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Highlights

• The paper presents a new method for simulating multi-dimensional random fields by Karhunen–Loève expansion.
• The proposed method is embedded into the well-established framework of K–L expansion for simulating stochastic process.
• Four examples illustrate the effectiveness of the proposed method.

Abstract

The Karhunen–Loève (K–L) expansion method is a powerful tool for simulating stationary and nonstationary, Gaussian and
non-Gaussian stochastic processes with explicitly known covariance functions. Since the K–L expansion requires the solution
of Fredholm integral equation of the second kind, it is generally not feasible to simulate multi-dimensional random fields. This
is because even the numerical solution of the Fredholm integral multi-dimensional eigenvalue problem is difficult to obtain. In
order to address this problem, this paper develops a consistent generalization of K–L expansion for multi-dimensional random
field simulation. The new method decomposes an n-dimensional random field into a total of n stochastic processes, each can
be represented by using the traditional K–L expansion. Thus, the developed method is embedded into the well-established
framework of the K–L expansion for simulating stochastic process, and obviating the need for solving the multi-dimensional
integral eigenvalue problems. Four examples, including random fields with different kinds of covariance functions, are used to
demonstrate the application of the proposed method.
c⃝ 2017 Elsevier B.V. All rights reserved.
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1. Introduction

In stochastic engineering problems, the proper consideration of the input variability is crucial to obtain an accurate
and reliable solution. A large number of these problems involve uncertainty quantities which should be modeled as
multi-dimensional random fields. The use of multi-dimensional random fields gained momentum due to the continued

∗ Corresponding author.
E-mail address: hzdai@hit.edu.cn (H. Dai).

http://dx.doi.org/10.1016/j.cma.2017.05.022
0045-7825/ c⃝ 2017 Elsevier B.V. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2017.05.022&domain=pdf
http://www.elsevier.com/locate/cma
http://dx.doi.org/10.1016/j.cma.2017.05.022
http://www.elsevier.com/locate/cma
mailto:hzdai@hit.edu.cn
http://dx.doi.org/10.1016/j.cma.2017.05.022


222 Z. Zheng, H. Dai / Comput. Methods Appl. Mech. Engrg. 324 (2017) 221–247

increase in available computational resources and nowadays is commonly used in many disciplines [1–3]. Several
examples can be found in various fields of engineering. For instance, a number of common excitations, such as seismic
ground motion, water velocity due to random waves, and wind velocity, can be reasonably modeled as random fields.
For each of these environmental loads one often needs to use a multi-dimensional random field model to consider
spatially correlated vector time histories of motion occurring simultaneously at different locations. In practice, it will
often be the case that an amount of real realization of a random field are required. This is because the solution of
practical engineering problems is often obtained through Monte Carlo simulation (MCS), in which the simulation of
sample realizations of multi-dimensional random fields is one of the most important stages [4–6]. On the other hand, in
the context of stochastic finite element analysis of structures, the discretization of continuous random fields becomes
necessary. For computational purposes, the discretization must represent the continuous random field with sufficient
accuracy with as few random variables as possible [7–9]. As a consequence, the simulation and discretization of
multi-dimensional random fields is of practical and theoretical importance.

According to [10], the two most widely used approaches for simulating one-dimensional random field, known
as stochastic process, are based on the spectral representation (discretization in the frequency domain) or on the
Karhunen-Loève (K–L) expansion (discretization in the physical domain, e.g., time or space). Although the former has
been successfully extended for simulating multi-dimensional random fields, e.g.,[11], the present paper is focused on
method that based on K–L expansion since it is a powerful tool for representing stationary and nonstationary, Gaussian
and non-Gaussian stochastic process with explicitly known covariance functions [12–14]. Since K–L expansion is
optimal among series expansion methods in the global mean square error with respect to the number of random
variables in the representation, it has received much attention in many disciplines. For instance, the K–L expansion
(also known as proper orthogonal decomposition in most of the turbulence literatures) has become a standard tool
for extracting the most energetic modes from a fluctuating velocity field that define the coherent structure of the fluid
flow [15]. In structural dynamics and random vibration, it has been applied to identify the modal shapes of two- or
three-dimensional structures having nonhomogeneous density [16,17] and to determine the stochastic response and
reliability of nonlinear system [18–20]. In optimization problems, the K–L expansion has been successfully applied
to assess the input variability associated to design spaces in shape optimization and build a reduced-dimensionality
representation of the shape modification vector [21,22]. In stochastic finite element analysis, it has been widely used
to discretize the random fields representing the randomness of structures and excitation [8,10]. It is worth mentioning
that the implementation of K–L expansion requires the solution of a Fredholm integral equation of the second kind
with the covariance function of the stochastic process as the integral kernel. Although only a limited number of
analytical eigen-solutions are available, the solution of the integral equation can be numerically approximated for
stochastic processes with arbitrary covariance functions [23–25]. However, for the multi-dimensional random fields,
it is generally not feasible to obtain the numerical solution of the Fredholm integral multi-dimensional eigenvalue
problem [26–28]. This is why, in the last few years, most applications of K–L expansion only focus on simulating
stochastic process. For random fields that are defined on two- and three-dimensional domains, the finite element
method becomes the only available method for the discretization of the multi-dimensional integral eigenvalue
problems [10,29]. However, on two- and especially three-dimensional random field domains, the generation of a
finite element mesh is an involved task and the computational costs become expensive [7].

Borrow the idea that proposed by the present authors for handling the multi-dimensional moment-constrained
maximum entropy problem [30], this paper develops a consistent generalization of K–L expansion for multi-
dimensional random fields simulation. The new method expands an n-dimensional random field into a one-
dimensional stochastic process and an (n−1)-dimensional random field, the obtained (n−1)-dimensional random field
is further decomposed into a new one-dimensional stochastic process and an (n − 2)-dimensional random field. By
repeating the above process, the original n-dimensional random field is decomposed into a series of one-dimensional
stochastic processes step by step, each can be represented by using traditional K–L expansion. Thus, the developed
method is embedded into the well-established framework of the K–L expansion for simulating stochastic process, and
obviating the need for the finite element method for solving the multi-dimensional integral eigenvalue problems.

