follows f (m∣d). Since it requires a large number
of evaluations of g(m), the rejection method is inefficient,
but it will serve as a reference sampler in this paper.
[9] The Metropolis algorithm [Metropolis et al., 1953] is

able to perform a reasonably equivalent sampling by form-
ing a Markov chain of models, such that the steady‐state
distribution of the chain is precisely the posterior distribu-
tion that one wishes to sample from. It is similar to a random
walk that would preferentially visit the areas where f (m∣d)
is high. One issue with Metropolis samplers is that it is dif-
ficult to assess whether mixing of the chain (convergence)
occurred. In addition, to ensure uniform sampling, each
sample should come from a different Markov chain, and
each independent chain should be carried on until a burn‐in
period is over. Since this requirement dramatically increases
the cost of each sample, Tarantola [2005] suggests keeping
only 1 every m samples, where m should be large enough for
the chain to “forget” the previously accepted models.
[10] In this paper, we use a version of the Metropolis

algorithm proposed by Mosegaard and Tarantola [1995].
To apply it, one needs to design a random walk that samples
the prior. At each step i, it moves according to the following
rules:
[11] (1) If L(m*) ≥ L(mi), move from mi to m*.
[12] (2) If L(m*) < L(mi), randomly choose to move tom*

or stay at mi, with the probability L(m*)/L(mi) of moving
to m*.
[13] The movement (or transition) from a model mi to

a model mi+1 is accomplished by drawing a candidate
model m* from the proposal distribution Q(m*∣mi), which
denotes the probability density function of the transition
from the model mi to the model m*. The method requires
that the proposal density is symmetric (or reversible), such
that Q(mi∣m*) = Q(m*∣mi).
[14] Previous studies have investigated Markov chains

applied to spatially dependent variables, using different
proposal (or perturbation) mechanisms. Oliver et al. [1997]
create an McMC by updating one grid node of a geo-
statistical realization at each step. The method is very
inefficient because it asks for a forward problem run
after updating each node, which is not feasible for real‐
world grids. Fu and Gomez‐Hernandez [2008] dramatically
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accelerate the method by updating many grid nodes at
the same time. They introduce the blocking Markov chain
Monte Carlo (BMcMC) method that incurs local pertur-
bations by successively resimulating a square area of the
realizations (a block). The BMcMC method has been used
for sampling the posterior distribution of synthetic inverse
problems in a multi‐Gaussian framework [Fu and Gomez‐
Hernandez, 2009].
[15] Optimization methods aim at finding realizations that

maximize the likelihood f (d∣m). They do not allow char-
acterizing f (m∣d) but are often used since they are much
more efficient than sampling algorithms. These methods
repeatedly update an initial solution to minimize an objec-
tive function, often measuring a misfit to measured data.
Although regularization terms can be added to make the
perturbed models look more realistic, prior constraints are
often minimal. One can use either gradient‐based [Carrera
and Neuman, 1986] or gradient‐free [Karpouzos et al.,
2001] methods. Since they search in a stochastic manner,
gradient‐free methods are less prone to be trapped in local
minima (i.e., it is guaranteed that the global minimum is
found after an infinite number of iterations). Upon conver-
gence, a single calibrated solution is obtained. When several
local minima are present, one can obtain alternative solu-
tions by repeating the optimization procedure using different
starting points.
[16] Among the optimization techniques, simulated an-

nealing [Kirkpatrick et al., 1983] has been extensively used
to solve inverse groundwater modeling problems [e.g., Pan
and Wu, 1998; Zheng and Wang, 1996]. Genetic algo-
rithms [Fraser, 1957; Goldberg, 1989] have been used for
identifying structures in hydraulic conductivity fields
[Karpouzos et al., 2001]. Alcolea and Renard [2010] apply
the BMcMC method and simulated annealing to optimize
non–multi‐Gaussian random fields generated using the
impala multiple‐point simulation code (J. Straubhaar et al.
An improved parallel multiple‐point algorithm, submitted to
Mathematical Geosciences, 2010).
[17] The gradual deformation method (GDM) [Hu, 2000;

Hu et al., 2001] and the probability perturbation method
(PPM) [Caers, 2003; Caers and Hoffman, 2006; Johansen
et al., 2007] proceed by combining uniformly sampled
realizations. By adjusting a single parameter, they allow
obtaining a smooth transition from one simulation to another
while preserving a prior structural model. Therefore, finding
a calibrated realization can be accomplished by a series of
1D optimizations. These methods have been successfully
applied in hydrogeology and petroleum engineering [Le
Ravalec‐Dupin and Hu, 2007; Le Ravalec‐Dupin, 2010;
Llopis‐Albert and Cabrera, 2009; Ronayne et al., 2008].
[18] In this paper we present a transition kernel (iterative

spatial resampling, ISR) that can be used either as a proposal
distribution with McMC sampling methods or as a perturba-
tion strategy when optimization is used.We show that, in both
cases, it yields accurate sampling of the posterior. To validate
the results, we use the rejection sampler as a reference.

