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A B S T R A C T

Characterizing groundwater flow parameters is crucial for understanding complex aquifer systems, and inverse
techniques play a fundamental role in modeling hydrogeological parameters and assessing their uncertainties.
Nonetheless, the use of a forward model in these methods can be highly time-consuming, especially with
an increasing number of model parameters. To address this issue, we propose a surrogate model based on
a U-Net architecture that replaces the transient groundwater flow model, reducing runtime and enabling a
fast quantification of uncertainties related to key parameters, including heterogeneous hydraulic conductivity,
boundary conditions, specific storage, and pumping rate. The surrogate is trained using limited evaluations
of the forward model to learn the physical relationship between hydraulic conductivity fields and transient
hydraulic heads measured on-site. The physical principles of the studied problem, including boundary
conditions, specific storage, and source terms, are also mapped and introduced as inputs to the model to
enhance its understanding of the governing equation of transient groundwater flow. To speed up learning
using image–image regression, the previously predicted transient hydraulic heads also serve as an input to
predict the transient heads at the current time step. Once the model is trained, we use a spectral geostatistical
method to solve the inverse problem, a pumping test of 12 h, using the surrogate model in place of the forward
model. Our study demonstrates that the trained U-Net accurately reproduces the state variables corresponding
to a specific parameter field, and in terms of computational demand, using U-Net as a surrogate model
reduces the required computational time by approximately an order of magnitude for the defined problem. The
proposed approach offers an efficient and accurate method for groundwater flow parameter characterization
and uncertainty quantification in complex aquifer systems.
1. Introduction

Characterization of subsurface heterogeneities represents a crucial
initial step in establishing reliable predictions for hydrogeological mod-
eling of groundwater flow (Bárdossy and Hörning, 2015; Taccari et al.,
2022). However, a significant challenge arises from the lack of di-
rect observations, which hinders the accurate measurement of specific
aquifer properties and gives rise to an inverse problem (Tarantola,
2005; Pasquier and Marcotte, 2006). To address this issue, hydroge-
ological models must be adapted using inversion techniques and prob-
abilistic approaches based on observed data. Through these methods,
unknown parameters of hydrogeological models can be estimated, pro-
viding dependable forecasts for more efficient and responsible ground-
water resource management (Carrera et al., 2005; Benoit et al., 2017;
Laloy et al., 2017; Benoit et al., 2020; Khambhammettu et al., 2020;
Bai and Tahmasebi, 2022; Godoy et al., 2022).

Nevertheless, deterministic formulations of inverse problems are
known to be inherently difficult to solve due to their ill-posed na-
ture (Dagasan et al., 2020). These formulations often yield non-unique
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solutions, non-existent solutions, or instabilities. To overcome these
limitations, probabilistic methods have emerged as a promising al-
ternative (Mosegaard and Tarantola, 1995; Tarantola, 2005). These
approaches allow us to derive probability distributions for parameter
values, aligning them with observed state variables, known physi-
cal principles, and prior information about the parameters. However,
adopting probabilistic techniques introduces significant computational
constraints, which can be considered a bottleneck for these methods,
as they typically require many iterative executions of the groundwater
flow simulator, the forward model (Dagasan et al., 2020; Lauzon and
Marcotte, 2022).

A promising approach to reduce computation times is the use of
surrogate models (Asher et al., 2015). Rather than opting for full
direct modeling, these approaches aim to estimate the response by
establishing a correspondence between hydrogeological parameters and
state variables. These methods approximate a mapping between the
input data (i.e., hydrogeological parameters) and output data (i.e., state
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variables) necessitating less expensive evaluation in comparison to
the underlying physical model. However, it is essential to note that
their capability to provide accurate predictions for highly nonlinear
mappings with few observational data is limited, and these methods are
primarily used in relatively simple hydrogeological systems (Mo et al.,
2019a).