The paper is organized as follows: the traditional K–L expansion is briefly introduced in Section 2, followed by
the developed method for simulating multi-dimensional random fields. Four illustrative examples are finally given in
Section 4 to demonstrate the application of the proposed method.
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2. K–L expansion of one-dimensional random process

The Karhunen-Loève expansion is a series expansion method for the representation of the random process. The
expansion is based on a spectral decomposition of the covariance function of the process. It states that a second-order
random process w(t, θ), which is indexed on a bounded domain D, can be represented exactly by the following
expansion

w(t, θ) = w̄(t) +

∞∑
n=1

√
λnξn(θ ) fn(t) (1)

where w̄(t) is the mean function of the process, ξn(θ ) are standard normal uncorrelated random variables, and λn and
fn(t) are the eigenvalues and eigenfunctions of the covariance function C(t1, t2) of the process, obtained from solving
the following homogeneous Fredholm integral equation of the second kind:∫

D
C(t1, t2) fn(t1)dt1 = λn fn(t2). (2)

Since the covariance function is bounded, symmetric and positive definite, C(t1, t2) has the spectral decomposition as

C(t1, t2) =

∞∑
n=1

λn fn(t1) fn(t2). (3)

According to Mercer’s theorem, the eigenvalues λn are nonnegative, the eigenfunctions corresponding to positive
eigenvalues are continuous and orthogonal to each other, i.e.,

∫
D fn(t) fm(t)dt = δnm , where δnm is one if n = m and

zero otherwise. The random variables ξn(θ ) in Eq. (1) are expressed as

ξn(θ ) =
1

√
λn

∫
D

[w(t, θ) − w̄(t)] fn (t) dt (4)

with mean and covariance function given by

E [ξn(θ )] = 0, E [ξn(θ )ξm(θ )] = δnm . (5)

Obviously, the use of K–L expansion with orthogonal deterministic basis functions and uncorrelated random
coefficients has generated interest because of its bi-orthogonal property. This allows for the optimal encapsulation
of the information contained in the random process into a set of discrete uncorrelated random variables [31,32]. For
practical implementation, the K–L expansion can be approximated by sorting the eigenvalues λn and the corresponding
eigenfunctions fn(t) in a descending order and truncating the expansion after M terms:

ŵ(t, θ) = w̄(t) +

M∑
n=1

√
λnξn(θ ) fn(t). (6)

For fixed M , the resulting random process approximation ŵ(t, θ) is optimal among series expansion methods with
respect to the global mean square error [10]. The covariance of ŵ(t, θ) is given by

Ĉ(t1, t2) =

M∑
n=1

λn fn(t1) fn(t2). (7)

3. Simulation of multi-dimensional random fields by K–L expansion

It is known that the application of K–L expansion for simulating random fields hinges crucially on the ability to
solve the integral eigenvalue problems of the type given in Eq. (2). Analytical solutions can be obtained only for
specific types of covariance functions. For random fields with arbitrary covariance functions defined on domains of
complex geometrical shape, the solution of the integral eigenvalue problems needs to be approximated numerically.
For the covariance functions defined on multi-dimensional domain, one has to solve the corresponding multi-
dimensional Fredholm integral equation, which is a challenging problem. In order to avoid numerically solving the
multi-dimensional integral eigenvalue problem in the simulation of a multi-dimensional random field, we develop
a new method on the basis of traditional K–L expansion. We describe the new method by using a 2-dimensional
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Fig. 1. Relationship between D1(x) and D.

random field in Section 3.1, and then generalize the method for simulating an arbitrary n-dimensional random field
with explicitly known covariance function in Section 3.2. The efficiency of the proposed method is finally discussed
in Section 3.3.

3.1. Simulation of a two-dimensional random field

Consider a two-dimensional random field w(x, t, θ) that defined on a probability space (Ω , A, P) and indexed on
a bounded domain D. Without loss of generality, we assume that the field has a zero mean and a finite covariance
function C(x1, x2, t1, t2), which is bounded for all x, t ∈ D. Fix the position vector, i.e., x1 = x2 = x , then the
covariance function C(x1, x2, t1, t2) becomes a ‘quasi’ one-dimensional function C(x, t1, t2), and in this case the
random field w(x, t, θ) can be expanded as

w(x, t, θ) =

∞∑
n=1

ξn(x, θ)
√

λn(x) fn(t, x) (8)

where λn(x) and fn(t, x) are the eigenvalues and eigenfunctions of the covariance function C(x, t1, t2), respectively.
Note that both λn(x) and fn(t, x) are functions of the position variable x . By definition, C(x, t1, t2) is bounded,
symmetric and positive definite. Therefore, it has the spectral decomposition as

C(x, t1, t2) =

∞∑
n=1

λn(x) fn(t1, x) fn(t2, x). (9)

The eigenvalues and eigenfunctions of C(x, t1, t2) are solutions of the following Fredholm integral equation:∫
D1(x)

C(x, t1, t2) fn(t1, x)dt1 = λn(x) fn(t2, x) (10)

where D1(x), the sub-domain of D, is dependent on the position variable x . Fig. 1 geometrically describes the relations
between D1(x) and D. The eigenfunctions are orthogonal and form a complete set satisfying∫

D1(x)
fn(t, x) fm(t, x)dt = δnm . (11)

It can be seen that the parameter ξn(x, θ) in Eq. (8) is the function of position variable x and hence can be considered
as a stochastic process. Thus, ξn(x, θ) can be expressed as

ξn(x, θ) =
1

√
λn(x)

∫
D1(x)

w(x, t, θ) fn(t, x)dt (12)

with mean and covariance function given by

E [ξn(x, θ)] = 0, E [ξn(x, θ)ξm(x, θ)] = δnm . (13)
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Obviously, as long as this intermediate one-dimensional stochastic process ξn(x, θ) is simulated, the original two-
dimensional random field w(x, t, θ) can be represented just by using the expansion in Eq. (8). Hence, it is required to
explicitly derive the covariance function of ξn(x, θ) so that this process can be simulated by means of K–L expansion.
To implement this, we denote Hn(x1, x2) as the covariance function of ξn(x, θ). By substituting Eq. (12) into the
definition of a covariance function, Hn(x1, x2) is derived as

Hn(x1, x2) = E [ξn(x1, θ)ξn(x2, θ)]

= E
[

1
√

λn(x1)

∫
D1(x1)

w(x1, t1, θ) fn (t1, x1) dt1
1

√
λn(x2)

∫
D1(x2)

w(x2, t2, θ) fn (t2, x2) dt2

]
=

1
√

λn(x1)λn(x2)

∫∫
D1(x1)×D1(x2)

E [w(x1, t1, θ)w(x2, t2, θ)] fn (t1, x1) fn (t2, x2) dt1dt2

=
1

√
λn(x1)λn(x2)

∫∫
D1(x1)×D1(x2)

C(x1, x2, t1, t2) fn (t1, x1) fn (t2, x2) dt1dt2

(14)

where E[·] denotes the mathematical expectation. Thus, this intermediate stochastic process ξn(x, θ) in Eq. (8) can be
simulated by using the K–L expansion as

ξn(x, θ) =

∞∑
k=1

ηnk(θ )
√

µnk gnk(x) (15)

where µnk and gnk(x) are eigenvalues and eigenfunctions of the covariance function Hn(x1, x2), a solution of the
integral eigenvalue problem:∫

D1

Hn(x1, x2)gnk (x2) dx2 = µnk gnk (x1) (16)

and ηnk(θ ) is a set of uncorrelated random variables satisfying E [ηnk(θ )] = 0 and E [ηnk(θ )ηnl(θ )] = δkl .
Thus, by substituting the representation of ξn(x, θ) in Eq. (15) into the K–L expansion as given in Eq. (8), the

original two-dimensional random field w(x, t, θ) is expanded as

w(x, t, θ) =

∞∑
n=1

∞∑
k=1

ηnk(θ )
√

λn(x) fn(t, x)
√

µnk gnk(x). (17)

The covariance function of the field w(x, t, θ) has the following spectral decomposition:

C(x1, x2, t1, t2) =

∞∑
n=1

∞∑
k=1

√
λn(x1)λn(x2) fn(t1, x1) fn(t2, x2)µnk gnk(x1)gnk(x2). (18)

As a summary, the two-dimensional random field w(x, t, θ) is firstly decomposed into a set of deterministic functions
and corresponding one-dimensional random processes, and these obtained intermediate random processes are then
expanded by K–L expansion one more time. In this way, the original two-dimensional random field is represented just
by using traditional K–L expansion twice.