2.2. Reproduction of the Prior

[19] A premise of both rejection and Metropolis samplers
is that proposal models m* have a nonzero prior probability.
It is not possible for a rejection sampler to produce samples
with zero prior probability. We will define as a bounded

prior a prior probability density for which there exist models
m that have zero probability density. For example, in a
Boolean model where simulated objects all exhibit the same
(deterministic) direction, any model with different object
directions has zero probability of occurrence. On the other
hand, examples of unbounded prior densities are the multi‐
Gaussian model and the Markov random field model [Besag
and Kopperberg, 1995; Tjelmeland and Besag, 1998]. With
unbounded priors, all models are possible, even those with
extremely low prior density. For example, in the standard
multi‐Gaussian, the model m = 0 (a model with zeros
everywhere and hence variance = 0) is highly improbable
but not impossible. Actually, this very small probability can
be regarded as a mathematical artifact because the chance of
sampling it is negligible.
[20] Application of Bayes’ rule (equation (1)) assumes

that an intersection between prior and likelihood exists. In
other terms, if all samples that have a (practically) nonzero
prior probability also have a (practically) zero likelihood,
this means that prior and likelihood are incompatible and the
solution is nonidentifiable [Carrera and Neuman, 1986].
The posterior is then undetermined since it results, after
normalization, in a division of zero by zero. In such cases,
prior and likelihood do not intersect, Bayes’ rule is not
applicable, and a modeling decision has to be taken whether
to put in question the data, the likelihood model, or the
prior. This decision should be motivated by reconsidering
the basis adopted to define the prior as well as the confi-
dence given to the data.
[21] In the absence of intersection between prior and like-

lihood, data‐driven inverse modeling techniques match the
data at the price of producing models with zero or very low
prior probability (for example, not preserving the specified
spatial dependence). On the other hand, prior‐driven techni-
ques favor the prior and hence the statistics reflected in prior
models (such as a variogram), but may be unable to achieve
good fits to conflicting data. By opting for a certain inverse
modeling technique, the modeler decides which piece of
information should prevail in case of incompatibility.
[22] Among data‐driven methods, we mention the gradual

deformation method (GDM) [Caers, 2007; Hu and Le
Ravalec‐Dupin, 2004; Le Ravalec‐Dupin and Noetinger,
2002; Liu and Oliver, 2004], the quasi‐linear method
[Kitanidis, 1995; Zanini and Kitanidis, 2009], and the reg-
ularized pilot points method (RPPM) that considers con-
straints imposed by both data and prior and adjusts these
constraints using a weighted regularization term [Alcolea
et al., 2006; Doherty, 2003; Hendricks‐Franssen et al.,
2004]. In the class of prior‐driven methods, one can find
the probability perturbation method [Caers and Hoffman,
2006] and the blocking moving window [Alcolea and
Renard, 2010]. ISR, the technique we present in this paper,
also belongs to this class of prior‐driven methods.

2.3. Iterative Spatial Resampling

[23] Let a model mi = {Zi(x1), …, Zi(xM)} be a realization
of a random variable Z discretized on a grid with M nodes.
Unconditional realizations of Z are considered samples of
the prior, whether this prior is explicitly stated such as is the
case of a multi‐Gaussianmodel or whether this prior is defined
by a given stochastic algorithm with a set of parameters
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(A. Boucher, Stanford Center for Reservoir Forecasting,
unpublished, 2007).
[24] To implement sampling and searching strategies, one

needs to create a chain of dependant realizations. Conse-
quently, one wants to draw proposal models m* not from
f (m) but from Q(m∣mi), where mi is the previous model
in the chain. To preserve the spatial continuity defined by
the geostatistical simulation algorithm, the conditional term
should ideally be incorporated in the method used to gen-
erate the realizations. Since most simulation methods also
allow generating realizations conditioned to points data, we
propose to use this conditioning capability to impose a
conditional term on the prior. More specifically, dependence
between m* and mi is introduced by extracting a subset of
realization mi as n randomly located points ri = {Zi (xa),
a = 1, …, n} and to impose these points as conditioning
data to generate m*. The amount n is a tuning parameter.
Proposal models are drawn from f (m), but at the same
time they depend on ri, itself a subset of mi.
[25] Creating a Markov chain using ISR is accomplished

by performing the following steps:

[26] 1. Generate an initial model m1 using a geostatistical
simulation algorithm, and evaluate its likelihood L(m1).
[27] 2. Iterate on i:
[28] a. Select randomly a subset ri = {Zi (xa), a = 1,…, n}

of n points belonging to mi.
[29] b. Generate a proposal realization m* by conditional

simulation using ri and the same geostatistical model with a
new random seed.
[30] c. Evaluate L(m*).
[31] d. Accept or reject m*. If accepted, set mi+1 = m*,

otherwise go back to a (i.e., do not increment i). If the
acceptance criterion is the one proposed by Mosegaard and
Tarantola [1995], the chain is a Metropolis sampler.
[32] The method is illustrated in Figure 1, where an initial

sequential Gaussian simulation (SGS) realization is itera-
tively perturbed. However, any simulation method can be
used, as long as it is able to produce conditional simulations.
Using ISR when actual conditioning points data are present
(for example, corresponding to field measurements) can be
accomplished in a straightforward manner by adding, at each
iteration, the “real” conditioning data to the sampled set r.

Figure 1. Sketch of the ISR method. An initial realization m1 is sampled randomly to obtain the subset
r1, which is used as conditioning data for generating another realization m2. m2 displays local features
similar to those of m1 due to the constraints imposed by the conditioning data, but it is also different since
the simulation has produced new values at nonconditioned locations.
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[33] The total amount of conditioning data retained,
namely n, allows determining the strength of the depen-
dency between two successive members of the chain mi and
mi+1. Note that this amount can be conveniently defined as a
fraction 8 of the total number of nodes in mi.
[34] It is important to note that the selected data set r fol-

lows by construction the same spatial continuity as imposed
by the geostatistical algorithm; hence the resulting perturbed
realization will, by construction, have the same spatial con-
tinuity as the initial realization. Both have a nonzero prior
probability. The only requirement is that the conditioning on
r is correct or, in other words, that the conditioning method
does not introduce artifacts into the simulation, nor does it
artificially affect uncertainty in the neighborhood of the
points data.
[35] If f (m) is a nonstationary model (for example, con-

taining a trend), the method applies equally well because
uniformly sampling a nonstationary realization results in a
nonstationary set of sampled points r. It is obvious that the
method works for both categorical and continuous variables.
[36] Note that methods previously used in the context of

McMC [Alcolea and Renard, 2010; Oliver et al., 1997] also
rely on the use of conditioning points data, but they are
focused on local perturbations between the realizations in
the Markov chain. The main difference is that they update
one grid node or local group of nodes at one step, and then
update another area at the next step. Because the updated
area is often different at each step, the search pattern in the
solution space at step i tends to be orthogonal to the search
direction at step i − 1 (in fact, it is not orthogonal when
updated areas overlap, but this is not often the case). When
high‐dimensional spaces are explored, searching in orthog-
onal directions can be inefficient. In addition, with some
simulation methods, and depending on the conditioning
technique, resimulating local areas is prone to create arti-
facts in the simulations.