Among the promising approaches, the successful application of deep
learning methods as surrogate models has been demonstrated in hydro-
geological inverse problems in various domains, including petroleum
engineering (Tang et al., 2020; Wang et al., 2022), carbon storage (Mo
et al., 2019b), contamination source identification (Mo et al., 2019a; Li
et al., 2021; Bai and Tahmasebi, 2022; Jiang et al., 2021), steady- and
transient-state problems (Tripathy and Bilionis, 2018; Zhu and Zabaras,
2018; Dagasan et al., 2020; Zhang et al., 2022; Taccari et al., 2022;
Godoy et al., 2022), subsurface resource modeling (He et al., 2020;
Ashworth et al., 2022; Secci et al., 2024), and water resources (Mari-
ethoz and Gómez-Hernández, 2021). However, only a limited number
of these approaches have undergone testing to assess their feasibility
in capturing the transient behavior of a pumping test, characterized by
rapid changes in pressure values, while simultaneously evaluating the
uncertainty of hydrogeological parameters. This paper aims to address
this gap by evaluating the feasibility and providing a framework to
quantify uncertainty in parameters associated with a pumping test,
including heterogeneous hydraulic conductivity, boundary conditions,
specific storage, and pumping rate.

Several methods have been suggested to substitute the flow sim-
ulator with machine learning. We provide an overview of some of
these methods that are relevant to the methodology employed here.
For instance, Wang et al. (2021) proposed a deep learning framework,
a theory-guided neural network, to effectively quantify uncertainty
and assimilate flow data to predict hydraulic heads in steady-state
problems. They further extended their approach to flow problems in
two-phase porous media using theory-guided convolutional neural net-
work (Wang et al., 2022), achieving high accuracy with limited training
data for inversion of permeability fields in oil reservoirs. Mo et al.
(2019b) developed a substitute based on a deep convolutional encoder–
decoder for multiphase flow in geological carbon storage, while Mo
et al. (2019a) adopted a similar approach to quantify uncertainty in
dynamic multiphase flow for groundwater contaminant source iden-
tification in steady state. To account for the temporal relationship
between input and output maps, they used the previous timestep’s
output as input to predict the current timestep. Taccari et al. (2022)
proposed the Attention U-Net model to capture physical relationships
between inputs and outputs of the aquifer system in steady-state con-
ditions and generate solutions for piezometric levels throughout the
domain. This model accurately predicted the steady-state response of
a heterogeneous aquifer system by selectively attending to relevant
parts of the domain. Tang et al. (2020) used a recurrent surrogate
based on the residual U-Net network to assimilate porous oil reservoir
data and match the history of a 2D two-phase flow system. Dagasan
et al. (2020) explore the use of conditional generative adversarial
networks as a surrogate model for hydrogeological inverse problems
in a channelized geological structure. The generator is built on a U-
Net framework to simulate steady-state pressure head responses to
pumping. They combined their surrogate model with the posterior
population expansion algorithm (Jäggli et al., 2017) to perform the
inversion in a probabilistic manner.

This article proposes a simplified U-Net network as a surrogate
model for modeling transient groundwater flow, a 12-hour pumping
test, combined with a geostatistical method to determine uncertainties
associated with hydrogeological parameters. The U-Net model will
learn the correspondence between the inputs and outputs of the model
for the two-dimensional equation of transient groundwater flow in a
heterogeneous aquifer. The input parameters will provide information
on the physical principles of the studied problem, such as boundary
2

conditions, well locations, pumping rate, specific storage, and temporal
behavior. Subsequently, a spectral geostatistical method will be used to
calibrate complex aquifers to transient conditions. The algorithm used
is the S-STBM method, recognized as highly efficient in hydrogeological
inverse problems, both for continuous and categorical variable prob-
lems (Lauzon and Marcotte, 2020a,b, 2022, 2023). This will enable
the characterization of subsurface heterogeneity and the assessment
of uncertainty and geological risks associated with groundwater flow
in a reduced time. A study of the U-Net network parameters will be
carried out to verify the possibility of emulating and replacing the
forward operator in a probabilistic inversion process to reduce the
computation times associated with inverse problems while maintaining
good prediction accuracy.