For the autocorrelation function of ξn(x, θ), since the position vector is fixed as x1 = x2 = x , ξn(x1, θ) and ξn(x2, θ)
can be considered as random variables. Thus, Hn(x, x) can be derived as

Hn(x, x) = E [ξn(x, θ)ξn(x, θ)]

=
1

λn(x)

∫ ∫
D1(x)×D1(x)

C(x, t1, t2) fn(t1, x) fn(t2, x)dt1dt2

=
1

λn(x)

∫
D1(x)

[∫
D1(x)

C(x, t1, t2) fn(t1, x)dt1

]
fn(t2, x)dt2.

(19)

By substituting Eq. (10) into Eq. (19), Hn(x, x) can be further simplified as

Hn(x, x) = E [ξn(x, θ)ξn(x, θ)] =

∫
D1(x)

fn (t2, x) fn (t2, x) dt2 = 1. (20)
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Obviously, Eq. (20) coincides with the property that given in Eq. (13). In addition, since the cross-correlation function
of ξn(x, θ) and ξm(x, θ) can be derived as

E [ξn(x, θ)ξm(x, θ)] = E

[
∞∑

k=1

ηnk(θ )
√

µnk gnk(x)
∞∑

l=1

ηml(θ )
√

µml gml(x)

]

=

∞∑
k=1

∞∑
l=1

E [ηnk(θ )ηml(θ )]
√

µnkµml gnk(x)gml(x).
(21)

If the condition

E [ηnk(θ )ηml(θ )] = δnmδkl (22)

is satisfied, then Eq. (21) reduces to

E [ξn(x, θ)ξm(x, θ)] =

∞∑
k=1

∞∑
l=1

E [ηnk(θ )ηml(θ )]
√

µnkµml gnk(x)gml(x)

=

∞∑
k=1

∞∑
l=1

δnmδkl
√

µnkµml gnk(x)gml(x)

= δnm

∞∑
k=1

µnk g2
nk(x) = δnm Hn(x, x) = δnm .

(23)

Thus, Eq. (23) also coincides with the property that given in Eq. (13).

3.2. Simulation of a multi-dimensional random field

The expansion that proposed in Section 3.1 can be straightforwardly extended to three- or multi-dimensional
random fields simulation. For a zero-mean three-dimensional random field w(x, y, t, θ), following the way for
expanding a two-dimensional random field in Section 3.1, we firstly fix the position vector x1 = x2 = x and
y1 = y2 = y, and determine the eigenvalues and eigenfunctions of the ‘quasi’ two-dimensional covariance
C(x, y, t1, t2), the corresponding random coefficients would be a set of intermediate two-dimensional random fields.
Since these intermediate random fields can be further expanded by using the method that given in Eq. (17), the original
three-dimensional random field w(x, y, t, θ) can be finally represented by

w(x, y, t, θ) =

∞∑
i=1

√
λi (x, y) fi (t, x, y)

∞∑
j=1

√
µi j (y)gi j (x, y)

∞∑
k=1

ηi jk(θ )
√

νi jk pi jk(y). (24)

In order to concisely generalize Eq. (24) to a multi-dimensional case, it can be rewritten in a more unified form as

w(x1, x2, x3, θ) =

∞∑
i1=1

√
λi1 (x2, x3) fi1 (x1, x2, x3)

∞∑
i2=1

√
λi1i2 (x3) fi1i2 (x2, x3)

∞∑
i3=1

ηi1i2i3 (θ )
√

λi1i2i3 fi1i2i3 (x3). (25)

Thus, the notations in Eq. (25) can be easily extended to represent an arbitrary n-dimensional random field
w(x1, . . . , xn; θ ) as:

w(x1, . . . , xn; θ ) =

∞∑
i1=1

√
λi1 (x2, . . . , xn) fi1 (x1, . . . , xn)

∞∑
i2=1

√
λi1i2 (x3, . . . , xn) fi1i2 (x2, . . . , xn)

· · ·

∞∑
in−1=1

√
λi1·····in−1 (xn) fi1···in−1 (xn−1, xn)

∞∑
in−1=1

ηi1,...,in (θ )
√

λi1···in fi1···in (xn)
(26)

where subscript n represents the nth dimensionality. The covariance function of w(x1, . . . , xn; θ ) has the following
spectral decomposition

C(x11, x12, x21, x22, . . . , xn1, xn2)

=

∞∑
i1=1

√
λi1 (x21, . . . , xn1)λi1 (x22, · . . . ·, xn2) fi1 (x11, . . . , xn1) fi1 (x12, . . . , xn2)
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×

∞∑
i2=1

√
λi1i2 (x31, . . . , xn1)λi1i2 (x32, . . . , xn2) fi1i2 (x21, . . . , xn1) fi1i2 (x22, . . . , xn2)

× · · ·

∞∑
in−1=1

√
λi1····in−1 (xn1)λi1····in−1 (xn2) fi1···in−1 (xn−1,1, xn1) fi1···in−1 (xn−1,2, xn2)

×

∞∑
in−1=1

λi1····in fi1···in (xn1) fi1···in (xn2). (27)

In this way, an n-dimensional random field is expanded to a total of n one-dimensional stochastic processes step
by step, each can be represented by using traditional K–L expansion. Note that the limits of each summation in
Eqs. (26) and (27) are from one to infinity. Since each summation means one round of K–L expansion for simulating
the corresponding one-dimensional stochastic process, the series in each summation can be approximated by a finite
number of terms, just like the cases in Eqs. (6) and (7) as

ŵ(x1, . . . , xn; θ ) =

M1∑
i1=1

√
λi1 (x2, . . . , xn) fi1 (x1, . . . , xn)

M2∑
i2=1

√
λi1i2 (x3, . . . , xn) fi1i2 (x2, . . . , xn)

· · ·

Mn−1∑
in−1=1

√
λi1···in−1 (xn) fi1···in−1 (xn−1, xn)

Mn∑
in=1

ηi1,...,in (θ )
√

λi1···in fi1···in (xn)

(28)

and the corresponding covariance function is approximated as
Ĉ(x11, x12, x21, x22, . . . , xn1, xn2)

=

M1∑
i1=1

√
λi1 (x21, · . . . ·, xn1)λi1 (x22, · . . . ·, xn2) fi1 (x11, . . . , xn1) fi1 (x12, . . . , xn2)

×

M2∑
i2=1

√
λi1i2 (x31, . . . , xn1)λi1i2 (x32, . . . , xn2) fi1i2 (x21, . . . , xn1) fi1i2 (x22, . . . , xn2)

· · · ×

Mn−1∑
in−1=1

√
λi1···in−1 (xn1)λi1···in−1 (xn2) fi1···in−1 (xn−1,1, xn1) fi1···in−1 (xn−1,2, xn2)

×

Mn∑
in−1=1

λi1···in fi1···in (xn1) fi1···in (xn2).