2.4. Sampling Properties of ISR

[37] Several factors may affect the accuracy of the
Metropolis sampler. We mentioned above that each sample
should be obtained from a different, independent chain.
Obtaining them from a single Markov chain, even if the
samples are far apart in the chain, is an approximation.
Moreover, convergence of the chain must be reached before
performing any sampling, and this is difficult to assess.
[38] In theory, the proposal distribution Q(mi∣m*) is

symmetric. In Figure 1, consider the set of points r1. If one
would use it as conditioning data for a new realization, all
possible outcomes would have an equal likelihood of being
drawn as long as the conditional simulation samples uni-
formly. Therefore, the outcome has an identical probability
of beingm1,m2, or a set of other possible models. However,
since geostatistical simulations are algorithmically defined
(A. Boucher, unpublished, 2007), they may not offer perfect
conditioning, thus making the proposal distribution possibly
nonsymmetric. For example, conditioning with kriging in the
multi‐Gaussian case is a very accurate conditioning method,
but it is not the case for SGS with a limited neighborhood
[Emery, 2004].
[39] We set up a simple synthetic example to illustrate

the properties of ISR within the Metropolis algorithm. The
variable of interest Z presents a multi‐Gaussian exponential

covariance model with an isotropic range of 10 grid nodes,
a mean of 0, and a variance of 1. These characteristics
constitute the prior distribution f (m). The grid size is 50
by 50 nodes, and SGS [Remy et al., 2009] is used to
generate the realizations. Four numerical experiments are
performed. These essentially aim at comparing the results
of the Metropolis sampler described in the previous section
with rejection sampling, which is known to be accurate.
The numerical experiments consist of characterizing the
prior by (1) unconditional sampling and (2) McMC sam-
pling and characterizing the posterior by (3) rejection and
(4) Metropolis sampling. These numerical experiments are
described below.
[40] 1. We characterize the prior numerically by gener-

ating an ensemble Mr of 20,000 unconditional realizations,
uniformly sampled from f (m), and observe the variance of
the simulated values (Figure 2a, black dashed line). The
variance ranges approximately between 0.7 and 1.3. The
variation in the realizations variance is due to statistical
fluctuations.
[41] 2. We use an alternative way of characterizing the

prior that uses the proposal density. It consists in performing
a random walk using ISR where proposal models are sys-
tematically accepted (i.e., f (d∣m*) = f (d∣mi), ∀i). In fact, it
is a Metropolis algorithm that ignores the likelihood. If the
requirements for a Metropolis algorithm are fulfilled, the
steady state of such a chain should yield samples of the prior
(a method suggested by Mosegaard and Tarantola [1995]).
We generate another ensemble of 20,000 realizations Mm

using such a Markov chain, with a fraction of resampled
nodes of 8 = 0.1 (i.e., n = 250 sampled nodes at each iter-
ation) and keeping only one every m = 100 accepted models.
Note that m = 100 is a large value that was chosen to have
conditions close to an ideal sampler, but coming at a high
CPU cost. The variance of the realizations in Mm and Mr

have very similar distributions (Figure 2a, red and black
dashed lines), showing that ISR did not induce significant
deviations in the sampling.
[42] In the next numerical experiments, we use a likeli-

hood that contains contradictory information with the prior
(i.e., we purposely forge a case where likelihood and pos-
terior do not intersect). We show that our sampling method
is prior driven and therefore cannot create samples with
(practically) zero prior probability. The aim in these
experiments is to match a uniform reference field where
Z = 0 on the entire domain. To this end, we define a like-
lihood function that is maximal when the variance of all
Z values is 0. It is expressed as

L mð Þ ¼ exp � var mð Þ
2�2

� �
: ð3Þ

We set s = 0.2 so that the likelihood quickly decreases with
larger variances and approaches 0 when the variance equals
the prior value of 1. This constraint of minimal variance is
not compatible with the prior that imposes a unit variance,
although fluctuations are possible within a certain range.
ISR, as a prior‐driven method, should be unable to produce
samples with zero prior probability (i.e., not represented in
Mr). Note that data‐driven methods could match such a
constraint because Z = 0 is part of the Gaussian prior (it is an
unbounded prior), but is very unlikely.
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[43] 3. Similarly to experiment 1, we want to accurately
characterize the posterior distribution of the problem by
rejection sampling. We apply rejection sampling to the
realizations of Mr , with the supremum L(m)max chosen such
that it corresponds to a variance of 0.6, and 243 samples are
accepted that constitute the reference posterior ensemble
Mr*, representative of f (m∣d) (Figure 2a, solid black line).
[44] 4. For the last numerical experiment, we perform a

chain with the acceptance criterion of Mosegaard and Tar-
antola and the likelihood equation (3). Ideally, it should
converge to Mr*. After a burn‐in period ensuring that steady
state of the Markov chain is reached, we perform iterations
until an ensemble M*m of 20,000 samples is obtained,

and we keep only one every m = 100 accepted models
(Figure 2a, red solid line). Figure 3 shows that the number
of iterations is large enough to ensure convergence. The
variance distributions of Mr* and M*m are similar, showing
that the posterior is accurately sampled. To make sure
that the prior spatial model is preserved, we compare in
Figures 2b and 2c the experimental variograms of the rea-
lizations at the beginning and end of the Markov chain.
Variogram shapes and ranges are preserved throughout the
iterations, and therefore the Markov chain did not drift
toward models with a (practically) zero prior probability.
Note that the variograms present lower sills (smaller var-
iances) than the variogram model used as input for SGS (red