The rest of the paper is organized as follows. The ‘‘Methodology’’
section introduces the U-Net network architecture and the geostatisti-
cal algorithm for the inversion process. The ‘‘Numerical Experiment’’
section presents the groundwater model used, the configuration of the
hydrogeological problem, the network training strategy, and perfor-
mance metrics. In the ‘‘Results’’ section, validation, and testing are
performed, and the state of inversions using the U-Net network is
compared to inversion using the flow simulator. Specific details about
the application of the U-Net network are also provided. The paper
concludes with a ‘‘Discussion’’ and a ‘‘Conclusion’’ sections, where a
comprehensive discussion occurs.

2. Methodology

The proposed methodology is based on a two-step approach: (1)
training a U-Net network to emulate and surrogate the forward model,
and (2) resolving the inverse problem using a geostatistical method.
The subsequent section elaborates on these two steps.

2.1. Surrogate modeling using U-Net

U-Net was initially proposed for the segmentation of biomedical
images (Ronneberger et al., 2015). It is an encoder–decoder network
that uses fully convolutional layers and stands out for its ability to work
with a very limited number of training samples (Oktay et al., 2018).
The encoding process is performed through convolutional layers that
progressively reduce the image dimensions while capturing relevant
features. Simultaneously, the decoding process uses transposed convo-
lutional layers to restore the original image size while retaining the
learned features.

A central aspect of the U-Net model lies in the use of residual con-
nections between the encoder and decoder layers. These connections
enable the direct transfer of low-level information from the encoder
layers to the corresponding decoder layers, preserving important spatial
details during the decoding process. The result is a model capable
of achieving robust and accurate performance in various segmenta-
tion tasks (Ronneberger et al., 2015; Oktay et al., 2018; Siddique
et al., 2021; Wu et al., 2021), and recently in hydrogeological appli-
cations (Mo et al., 2019a,b; Dagasan et al., 2020; Jiang et al., 2021;
Taccari et al., 2022).

2.1.1. U-Net architecture
The U-Net architecture used in this manuscript is based on the

standard U-Net format described by Ronneberger et al. (2015) with
slight modifications. The MaxPooling operator has been replaced by
convolution layers with strides that halve the block size, following
a similar approach to the V-Net architecture (Milletari et al., 2016).
Moreover, a single convolution (or transposed convolution) sequence
is performed and it is used to downscale (or upscale) the feature maps.
The idea behind adopting such a strategy is to reduce the number of
trainable parameters to limit memory and speed up training. The model
is illustrated in Fig. 1 for 6 input images size of 128 × 128. Input and

output parameters will be explained in Section 3.2.
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Fig. 1. General overview of the architecture for the modified U-Net with five input maps and one output map.
This modified U-Net architecture has the same symmetrical con-
traction and expansion networks as the U-Net architecture. Using the
architecture presented in Fig. 1, the blue arrows are convolution blocks
composed of a 4 × 4 convolution layer, with stride 2 × 2 and padding
‘same’, a batch normalization layer, and the LeakyRELU activation layer
with a 0.2 scale. This step reduces the sampling of the feature map,
whose length and width are equal to half the input image. The red
arrows represent upscaling blocks consisting of a 4 × 4 transposed
convolution layer, with stride 2 × 2 and cropping ‘same’, a batch
normalization layer, and the LeakyRELU activation layer with a 0.2
scale, which increases the scale of the feature map whose length and
width are twice those of the input features. The gray arrow represents
a copy and concatenate operation whereby the blue feature maps are
concatenated with the red feature maps.