(29)

For sufficiently large Mi , i = 1, 2, . . . , N in each summation, the second-moment properties of the set of intermediate
stochastic processes can be approximated by the second-moment properties of the corresponding K–L representation,
and the accuracy of each round of K–L approximation depends on the value of Mi . As has been proved in [10], the
mean square error resulting from the K–L truncation is minimized, the truncated series in each summation is thus
converge to the corresponding one-dimensional stochastic process with optimal representation. Once the intermediate
process of the first dimension has been represented by the corresponding truncated K–L representation, the K–L
approximation of the next-dimensional intermediate process will also converge with minimum mean square error.
In this sense, the K–L expansion in Eq. (28) is optimal with respect to the mean square approximation error. Take
the representation of the two-dimensional random field in Eq. (17) as an example, once the intermediate stochastic
process ξn(x, θ) can be represented by truncating the K–L expansion in Eq. (15) with k = M2 terms, the summation
of finite series in Eq. (8) (i.e., n = M1) can be used to approximate the original random field w(x, t, θ) with minimum
mean square approximation error.

3.3. Computation of the covariance of intermediate stochastic process

It has been shown that a total of n intermediate one-dimensional stochastic processes are produced during the
process for simulating an n-dimensional random field. Obviously, Eq. (26) or Eq. (28) can be employed only when
all of these one-dimensional stochastic processes are simulated. In this section, we will take the two-dimensional
random field w(x, t, θ) as an example to develop an effective method for simulating the intermediate one-dimensional
stochastic processes and then generalize the method to multi-dimensional case.
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Recall that the covariance function Hn(x1, x2) of the intermediate one-dimensional stochastic process ξn(x, θ) in
Eq. (14) involves the term 1√

λn (x1)λn (x2)
, which are functions of variables x1 and x2. This may lead to ill-posed condition

in the computation of Hn(x1, x2) because
√

λn(x1) and
√

λn(x2) are in the denominator of Hn(x1, x2). In order to avoid
this problem, we consider a new one-dimensional stochastic process

√
λn(x)ξn(x, θ) instead of ξn(x, θ). From Eq. (14),

the covariance of the new process
√

λn(x)ξn(x, θ) can be easily derived as

Rn(x1, x2) = E
[√

λn(x1)ξn(x1, θ)
√

λn(x2)ξn(x2, θ)
]

=

∫∫
D1(x1)×D1(x2)

C(x1, x2, t1, t2) fn(t1, x1) fn(t2, x2)dt1dt2
(30)

where Rn(x1, x2) denotes the covariance function of the process
√

λn(x)ξn(x, θ). Compared Rn(x1, x2) with
Hn(x1, x2), it is not difficult to find that the only difference between these two covariance kernels is that the
term 1√

λn (x1)λn (x2)
in Hn(x1, x2) is diminished. Once the covariance Rn(x1, x2) is determined, the stochastic process

√
λn(x)ξn(x, θ) can be simulated by using K–L expansion as√

λn(x)ξn(x, θ) =

∞∑
k=1

η̃nk(θ )
√

µ̃nk g̃nk(x) (31)

where µ̃nk and g̃nk(x) are the eigenvalues and eigenfunctions of the covariance Rn(x1, x2), satisfying∫
D1

Rn(x1, x2)g̃nk(x2)dx2 = µ̃nk g̃nk(x1) (32)

and η̃nk(θ ) is the corresponding set of uncorrelated random coefficients. Thus, by substituting Eq. (31) into Eq. (8),
the K–L expansion of the two-dimensional random field w(x, t, θ) in Eq. (17) can be rewritten as

w(x, t, θ) =

∞∑
n=1

∞∑
k=1

η̃nk(θ ) fn(t, x)
√

µ̃nk g̃nk(x) (33)

and the covariance function in Eq. (18) is accordingly simplified as

C(x1, x2, t1, t2) =

∞∑
n=1

∞∑
k=1

fn(t1, x1) fn(t2, x2)µ̃nk g̃nk(x1)g̃nk(x2). (34)

Obviously, due to the simplified form of the covariance kernel, the Fredholm integral equation in Eq. (32) is much
easier to solve than that in Eq. (16). As a result, the expansion in Eq. (33) is more effective than that in Eq. (17) for
two-dimensional random field simulation.

The above method for efficiently computing the covariance function of the intermediate one-dimensional stochastic
process, and the subsequent Fredholm integral equation, can be straightforwardly extended to the multi-dimensional
random field simulation. For an arbitrary n-dimensional random field w(x1, . . . , xn; θ ), the expansion in Eq. (26) can
be rewritten as

w(x1, . . . , xn; θ ) =

∞∑
i1=1

fi1 (x1, . . . , xn)
∞∑

i2=1

fi1i2 (x2, . . . , xn)

· · ·

∞∑
in−1=1

fi1···in−1 (xn−1, xn)
∞∑

in−1=1

ηi1,...,in (θ )
√

λi1···in fi1···in (xn)
(35)

with the covariance function simplified by

C(x11, x12, x21, x22, . . . , xn1, xn2)

=

∞∑
i1=1

fi1 (x11, . . . , xn1) fi1 (x12, . . . , xn2)
∞∑

i2=1

fi1i2 (x21, . . . , xn1) fi1i2 (x22, . . . , xn2)

× · · ·

∞∑
in−1=1

fi1···in−1 (xn−1,1, xn1) fi1·····in−1 (xn−1,2, xn2)
∞∑

in−1=1

λi1···in fi1···in (xn1) fi1···in (xn2).

(36)
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By using the truncated K–L expansion in Eqs. (28) and (29), Eqs. (35) and (36) can be, respectively, approximated by

ŵ(x1, . . . , xn; θ ) =

M1∑
i1=1

fi1 (x1, . . . , xn)
M2∑

i2=1

fi1i2 (x2, . . . , xn)

· · ·

Mn−1∑
in−1=1

fi1···in−1 (xn−1, xn)
Mn∑

in=1

ηi1,...,in (θ )
√

λi1···in fi1···in (xn)

(37)

and

Ĉ(x11, x12, x21, x22, . . . , xn1, xn2)

=

M1∑
i1=1

fi1 (x11, . . . , xn1) fi1 (x12, . . . , xn2)
M2∑

i2=1

fi1i2 (x21, . . . , xn1) fi1i2 (x22, . . . , xn2)

× · · ·

Mn−1∑
in−1=1

fi1·····in−1 (xn−1,1, xn1) fi1···in−1 (xn−1,2, xn2)
Mn∑

in−1=1

λi1···in fi1···in (xn1) fi1···in (xn2).