Figure 2. Comparison of different sampling methods with ISR. (a) Variance of realizations under system-
atic acceptance (dashed lines) and under minimum variance constraint (solid lines). The histograms are
based on 243 samples for each ensemble. (b) Variograms of the first realizations of the chain. (c)Variograms
of the last realizations of the chain. (d) Variograms of the realizations sampled by rejection. (e) Variograms
of the realizations sampled by interrupted Markov chains.
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line). Indeed, the posterior models are not the same as the
prior models since the inclusion of data yields a different
ensemble. This is coherent with Bayes’ rule that acknowl-
edges the influence of the likelihood. In this case, prior
models with a low variance have been sampled more often,
but a zero variance cannot be reached since ISR is prior
driven. For comparison, Figure 2d shows the experimental
variograms of the models sampled by rejection (Mr*), which
are similar to the ones sampled by Metropolis (M*m). These
four numerical experiments show that, in this case, both
rejection method and Metropolis sampling with ISR give
similar results.

2.5. Using ISR for Optimization

[45] Mosegaard and Tarantola [1995] indicate that their
sampling method can also be used for optimization. To this
end, one can create a chain of ever‐improving realizations
using for acceptance criterion (step 2d of the ISR algorithm
as described in section 2.3):

if L m*ð Þ � L mið Þ; accept m*: ð4Þ

[46] The resulting McMC process is a stochastic search
for a single calibrated model. The search strategy of ISR
performs by successive steps in random directions and of
random size (step size is random, but its distribution is
controlled by 8). When large steps occur, it allows explor-
ing various regions of the solution space. Large steps are
also an opportunity to leap out of local minima. On the other
hand, the occurrence of small steps allows fine tuning
suboptimal solutions. Since the search is stochastic, the
global minimum will eventually be reached after an infinite
number of iterations. However, in most practical applica-
tions, it will remain in a local minimum (i.e., suboptimal).
Figure 4 schematically depicts how a local minimum is
searched in a simple 2D solution space. The background
image represents the real, unknown solution space, with a
local minimum in the center of the image and the global
minimum in the top right. In this case, the search remains in
the local minimum because criterion (4) is used and the
number of iterations is finite. Since (4) only considers
the rank of a proposal solution compared to a previous one,
the search is similar to the minimization of an objective
function. In this sense optimization with ISR is similar
to evolutionary strategies where probabilistically generated
individuals are sequentially improved while only the best
one is preserved [Bayer and Finkel, 2004]. The likelihood of

the final solution depends on algorithmic parameters such as
the stopping criterion used.
[47] So far a constant fraction of resampled nodes has

been considered, but alternatives can be envisioned for
optimization. For example, 8 can increase at each iteration i.
The optimization starts with large steps (i.e., the solution is
largely perturbed at the exploration phase) and finishes

Figure 5. Reference logarithm of hydraulic conductivity
field in meters per second. The blue circle depicts the loca-
tion of the pumping well, and the red crosses indicate the
locations of the observation wells.

Figure 4. Schematic representation of the search strategy
used by ISR in a simple solution space having two degrees
of freedom. The background color represents the actual
unknown solution space, with values ranging from black
(bad solution) to white (good solution). A local minimum
lies in the center of the domain, while the global minimum
is in the top right.

Figure 3. Convergence of the Metropolis chains used to
obtain Mm and M*m.
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with small steps (narrowing phase). One possible way to
accomplish this is with a power law:

8 ið Þ ¼ 8max 1� ci
� �

; 0 � c � 1: ð5Þ

[48] The larger c is, the slower 8(i) will reach 8max. This
is similar to simulated annealing, with the parameter c
defining the cooling schedule and 8max is the maximum
value of 8 (after an infinite number of iterations). Yet, alike
other simulated annealing algorithms, adjusting c can be
tedious. Nevertheless, we will see in section 2.6 that using
(5) can accelerate the convergence compared to keeping 8
constant. Note that a varying 8 cannot be used in the context
of a Bayesian inverse problem (Metropolis acceptance cri-
terion) because it would make the proposal density non-
symmetric. In the context of optimization, (5) is applicable
since the problem is not to sample the posterior, but to reach
a local minima quickly.

2.6. Sensitivity to 8

[49] 8 is the only parameter required when ISR is used for
optimization. In order to evaluate its sensitivity on the
optimization convergence speed, we set a simple flow
problem and perform several optimizations with different
values of 8.

Figure 6. Optimization performance assessment for six different values of 8. The evolution of each opti-
mization is marked by a thin black line, and the median evolution computed from 25 optimizations is
depicted by a red bold line.

Table 1. RMSE of the Different Optimization Runs After 200
Iterations

Minimum
RMSE

Median
RMSE

Maximum
RMSE

ISR, 8 = 0.1 0.0451 0.1141 0.2124
ISR, 8 = 0.05 0.0271 0.0591 0.2610
ISR, 8 = 0.01 0.0340 0.0607 0.1242
ISR, 8 = 0.005 0.0384 0.0685 0.1096
ISR‐SA, c = 0.990 0.0190 0.0529 0.4094
ISR‐SA, c = 0.995 0.0231 0.0481 0.1087
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[50] The problem setting consists of a square aquifer of
100 m by 100 m, discretized in 100 by 100 elements
(Figure 5). A reference log K field is generated using SGS.
The spatial model for hydraulic conductivity is multi‐
Gaussian, with an isotropic exponential variogram of range
90 m. The mean logarithm of the hydraulic conductivity is
−3, with a variance of 2. The upper and lower sides of the
model are no‐flow boundaries, a fixed head boundary
condition of 1 m is set on the left side, and a fixed head
boundary condition of 0 m is set on the right side. A
pumping well extracting 0.003 m3/s is set in the center of
the domain (blue circle), and nine observation wells are
positioned at the locations of the red crosses in Figure 5 (the
pumping well is also an observation well). The problem is
solved in steady state. The nine head measurements are the
only constraints used to solve the inverse problem, i.e., to

find log K fields that match these data. We do not impose
any conditioning points data in order to not over‐constrain
the prior.
[51] Proposal solutions are generated using SGS with the

true variogram model. The acceptance criterion is (4), and
therefore the likelihood has the role of an objective function
to minimize. This objective function measures the root‐
mean‐square error (RMSE) between calculated and mea-
sured heads at the nine observation wells. With such loose
constraints, we ensure that the problem is severely ill posed
and that the solution space has multiple local minima.
[52] Six series of runs are performed. The first four series