(38)

Specifically, in the simulation of a two-dimensional random field w(x, t, θ), Eqs. (33) and (34) can be accordingly
approximated by

ŵ(x, t, θ) =

M1∑
n=1

fn(t, x)
M2∑

k=1

η̃nk(θ )
√

µ̃nk g̃nk(x) (39)

and

Ĉ(x1, x2, t1, t2) =

M1∑
n=1

M2∑
k=1

fn(t1, x1) fn(t2, x2)µ̃nk g̃nk(x1)g̃nk(x2). (40)

Compared with Eq. (28), Eq. (37) is more applicable for simulating an n-dimensional random field not only
due to its simplified form, the more important reason is that the Fredholm integral equation with the covariance
kernel Rn(x1, x2) is more easy to solve than that with the kernel Hn(x1, x2). Therefore, Eq. (37) is proposed as
a general formula to represent multi-dimensional random field in practice. The general procedure of the proposed
method for simulating an n-dimensional random field is firstly to fix the position vector to determine the eigenvalues
and eigenfunctions of the corresponding quasi covariance function, and then to construct the covariance function
Rn(x1, x2) of the intermediate (n − 1)-dimensional random field according to Eq. (30), and finally solve the integral
eigenvalues problem that associated with the kernel Rn(x1, x2). When the above process is repeated by n times,
the original n-dimensional random field is decomposed into a total of n one-dimensional stochastic processes, each
can be represented by using the traditional K–L expansion. In this way, the proposed method is embedded into the
well-established framework of the K–L expansion.

4. Numerical examples

In this section, four illustrative examples are provided to examine the effectiveness of the proposed method. The
first two examples consider a stationary and a non-stationary two-dimensional random field with separable covariance
function. Note that in such cases, the traditional K–L is also available for simulating the random field by assuming
that the eigenfunctions possess the separate structure. In order to investigate the performance of the proposed method
for simulating a more general random field, examples 3 and 4 consider the two-dimensional random field with non-
separable covariance. In all examples, the results of the proposed method are compared with the exact solutions.

4.1. Example 1: Stationary random field with separable covariance

The first example considers a zero-mean two-dimensional random field w(x, t, θ) with covariance function
given by

C(x1, x2, t1, t2) = (1 − d |x1 − t1|) (1 − d |x2 − t2|) , |x1 − t1| ∈

[
0,

1
d

]
, |x2 − t2| ∈

[
0,

1
d

]
(41)
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where d is a parameter that is used to adjust the distance |xi − ti | , i = 1, 2 of null correlation between w(x1, t1, θ)
and w(x2, t2, θ). In this example, d is adopted as one. To implement the proposed method to simulate w(x, t, θ), we
firstly fix x1 = t1 = x to obtain a ‘quasi’ one-dimensional covariance as

C(x, x2, t2) = 1 − |x2 − t2| , |x2 − t2| ∈ [0, 1] (42)

and determine the eigenfunctions of the covariance C(x, x2, t2). Consider realizations of the corresponding process on
interval [0, 1], then according to Eq. (10), the homogeneous Fredholm integral equation of kernel C(x, x2, t2) becomes∫ 1

0
[1 − |x2 − t2|] fi (x2, x)dx2 = λi (x) fi (t2, x). (43)

The closed-form solution of Eq. (43) can be found in [10] as

fi (t, x) =
cos ωi t√
1
2 +

sin 2ωi
2ωi

(44)

where

ωi =

⎧⎨⎩iπ, i = 2k − 1
2

tan ωi/2
, i = 2k.

(45)

Once the eigenfunctions of the covariance C(x, x2, t2) is obtained, we then need to determine the covariance function
of the intermediate process

√
λi (x)ξn(i, θ) that corresponds to the eigenfunctions fi (t, x) in Eq. (44). According to

Eq. (30), the covariance Ri (x1, t1) can be easily derived as

Ri (x1, t1) = 1 − |x1 − t1| . (46)

Thus, based on the analytical solution of the integral eigenvalue problem of type given in Eq. (43), the eigenvalues
and eigenfunctions of Ri (x1, t1) are given as

µ̃i j =
2

ω2
i j

, g̃i j (x) =
cos ωi j x√
1
2 +

sin 2ωi j
2ωi j

(47)

where

ωi j = ω j =

⎧⎨⎩ jπ, j = 2k − 1
2

tan ω j/2
, j = 2k.

(48)

The random variables η̃i j (θ ) that correspond to the eigenvalues µ̃i j can be determined by using the method given in
Eq. (4). Thus, by substituting Eqs. (44) and (47) into Eq. (39), the random field w(x, t, θ) is represented by

ŵ(x, t, θ) = 2
M1∑
i=1

M2∑
k=1

η̃i j (θ )
√

ωi cos ωi t cos ω j x√
ω j (ωi + sin 2ωi )

(
ω j + sin 2ω j

) . (49)

In this example, the number of the terms that retained in Eq. (49) is adopted as M1 = 5, and M2 = 5. Fig. 2a and
b show the first 6 eigenfunctions fi (t, x), i = 1, . . . , 6 and eigenvalues associated with the covariance kernel as given
in Eq. (41). Since the eigenfunctions g̃i j (x) and eigenvalues µ̃i j of covariance Ri (x1, t1) have the same structure as
those given in Eq. (44), they also can be described by Fig. 2a and b. Figs. 3–5 show the exact covariance function,
the approximated covariance, and the associated errors at the position x = x1 = t1 = 0.5, t = t1 = t2 = 0.7, and
x1 = 0.2, x2 = 0.6, respectively. It can be seen that for all these cases, the approximations of covariance function
based on Eq. (40) agree well with the exact covariance, illustrating the effectiveness of the proposed method.

We emphasize that, in this example the random field w(x, t, θ) can be also represented by the traditional K–L
expansion since the covariance function in Eq. (41) is separable. If the traditional K–L expansion is used to simulate
w(x, t, θ), the following two-dimensional Fredholm integral equation∫

D
C(x1, x2, t1, t2) fn(x1, t1)dx1dt1 = λn fn(x2, t2) (50)
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Fig. 2. The first six eigenfunctions and eigenvalues of the covariance in example 1.

has to be solved. According to [33], we assume that the eigenvalues and eigenfunctions are also separate, that is,

fn(x1, x2) = f (1)
i (x1) f (2)

j (x2) λn = λ
(1)
i λ

(2)
j . (51)

Then, Eq. (50) becomes

λ
(1)
i f (1)

i (x1)λ(2)
j f (2)

j (x2) =

∫
D1

(1 − |x1 − t1|) f (1)
i (t1)dt1

∫
D2

(1 − |x2 − t2|) f (2)
j (t2)dt2 (52)

which is equivalent to⎧⎪⎪⎨⎪⎪⎩
λ

(1)
i f (1)

i (x1) =

∫
D1

(1 − |x1 − t1|) f (1)
i (t1)dt1

λ
(2)
j f (2)

j (x2) =

∫
D2

(1 − |x2 − t2|) f (2)
j (t2)dt2.

(53)

By solving Eq. (53), the eigenfunctions are obtained as

f (1)
i (x) =

cos ωi x√
1
2 +

sin 2ωi
2ωi

, f (2)
j (x) =

cos ω j x√
1
2 +

sin 2ω j
2ω j

(54)

where

ωi =

⎧⎨⎩iπ, i = 2k − 1
2

tan ωi/2
, i = 2k,

ω j =

⎧⎨⎩ jπ, j = 2k − 1
2

tan ω j/2
, j = 2k.

(55)

Thus, the random field w(x, t, θ) can be also simulated by using the traditional K–L expansion as

ŵ(x, t, θ) = 2
M1∑
i=1

M2∑
j=1

ηi j (θ )
√

ωi cos ωi t cos ω j x√
ω j (ωi + sin 2ωi )

(
ω j + sin 2ω j

) . (56)

Note that Eq. (56) is identical to Eq. (49), again illustrating the validity of the proposed method.

4.2. Example 2: Non-stationary random field with separable covariance

It can be seen from Eq. (42) that, the quasi one-dimensional covariance does not contain variable x when we
fix the position x1 = t1 = x . In order to examine a more general case, the next example considers a zero-mean
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Fig. 3. Exact covariance, simulated covariance C(x, x2, t2) and associated error at position x = x1 = t1 = 0.5.

Fig. 4. Exact covariance, simulated covariance C(t, x1, x2) and associated error at position t = t1 = t2 = 0.7.

two-dimensional random field w(x, t, θ) with covariance function given by

C(x1, x2, t1, t2) = min(x1, t1) min(x2, t2), xi ∈ [0, 1] , ti ∈ [0, 1] , i = 1, 2. (57)

Since the covariance is of the type of Wiener process, this example can be used to investigate the performance of the
proposed method for simulating non-stationary random fields.
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Fig. 5. Exact covariance, simulated covariance C(x1, x2, t1, t2) and associated error at position x1 = 0.2, x2 = 0.6.

The first step of the proposed method is to fix x1 = t1 = x to obtain a quasi one-dimensional covariance function as

C(x, x2, t2) = x min (x2, t2) , xi ∈ [0, 1] , ti ∈ [0, 1] , i = 1, 2. (58)

It can be seen that, different from example 1, variable x is involved in covariance C(x, x2, t2). The analytical solution
of the following Fredholm integral equation:

x
∫ 1

0
min (x2, t2) fn(x2, x)dx2 = λn(x) fn(t2, x) (59)

is the eigenfunctions fn(t, x) and eigenvalues λn(x) of covariance kernel C(x, x2, t2). According to [10], fn(t, x) and
λn(x) can be analytically solved as

fn(t, x) =
√

2 sin ωnt, λn(x) =
x[(

n +
1
2

)
π

]2 (60)

where

ωn =

√
x

λn(x)
=

(
n +

1
2

)
π. (61)

The next step is to determine the covariance Rn(x1, t1) of the intermediate one-dimensional stochastic process.
According to Eq. (30), the covariance Rn(x1, t1) is derived as

Rn(x1, t1) =

∫ ∫
D1(x2)×D1(t2)

C(x1, x2, t1, t2) fn(x2) fn(t2)dx2dt2

= 2 min(x1, t1)
∫ 1

0

∫ 1

0
min(x2, t2) sin ωn x2 sin ωnt2dx2dt2

=
1
ω2

n
min(x1, t1).

(62)

Thus, based on Eq. (32), the eigenfunctions and eigenvalues of Rn(x1, t1) are the solutions of the following Fredholm
integral equation:

1
ω2

n

∫ 1

0
min(x1, t1)g̃nk(x1)dx1 = µ̃nk g̃nk(t1). (63)
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Fig. 6. The first six eigenfunctions and eigenvalues of the covariance in example 2.

Similar as the solution of Eq. (60), the closed-form solution of Eq. (63) are

g̃nk(x) =
√

2 sin ωnk x, µ̃nk =
1

ω2
n

[(
k +

1
2

)
π

]2 =
1

ω2
nω

2
k

(64)

where

ωnk = ωk =

(
k +

1
2

)
π. (65)

By substituting Eqs. (60) and (64) into Eq. (39), the random field w(x, t, θ) is consequently represented by

ŵ(x, t, θ) = 2
M1∑
i=1

M2∑
j=1

η̃i j (θ )
1

ω2
i ω

2
j

sin ωi t sin ω j x (66)

where η̃i j are the set of random variables that correspond to eigenfunctions g̃nk(x). Fig. 6a and b show the first 6
eigenfunctions fn(t, x), n = 1, . . . , 6 and eigenvalues associated with the covariance kernel as given in Eq. (57).
Since the eigenfunctions g̃nk(x) and eigenvalues µ̃nk of covariance Rn(x1, t1) have the same structure as those given
in Eq. (60), they can be also described by using Fig. 6a and b. Figs. 7–9 show the exact covariance function, the
approximated covariance, and the associated errors at the position x = x1 = t1 = 0.5, t = t1 = t2 = 0.3, and
x1 = 0.3, x2 = 0.8, respectively. The number of the terms that retained in K–L expansion as in Eq. (66) is adopted
as M1 = 5, and M2 = 5. Similar as the results in example 1, the approximations of covariance function based on
Eq. (40) agree well with the exact covariance.

Note that this example demonstrates the necessity for using the covariance Rn(x1, t1) in Eq. (30), instead of
the covariance function Hn(x1, t1) in Eq. (19) in the simulation of a multi-dimensional random field. According to
Eq. (19), the covariance function Hn(x1, t1) yields

Hn(x1, t1) =
min(x1, t1)

√
x1t1

. (67)

If Hn(x1, t1) is used as the covariance of the intermediate one-dimensional stochastic process, the eigenfunctions
and eigenvalues of Hn(x1, t1) cannot be readily obtained since the analytical solution of the corresponding Fredholm
integral equation∫

D2

min(x1, t1)
√

x1t1
gnk(x1)dx1 = µnk gnk(t1) (68)
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Fig. 7. Exact covariance, simulated covariance C(x, x2, t2) and associated error at position x = x1 = t1 = 0.5.

Fig. 8. Exact covariance, simulated covariance C(t, x1, x2) and associated error at position t = t1 = t2 = 0.3.

is not available [10]. The main advantage for using the covariance of the intermediate process
√

λn(x)ξn(x, θ) is that
the Fredholm integral equation of the covariance kernel Rn(x1, t1) is, in general, easier to be solved.