(ISR) use fixed 8 values of (a) 0.1, (b) 0.05, (c) 0.01, and
(d) 0.005. The last two series (ISR‐SA) use a varying
sampled fraction 8 according to (5). For each series, 25
optimizations are performed with ISR; each optimization
is carried out for i = 200 iterations. Figure 6 displays
the evolution of each optimization (thin black line) and
the median of each series (bold red line). The parameters
of the simulated annealing cooling schedule are (Figure 6e)
c = 0.990 and (Figure 6f) c = 0.995, with 8max = 0.1 for
both series. Figure 6g shows the evolution of 8 as a function
of the iterations for both cooling schemes, with c = 0.990
representing a fast cooling and c = 0.995 reperesenting a
slower cooling. Table 1 provides a summary of the RMSE
values obtained with each series of runs. Median values
illustrate the overall performance for each series and mini-
mum/maximum values help identify the stability of the
optimization behavior.
[53] Nearly all parameters are, on average, able to reduce

the RMSE by more than 1 order of magnitude in 200
iterations. The only exception is 8 = 0.1, whose poor per-
formance can be explained by too small steps between one
solution and another (large fraction of resampled nodes).
Although this does not prevent reaching a local minimum, it
can significantly reduce the convergence rate if the topog-
raphy of the objective function is very flat. All other 8
values tested achieve similar median fits. Constant resam-
pling with 8 = 0.05 performs slightly better for the median
and the best fit than smaller 8 values, but this comes at the
price of having some optimizations that did not converge,

Figure 7. Training image used to model for the sand and
clay spatial distribution.

Figure 8. Reference field used for the synthetic test case. The blue circle marks the location of the
pumping well, and the red crosses indicate observation wells. (a) Reference facies. (b) Corresponding ref-
erence heads.
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again due to the relatively small steps. This is shown by the
maximum RMSE that is larger for 8 = 0.05.
[54] The same phenomenon occurs with ISR‐SA. If the

large steps at the beginning of the optimization do not yield
models close to a good fit, the smaller steps that occur
later can only provide limited improvements. The search
then remains away from good areas, and the corresponding
solutions show poor fits, even after a large number of
iterations. Conversely, if a suboptimal solution is reached in
the initial phase of the optimization, the smaller steps that
occur later allow fine adjustment. This dual and unstable
behavior explains the presence of both the best and worst
fits of all series when ISR‐SA is used with a quick cooling
schedule (c = 0.990). With a slower cooling (c = 0.995), it
is less pronounced. Due to this high sensitivity to the initial
sample, a possible strategy could be to choose the starting
point of the optimization as the best of a small set of ran-
domly generated realizations.
[55] ISR‐SA has the potential of achieving better fits, but

it provides only slightly better median convergence. The
price to pay is a high sensitivity to the cooling parameter
that may be difficult to adjust in practice. Conversely, ISR
does not require the adjustment of cooling parameters, and
we think this is a major advantage from a practical point of
view. We tested a large array of 8 values, with a factor 20
between the lowest and highest 8 values. Corresponding
RMSE values vary only with a factor 2; therefore, it seems
that ISR is not very sensitive to the parameter 8, at least for
the present case. This is fortunate because it eases the
adjustment of optimization parameters.

2.7. Approximating the Posterior with Multiple
Optimizations

[56] Consider n independent Markov chains, each using
acceptance criterion (4) to define the models that are
accepted in the chain. Taking one optimized model per
chain yields an ensemble of n samples, all of them having
a nonzero prior probability and fitting the data. However,
Bayes’ rule may not have been observed since models are
sampled from a subset of the prior that may not reflect the
exact posterior. Samples can belong to the posterior (in the
sense that they match the data well), but they are not
necessarily distributed according to the posterior. There-
fore, a bias is introduced on the modeling of uncertainty
(here we use the term “bias” in the sense of a faulty
sampling design).

[57] Such a procedure is a form of importance sampling.
The central idea of importance sampling is that certain areas
of the prior distribution have more impact on the posterior
than others. Hence it may be preferable to avoid proposing
samples in regions of low fit (see Smith [1997] for a
comprehensive review). Instead of uniformly sampling from
f (m), one wishes to sample models from a biased dis-
tribution f *(m) that excludes areas of low fit. As a result,
sampling is not as imposed by Bayes’ rule, but according
to a biased posterior. Importance sampling techniques pro-
vide an approximate compensation for such bias by intro-
ducing a weighting term in the probability of acceptance
of a model m, weights being given by the ratio of the priors
f (m)/f *(m).
[58] Since importance sampling can greatly accelerate the

sampling process, its use in the context of the hydro-
geological inverse problem is appealing. However, applying
the bias correction in practical cases is problematic because
the ratio of priors is difficult to define. Without bias cor-
rection, there is no guarantee that samples obtained by
multiple optimizations are even approximately distributed
according to Bayes’ rule. The distribution of the sampled
models is dependent on the stopping criterion of the opti-
mization process. If the number of iterations is too large, all
optimizations converge to the global minimum. In addition
to wasting CPU time, it results in an uncertainty smaller than
desired. If the number of iterations is too small, a very large
portion of the prior is sampled, yielding too high uncer-
tainty. In other words, deterministic stopping criteria give
little control of whether the data are over‐ or underfitted. We
illustrate this problem with the example of variance mini-
mization (Figure 2). We perform 243 optimizations using
acceptance criterion (4), and we set as a stopping criterion a
total of imax = 10 accepted models. The resulting ensemble
Mi

10 (Figure 2a, blue line) presents a distribution of variance
much narrower than what is found with rejection sampling
(Figure 2a, black solid line). Moreover, the large amount of
forward model evaluations (35,927) represents a waste of
computer resources.
[59] In the case of ISR using acceptance criterion (4), the

models in the Markov chain are drawn from the biased prior
f *(m) = f (m∣mi), which is the ensemble of all realizations
obtained by extracting a subset ri from the previous member
of the chain mi. At each iteration, f *(m) is more biased
toward high fits but still remains a subset of the prior, as
shown in section 2.3. Therefore, a first bias is that the
likelihood of the models is too high.

Table 2. Test Case Using ISR With Direct Samplinga

Min RMSE Median RMSE Max RMSE Number of Evaluations

Prior 0.0435 0.9977 3.5924 100,000
Rejection 0.0435 0.0754 0.1155 100,000
Metropolis 0.0486 0.0873 0.1294 26,753
Interrupted MC 0.0305 0.0745 0.1098 8108

aRanges of RMSE and number of forward problem evaluations for the ensembles sampled with different methods.

Figure 9. Representation of the ensembles of models obtained with different methods (150 models per method). Each
column represents the results of a sampling method (unconditional prior, rejection sampler, Metropolis sampler, interrupted
Markov chains). Each row corresponds to a different representation of the ensemble (mean heads, standard deviation of
heads, probability of channels, multidimensional scaling mapping).
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Figure 9
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[60] As a practical bias correction, we propose to pre-
maturely interrupt and sample the chain, with a criterion
based on the likelihood. Our idea relies on the fact that for a
proposal model m* to be submitted to the possibility of
acceptance, all previous models in the chain m1, …, mi

must also have been submitted to this same possibility
and rejected. In other words, the existence of a model is
conditioned to the rejection of all of its predecessors.
Hence, the probability that a model is even considered as
a sample decreases with the iterations, which is a second
bias on f *(m), but in the opposite direction. Models are
increasingly likely to be accepted, but they are less and
less likely to be submitted to the acceptance criterion.
Although they are difficult to define precisely, both effects
are opposite and may compensate each other.
[61] To obtain one sample by interrupted Markov chain,

one needs to design an ever‐improving Markov chain that
accepts new members under condition (4). The chain should
be interrupted following a stochastic stopping criterion
similar to the acceptance rule of rejection sampling. This is
can be accomplished in the following steps:
[62] 1. Define the supremum L(m)max.
[63] 2. Generate an initial model m1 using a geostatistical

simulation algorithm, and evaluate its likelihood L(m1).
[64] 3. Iterate on i until interruption:
[65] a. Select randomly a subset {ri = Zi(xa), a = 1,…, n}

of n points belonging to mi.
[66] b. Generate a proposal realization m* by conditional

simulation using ri and the same geostatistical model with a
new random seed.
[67] c. Evaluate L(m*).
[68] d. Decide whether or not to interrupt the chain:
[69] i. Compute P(m*) = L(m*)/L(m)max.
[70] ii. Draw u in U[0,1].
[71] iii. If u ≤ P(m*), accept m* as a sample of the pos-

terior distribution and interrupt the chain. If u > P(m*),
continue the chain.
[72] e. Attempt to narrow down f *(m): if L(m*) ≥ L(mi),

set mi+1 = m*, otherwise go back to a (i.e., do not
increment i).
[73] The algorithm above is a form of rejection sampler

that samples from the proposal models of a chain instead of
uniformly sampling the prior. It is indeed a biased sampler
compared to a rejection sampler (except for the first itera-
tion, where it is exactly a rejection sampler). It is a heuristic
way to quickly obtain an approximation of the posterior,
and it does not replace exact samplers. However, it still
accounts for the likelihood function, which is not the case
with deterministic stopping criteria such as a fixed num-
ber of iterations, a maximum number of iterations without
improvement, or a threshold in the objective function.
More importantly, interrupting the chains reduces com-
putational burden by skipping the unnecessary runs that
incur overfitting. Incidentally, since each Markov chain is
independent, the approach is straightforward to parallelize
[Mariethoz, 2010].
[74] As a preliminary test of the interrupted Markov

chains, we use it to evaluate the posterior distribution of
the minimum variance problem (Figure 2). We generate
243 samples with interrupted Markov chains, using like-
lihood (3) and the same supremum value that was used for
rejection sampling. The variance distribution of the resulting

ensemble Mi is displayed in Figure 2a (green line), and the
variograms of all models are shown in Figure 2e. As
expected, Mi does not display exactly the same distribution
of variance and variograms as the ensembles obtained with
rejection and Metropolis samplers. However, the bias is less
than with a fixed number of 10 iterations (Mi

10), and it
requires much less model evaluations. The algorithm of
interrupted Markov chains is able to obtain a reasonable
ensemble with only 3871 evaluations, whereas rejection and
Metropolis sampling need 20,000 evaluations and a fixed
number of 10 iterations requires 35,927 evaluations.