We also emphasize that, although variable x is involved in the covariance C(x, x2, t2), as shown in Eq. (58), the
covariance function C(x1, x2, t1, t2) that given in Eq. (57) is still separable. Therefore, one can simulate the random
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Fig. 9. Exact covariance, simulated covariance C(x1, x2, t1, t2) and associated error at position x1 = 0.3, x2 = 0.8.

field using traditional K–L expansion by assuming that the eigenfunctions fn(x1, x2) and eigenvalues λn of covariance
kernel C(x1, x2, t1, t2) are also separable as,

fn(x1, x2) = f (1)
i (x1) f (2)

j (x2), λn = λ
(1)
i λ

(2)
j . (69)

Thus, the following integral eigenvalue problem associated with the kernel C(x1, x2, t1, t2)∫
D

C(x1, x2, t1, t2) fn(x1, t1)dx1dt1 = λn fn(x2, t2) (70)

is converted to

λ
(1)
i f (1)

i (x1)λ(2)
j f (2)

j (x2) =

∫
D1

min(x1, t1) f (1)
i (t1)dt1

∫
D2

min(x2, t2) f (2)
j (t2)dt2 (71)

which is equivalent to⎧⎪⎪⎨⎪⎪⎩
λ

(1)
i f (1)

i (x1) =

∫
D1

min(x1, t1) f (1)
i (t1)dt1

λ
(2)
j f (2)

j (x2) =

∫
D2

min(x2, t2) f (2)
j (t2)dt2.

(72)

The closed-form solution of Eq. (72) can be found in [10] as

f (1)
i (x) =

√
2 sin ωi x, λ

(1)
i (x) =

1[(
i +

1
2

)
π

]2 (73)

and

f (2)
j (x) =

√
2 sin ω j x, λ

(2)
j (x) =

1[(
j +

1
2

)
π

]2 (74)

where

ωi =

(
i +

1
2

)
π, ω j =

(
j +

1
2

)
π. (75)
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Fig. 10. The first six eigenfunctions fn(t, x) of the covariance in example 3.

Fig. 11. The first six eigenvalue functions λn(x) of the covariance in example 3.

Once the eigenfunctions fn(x1, x2) and eigenvalues λn of covariance kernel C(x1, x2, t1, t2) are obtained, it will
not be difficult to derive the same representation formula of the random field w(x, t, θ) as Eq. (66) that is given
by the proposed method. Hence, the proposed method derives the same representation of the random field with
separable covariance structure as the traditional K–L expansion, again demonstrating the application of the proposed
method.

4.3. Example 3: Random field with non-separable covariance

It has been shown, in the first two examples, that proposed method achieves the same representation of a random
field with a separable covariance, i.e., C(x1, x2, t1, t2) = C(x1, t1)C(x2, t2), with traditional K–L expansion. In
practice, if the covariance function is not separable, then the traditional K–L expansion does not work. In this
example, we investigate the performance of the proposed method for handling such a problem. Consider a zero-mean



238 Z. Zheng, H. Dai / Comput. Methods Appl. Mech. Engrg. 324 (2017) 221–247

Fig. 12. Covariance function R1(x1, x2) of the first expanded intermediate process
√

λ1(x)ξ1(x, θ).

Fig. 13. The first six eigenfunctions and eigenvalues of the covariance R1(x1, x2).

two-dimensional random field w(x, t, θ) with covariance function given by

C(x1, x2, t1, t2) = min(x1t1, x2t2), xi ∈ [0, 1] , ti ∈ [0, 1] , i = 1, 2. (76)

To simulate w(x, t, θ), we firstly fix x1 = x2 = x to obtain a quasi one-dimensional covariance function C(x, t1, t2) as

C(x, t1, t2) = x min (t1, t2) , xi ∈ [0, 1] , ti ∈ [0, 1] , i = 1, 2. (77)

Note that the covariance C(x, t1, t2) involves variable x . The eigenfunctions and eigenvalues of covariance kernel
C(x, t1, t2) can be obtained by solving the following Fredholm integral equation:

x
∫ 1

0
min(t1, t2) fn(t1, x)dt1 = λn(x) fn(t2, x) (78)

[10] provided the closed-form solution of Eq. (78) as

fn(t, x) =
√

2 sin ωnt, λn(x) =
x[(

n +
1
2

)
π

]2 (79)
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Fig. 14. Covariance function R2(x1, x2) of the second expanded intermediate process
√

λ2(x)ξ2(x, θ).

Fig. 15. The first six eigenfunctions and eigenvalues of the covariance R2(x1, x2).

where

ωn =

√
x

λn(x)
=

(
n +

1
2

)
π. (80)

The next step is to compute the covariance of the intermediate one-dimensional process
√

λn(x)ξn(x, θ) as

Rn(x1, x2) =

∫ ∫
D1×D1

C(x1, x2, t1, t2) fn(t1, x1) fn(t2, x2)dt1dt2

= 2
∫ 1

0

∫ 1

0
min(x1t1, x2t2) sin ωnt1 sin ωnt2dt1dt2

=
2(−1)n+1x1x2 min (x1, x2) cos

[
ωn(x1/x2)

p]
ω3

n p
(
x2

1 − x2
2

)
(81)
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Fig. 16. Covariance function R3(x1, x2) of the third expanded intermediate process
√

λ3(x)ξ3(x, θ).

Fig. 17. The first six eigenfunctions and eigenvalues of the covariance R3(x1, x2).

where p = sign(x1 − x2), and then to determine the eigenfunctions and eigenvalues of covariance Rn(x1, x2) by
solving the following integral eigenvalue problem∫

D2

Rn(x1, x2)g̃nk(x2)dx2 = µ̃nk g̃nk(x1). (82)

Due to the complexity of the form of Rn(x1, x2) in Eq. (81), the analytical solution of Eq. (82) cannot be readily
obtained. Nevertheless, the eigenfunctions g̃nk(x) and eigenvalues µ̃nk can be obtained by the most used numerical
methods, e.g., the Galerkin or wavelet-Galerkin method [23,24]. Once g̃nk(x) and µ̃nk are determined, they can be
used to simulate the random field by using Eq. (39). It should be noted that, the analytical form of the eigenfunctions
g̃nk(x) is not necessary for the final representation of the random field as given in Eq. (39). The numerical solution of
g̃nk(x) is also applicable for numerically representing the random field w(x, t, θ).

Figs. 10 and 11 show the first 6 eigenfunctions fn(t, x), n = 1, . . . , 6 and eigenvalues associated with the
covariance kernel as given in Eq. (76). The number of the terms that retained in K–L expansion is adopted as M1 = 4,
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Fig. 18. Covariance function R4(x1, x2) of the third expanded intermediate process
√

λ4(x)ξ4(x, θ).