3. Test Case

3.1. Problem Setting

[75] One of the key features of ISR is that its principle is
not associated with a specific simulation method or a certain
type of spatial variability. In section 2, we presented ISR
with multi‐Gaussian examples. To demonstrate the general
applicability of ISR, we define a new problem involving
sand channels in a clay matrix and we use the direct sam-
pling method (DS) to model it [Mariethoz and Renard,
2010; Mariethoz et al., 2010]. This technique uses multiple‐
point statistics, which are well‐suited to model a wide
range of structural models, multi‐Gaussian or not [Caers,
2003, 2005; Guardiano and Srivastava, 1993; Hu and
Chugunova, 2008; Journel and Zhang, 2006; Strebelle,
2002]. DS has the particularity that it does not determine
the values of the simulated nodes by drawing them from
local probability distributions. Instead, values are directly
sampled from a training image. Therefore, inverse modeling
methods that rely on the perturbation of the local distribu-
tion, such as GDM and PPM, cannot be applied. Since DS
allows conditioning to points data, we show that ISR can
be applied.
[76] The spatial model of the sand/clay patterns is defined

by the categorical training image displayed in Figure 7,
representing sand channels in a clay matrix [Strebelle, 2002].
With this training image and the parameters described
below, one realization is generated on a grid of 100 by
100 nodes, which is thereafter considered as the reference
field (Figure 8a). Parameters of the simulation are a neigh-
borhood of n = 25 nodes and a distance threshold set to
t = 0.04. The meaning of these parameters is that, for any
simulated node, the data event (pattern) made of the 25 closest
neighbors is considered. Starting from a random location,
the training image is scanned until encountering a node
whose neighborhood matches at least 24 out of the 25 nodes
searched for. (The parameter t represents the fraction of
mismatching nodes allowed, which here equals 1 since
0.04 × 25 = 1. Hence up to one mismatching node is
allowed.) The value of this node is then assigned to the
simulated location. The method reproduces the statistics
of the training image up to the nth order [Shannon, 1948].
[77] Although multiple‐point algorithms guarantee that

conditioning data are locally honored, there may be artifacts
in the neighborhood of the conditioning data [Kjønsberg
and Kolbjørnsen, 2008]. Conversely, kriging offers per-
fect conditioning at the data locations and in the spatial
relationships between conditioning data and surrounding
locations. In the case of DS, when a data configuration
observed in the simulation is not found in the training
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image, DS selects the best matching configuration of the
training image. In such cases, patterns that are incompatible
with the prior can occur in the simulation. If these patterns
are in the neighborhood of data artifacts may appear,
especially when large amounts of conditioning data are
present, which is the case with ISR. Consistency among all
patterns could be enforced using syn processing [Mariethoz
et al., 2010], which recursively unsimulates and resimulates
nodes until all of them are compatible, but the method has a
steep CPU cost. Instead, we use here a specific distance
between data events (also described by Mariethoz et al.
[2010]) that gives a larger relative weight to the nodes
corresponding to data. However, perfect conditioning is not
guaranteed.
[78] A uniform hydraulic conductivity value of 10−2 m/s

is assigned to sand channels (Figure 7, white) and a value of
10−4 m/s to clays (Figure 7, black). The resulting hydraulic
conductivity field is used in the same setting as the example
in section 2.6 (Figure 5: one pumping well and nine
observation wells, and the same boundary conditions). The
resulting reference heads are displayed in Figure 8b. The
head is known at the nine observation wells, and the RMSE
of the calculated versus observed head is considered to
evaluate a given solution.

3.2. Ensemble Solutions with Different Samplers

[79] The posterior distribution is characterized using
different techniques. Table 2 provides the RMSE of the
calculated heads and the number of forward problem eva-
luations for each sampling method. Figure 9 summarizes
the results graphically. Each column represents a sampling
method, and each row represents a different representation
of the ensembles of models considered. The first row is the
ensemble mean head, the second row is the head standard
deviation, and the third row is the probability of occurrence
of channels.

[80] In the fourth row, we use the multidimensional
scaling (MDS) technique [Borg and Groenen, 1997; Scheidt
and Caers, 2009] to visualize the variability in the
ensemble of sampled models. Given a dissimilarity matrix
D between the models, such a representation displays an
ensemble of models mi as a set of points in a possibly
high‐dimensional Euclidean space, arranged in such a
way that their respective distances are preserved. D can
be computed using any appropriate measure of distance.
The coordinates of the points are in high dimension, but
for representation they are projected on spaces of lower
dimensionality (2D or 3D), where the distances are then
only approximately preserved. In the present case, the
distance between any two models d{mi, mj} is the piece-
wise Euclidean distance between the heads calculated on
the entire domain using both models. D is computed using
601 models (150 models for each of the four sampling
methods, plus the reference, represented by a red dot), and
each ensemble of models is represented on a different
column for more clarity. In this case, representation of the
points as 2D projections is adequate since the first two
dimensions carry 76% of the information.

Figure 10. Six realizations (randomly chosen) out of the 150 sampled with the rejection method. The
fits to data and the RMSE are shown on the right of each realization. The axes and labels are the same
for all realizations, but they are only displayed for the top left image.

Figure 11. Convergence of the Metropolis sampler in the
synthetic test case.
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[81] The first column of Figure 9 represents the evaluation
of 100,000 unconditional realizations. This ensemble char-
acterizes the prior f (m). On average, a large drawdown is
observed at the pumping well, indicating that most of the
prior models have no channel at this location. The standard
deviation is large except near the boundary conditions (note
that, to keep the figure readable, the standard deviation
is not represented above 0.1 and heads are not repre-
sented below −1 m). Since no conditioning points data are
imposed, the probability of channels is uniform. The models
are very scattered in the distance space, which confirms the
high variability of model responses.

[82] We start by solving this inverse problem using
rejection sampling. The likelihood function used is

L mið Þ ¼ exp �RMSE mið Þ2
2�2

 !
; ð6Þ

with s = 0.03 m, which can reasonably correspond to the
head measurement error. The supremum value is set to
0.607, which corresponds to a RMSE of 0.0300 (a higher fit
than any of the samples). After 100,000 evaluations, 150
realizations are sampled, representative of f (m∣d). Six of
these realizations are displayed in Figure 10 with their
respective fits to data. Although good fits are found, reali-
zations are very different. This is an indication of the non-
uniqueness of the solutions and of multiple local minima in
the solution space.
[83] Compared to the prior models, the standard deviation

of heads displays reduced uncertainty, especially at the data
locations. The probability of occurrence of sand shows that
the head measurements captured some essential features
governing flow behavior. One such feature is the presence
of a channel at the well location, slightly tilted downward
and that does not branch in the immediate vicinity of the
well. Another feature is the absence of channels at the
location of the four observation wells close to the center. In
the distance space, the posterior models represent a narrow
subset of the prior. Note that more informative data, such as
transient heads or concentration data, would allow a more
detailed characterization of the channel locations.
[84] Now that the posterior distribution is entirely char-

acterized with rejection, we perform another sampling using
ISR as a Metropolis sampler as described in section 2.3,
with likelihood (6). A constant resampling factor of 8 = 0.01
is used. The chain is carried on until 2000 models are
accepted. Because of the high rejection rate, 26,753 pro-
posal solutions are evaluated in total. The convergence of
the chain is displayed in Figure 11. Upon convergence,

Figure 13. Six realizations (randomly chosen) out of the 150 sampled with interrupted Markov chains.
The fits to data and the RMSE are shown on the right of each realization. The axes and labels are the same
for all realizations, but they are only displayed for the top left image.

Figure 12. Evolution of the 150 individual optimizations
used for interrupted Markov chains.
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variations between the RMSEs of samples are expected
to cancel out and the mean RMSE should stabilize. Using
Figure 11, we define the burn‐in period as the initial 200
accepted models, and we remove those from the chain.
Then, one every 12 models accepted in the Markov chain is
retained as a sample of the posterior distribution. As a
result, 150 samples are obtained.
[85] The third column of Figure 9 shows that these

150 samples are similar to the outcomes of rejection sam-
pling. The mean heads and the probability of occurrence of
channels are fairly close to the ones obtained by rejection.
Slight differences are observed for the standard deviation of
heads. In the distance‐based representation, both rejection
andMetropolis samplers produce models that are represented
in the distance space as a main cluster with a few outliers.
While the main cluster is similar for both samplers, rejection
produced seven outliers and Metropolis produced only four.
Moreover, Metropolis sampling results in a higher median
RMSE. Although both samplings are fairly similar, the dif-
ferences can be attributed to the relatively small number of
samples (150), but also to the imperfect conditioning of the
DS simulation method.
[86] The fourth column of Figure 9 represents 150 sam-

ples obtained by interrupted Markov chains, with a constant
fraction of resampled nodes of 8 = 0.01. Likelihood (6) is
used, and the supremum is the same as for rejection sam-
pling. The results are relatively similar to the ensemble
obtained by rejection sampling, using only 8108 forward
problem evaluations (about 54 forward simulation runs for
each matched model). The head standard deviation is
noticeably reduced in the upper part of the image. In the
distance‐based representation, five models lie out of the
main cluster, which is similar to what was observed with
rejection sampling. However, the main cluster is too narrow
(see zoomed‐in part). Figure 12 shows the evolution of the
150 optimizations and their interruptions. The number of
iterations i before interruption ranges between 4 and 144,
with an average of 54 iterations. Six optimized realiza-
tions obtained by interrupted Markov chains are shown in
Figure 13. Similarly to the case of rejection sampling, the
presence of diversity in the population of solutions indicates
that different local minima have been explored.
[87] For comparison, Figure 14 displays the distance‐

based representation of models obtained with deterministic
stopping criteria, after a fixed number of iterations imax =
150 and imax = 15. Clearly, 15 iterations are not enough and
produce an ensemble that is too spread, while 150 iterations

are too much, only representing a narrow subset of the
desired posterior. Note that the correct number of iterations
cannot be known a priori.

4. Conclusion

[88] We presented the iterative spatial resampling method
(ISR) to perturb realizations of a spatially dependent vari-
able while preserving its spatial structure. The method is
used as a transition kernel to produce Markov chains of
geostatistical realizations. Depending on the acceptance/
rejection criterion in the Markov process, it is possible to
obtain a chain of realizations aimed either at characterizing a
certain posterior distribution with Metropolis sampling or at
calibrating one realization at a time. ISR can therefore be
applied in the context of Bayesian inversion or as an opti-
mization method. For the latter case, we present a stopping
criterion for optimizations inspired from importance sam-
pling. In the studied cases, it yields posterior distributions
reasonably close to the ones obtained by rejection sampling,
with important reduction in CPU cost.
[89] The method is based solely on conditioning data;

hence it can be used with any geostatistical technique
able to produce conditional simulations. Moreover, ISR can
be straightforwardly implemented without modification of
existing computer codes. The method is simple in its con-
cept and needs very little parameterization.
[90] The fraction of resampled nodes 8 is the only

parameter required for optimization with ISR. It has been
shown that the method is efficient for a wide range of 8. This
low sensitivity is a major advantage from a practical point of
view because it saves the user the hassle of performing
lengthy sensitivity analysis to find optimal parameters.
[91] The approach is illustrated with both continuous and

discrete variables. We use head data and groundwater flow
problems, but the principle is general and can be applied
to other inversion problems such as the ones involving
geophysical applications. Future research will focus on
extending the concept of ISR. For example, local perturba-
tions can be obtained by resampling certain areas more than
others or by using quasirandom resampling [e.g., Tang et al.,
2008]. This could be used when the forward problem
provides local fitness or sensitivity information. Another
aspect is the integration of preferential search directions. In
this paper, we investigated search patterns that use random
search directions, obtained by sampled locations that are not
correlated between an iteration and the next one. It may be

Figure 14. Distance‐based representation of ensembles obtained with deterministic stopping criteria.
(a) Fixed number of 15 iterations. (b) Fixed number of 150 iterations.
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possible to continue the search in the same direction as the
previous iteration by adopting sampling locations that are
dependent on the sampling at the previous iteration.
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