Fig. 19. The first six eigenfunctions and eigenvalues of the covariance R4(x1, x2).

and M2 = 5 as in the previous examples. Figs. 12, 14, 16 and 18 show the covariance function Rn(x1, x2), n = 1, . . . , 4
of the first four expanded intermediate process

√
λn(x)ξn(x, θ), n = 1, . . . , 4, respectively. It can be seen that

the maximum value of Rn(x1, x2) decreases rapidly with the increasing of n from 1 to 4. The maximum value of
R4(x1, x2) has decreased to 0.008 and therefore it is no longer required to adopt M1 = 5. Figs. 13, 15, 17 and 19
accordingly describe the first 6 eigenfunctions gi (t, x), i = 1, . . . , 6 and eigenvalues associated with the covariance
Rn(x1, x2), n = 1, . . . , 4, respectively. Fig. 20 shows the exact covariance function, the approximated covariance, and
the associated errors at the position x1 = 0.4, x2 = 0.7. Similar observations can be found as the previous examples,
the approximations of covariance function based on Eq. (40) generally agree well with the exact covariance.

In order to further demonstrate the proposed method, the traditional K–L expansion is also employed to simulate
the random field in this example. In this study, the Galerkin scheme is used to numerically solve the two-dimensional
Fredholm integral equation of the covariance in Eq. (76), where a set of fundamental algebraic polynomials with
the power of n are adopted to represent the eigenfunctions of the covariance in Eq. (76). Obviously, the accuracy of
the K–L representation depends on the number of the polynomials adopted, i.e., the number of n. Figs. 21 and 22
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Fig. 20. Exact covariance, simulated covariance C(x1, x2, t1, t2) and associated error at position x1 = 0.4, x2 = 0.7.

show the numerical results of the first 6 eigenvalues and eigenfunctions associated with the covariance in Eq. (76)
when the highest power of the polynomial pn(x) is adopted as 40. The simulated covariance function at the position
x1 = 0.4, x2 = 0.7 resulting from the K–L expansion with different choice of n, i.e., n adopts 26, 30, 34, 40, 50 and
60 is shown in Fig. 23. Figs. 24 and 25 compare the exact covariance, the approximated covariance from the proposed
method and the traditional K–L expansion with different choice of n, and the associated errors at the same position.
Obviously, the proposed method achieves good agreement with the exact covariance just by retaining the number of
terms in Eq. (39) as M1 = 4 and M2 = 5. For the traditional K–L expansion method, the approximation error is
obvious when the highest power of the polynomial n adopts 26, 30 and 34. Satisfied results can be achieved only
when n is greater than 40. Note that although a large n will give a better approximation for the covariance in Eq. (76),
it requires more computational cost in the simulation of the random field.

4.4. Example 4: Random field with exponential covariance

The last example investigates a special case in the context of non-separable covariance function of the random
field. Consider a zero-mean two-dimensional random field w(x, t, θ) with covariance function given by

C(x1, x2, t1, t2) = e−|x1−t1||x2−t2|, xi ∈ [−1, 1] , ti ∈ [−1, 1] , i = 1, 2. (83)

If we fix x1 = t1 = x , then the ’quasi’ one-dimensional covariance function C(x, x2, t2) becomes one. Obviously,
C(x, x2, t2) cannot reflect the rate at which the correlation decays between variables x2 and t2. In this case, the
proposed method does not work. In order to address this problem, we introduce a small positive number y such
that y = |x1 − t1| > 0, and let

C(x, x2, t2) = e−y|x2−t2|. (84)

Thus, the eigenfunctions and eigenvalues of C(x, x2, t2) can be obtained by solving the following Fredholm integral
equation∫ 1

−1
e−y|x2−t2| fn(x2, y)dx2 = λn(y) fn(t2, y). (85)
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(a) Eigenfuntion f1(x, t) of covariance in Eq. (76). (b) Eigenfuntion f2(x, t) of covariance in Eq. (76).

(c) Eigenfuntion f3(x, t) of covariance in Eq. (76). (d) Eigenfuntion f4(x, t) of covariance in Eq. (76).

(e) Eigenfuntion f5(x, t) of covariance in Eq. (76). (f) Eigenfuntion f6(x, t) of covariance in Eq. (76).

Fig. 21. Numerical results of the first six eigenfunctions fn(t, x) of the covariance in example 3.

The closed-form solution of Eq. (85) can be readily obtained from [10] as

fn(x, y) =
cos ωn x√

1 + (−1)n sin 2ωn
2ωn

(86)

where

ωn =

{
y/ tan ωn, n = 2k
−y tan ωn, n = 2k − 1.

(87)
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Fig. 22. Numerical results of the first six eigenvalues of the covariance in example 3.

Fig. 23. K–L approximation of the covariance C(x1, x2, t1, t2) at position x1 = 0.4, x2 = 0.7 with different choice of n.

The covariance of the intermediate one-dimensional process
√

λn(x)ξn(x, θ) is then computed as

Rn(y1, y2) =

∫ 1

−1

∫ 1

−1
e−|y1−y2||x2−t2| fn (x2, y1) fn (t2, y2) dx2dt2. (88)

Obviously, due to the complexity of the form of Rn(y1, y2), the analytical solution of the integral eigenvalue problem
associated with the covariance kernel Rn(y1, y2) is difficult to solve, the Galerkin scheme is therefore adopted
to approximate the eigenfunctions g̃nk(x) and eigenvalues µ̃nk of the kernel Rn(y1, y2). After g̃nk(x) and µ̃nk are
numerically determined, the random field w(x, t, θ) can be simulated by using Eq. (39). Fig. 26 shows the exact
covariance, the approximated covariance and the associated approximation error. Obviously, the simulated covariance
is in good accordance with the exact one even for this special case. It should be noted that when using Galerkin scheme
to approximate the solution of the integral eigenvalue problem of the covariance kernel Rn(y1, y2) at the set of discrete
points (yi

1, y j
2 ), the number of the iterations of ωi

n and ω
j
n in Eq. (87) is large. Nevertheless, the complexity of this prob-

lem arises from the adopted covariance kernel as given in Eq. (84), and it is irrelevant with the proposed method itself.
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Fig. 24. Exact covariance, simulated covariance from the proposed and traditional K–L method with different choice of n.

Fig. 25. Exact covariance, simulated covariance from the proposed and traditional K–L method with different choice of n.

5. Conclusion

This paper develops a new method for simulating multi-dimensional random fields by K–L expansion. The method
expands an n-dimensional random field into a one-dimensional stochastic process and an (n −1)-dimensional random
field, the obtained (n − 1)-dimensional random field is further decomposed into a new one-dimensional stochastic
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Fig. 26. Exact covariance, simulated covariance and the associated error in example 4.

process and an (n − 2)-dimensional random field. By repeating this process, the original n-dimensional random
field is decomposed into a total of n one-dimensional stochastic processes step by step, each can be represented by
using the traditional K–L expansion. Thus, the developed method is embedded into the well-established framework
of the K–L expansion for simulating stochastic process. The performance of the proposed method for simulating
multi-dimensional random field is investigated by using four examples. It has been shown that for random field with
a separable covariance structure, the proposed method provides the same representation of the random field with
the traditional K–L expansion. For random field with non-separable covariance function, the approximation of the
covariance given by the proposed method agrees well with the exact one, illustrating the effectiveness of the proposed
method. We also emphasize that the proposed method possesses the potential for simulating multi-dimensional non-
Gaussian random field, if it is used in conjunction with the method that proposed in [25].
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