At each stage, the number of channel dimensions is maintained at
192 to reduce learning time and the number of learnable variables. This
number of channels is achieved by employing a group convolution layer
as the first convolution layer with 32 channels per input, resulting in a
dimension of 192 channels (32 × 6). This modified U-Net architecture
consists of 50 layers with a total of 10.0 million learnable variables.
We simplify the network to a minimum to verify its applicability in
predicting transient state variables in a heterogeneous domain with a
fast training time and reasonable accuracy. Note that the classical U-
Net architecture proposes to double the number of feature channels
at each down-sampling step, i.e., passing from 32 channels to 64, to
128, and so on. Some researchers stop at 512, sometimes 256, or
1024 (Ronneberger et al., 2015; Dagasan et al., 2020; Jiang et al., 2021;
Taccari et al., 2022). If we decide to double the number of feature
channels at each downscaling step to reach 512 channels, our model
will contain hundreds of millions of learnable parameters, a prohibitive
number necessitating high computational demands.

2.1.2. Loss function
The objective of the image–image regression task is to minimize the

difference between the predicted image �̂� and the target training image
𝒚. To achieve this, the half-mean squared error (HMSE) loss function is
employed, given by the following formula:

HMSE Loss = 1
2𝑁𝑏

𝑁𝑏
∑

𝑖=1
(𝒚𝑖 − �̂�𝑖)2 (1)

where 𝑁 represents the mini-batch size used during training.
3

𝑏

2.2. Inverse problem with S-STBM

This section introduces the probabilistic formulation of the inverse
problem following (Tarantola, 2005), using the sequential spectral
turning bands method (S-STBM) as the geostatistical approach (Lauzon
and Marcotte, 2020a). The main objective of the probabilistic inverse
problem is to determine the distribution of aquifer parameters based
on a set of observed state variables and their associated measurement
errors. These state variables may include hydraulic heads at steady-
or transient-state, geochemical concentration transport, travel times
between wells, or responses to tracer tests. For our study, transient
heads from a 12-hour pumping test act as the state variables.

2.2.1. Inverse problem
According to Tarantola (2005), a model denoted as 𝑚 = {𝑚1, 𝑚2,… ,

𝑚𝑛} represents a finite set of parameters that fully describe the physical
system under consideration. For example, it could be a hydraulic
conductivity map. To generate these models (or maps), various geo-
statistical techniques based on the Gaussian hypothesis may be used,
like sequential Gaussian simulation (Deutsch, 1992), discrete spectral
methods (Dietrich and Newsam, 1993; Chilès and Delfiner, 1997; Le
Ravalec et al., 2000) and continuous spectral methods (Shinozuka,
1971; Shinozuka and Jan, 1972; Shinozuka and Deodatis, 1996; Lan-
tuéjoul, 2002; Emery et al., 2016). In our study, models (or maps)
are generated using the S-STBM approach, which is renowned for its
effectiveness in addressing inverse hydrogeological problems (Lauzon
and Marcotte, 2020a,b, 2022, 2023).

Once a model 𝑚 is defined, the response is calculated using the di-
rect operator 𝑔, which solves the partial differential equations describ-
ing groundwater flow. This mapping predicts model responses, denoted
as 𝑑 = 𝑔(𝑚), at observation points. The calculated values 𝑑 are then used
to evaluate how well a given model 𝑚 can reproduce the observed data
𝑑𝑜𝑏𝑠. The evaluation can be quantified by an objective function (OF)
that aims to minimize the difference between modeled and observed
data, assuming a specific distribution of measurement errors.

In S-STBM, the OF is based on the error between the observed (𝑑𝑜𝑏𝑠)
and the modeled data (𝑔(𝑚)):

𝑂𝐹 = 𝑀𝑆𝐸(𝑚) = 1
𝑛𝑜𝑏𝑠

𝑛𝑜𝑏𝑠
∑

𝑖
[𝑔𝑖(𝑚) − 𝑑𝑜𝑏𝑠𝑖 ]2 (2)

where 𝑛𝑜𝑏𝑠 represents the number of observation points. A stopping cri-
terion can be implemented to halt the inverse problem when the objec-
tive function falls below the threshold associated with the measurement
errors.
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2.2.2. S-STBM
The S-STBM algorithm is a geostatistical approach that solves in-

verse problems by calibrating a Gaussian random field using a com-
bination of several cosine functions. The optimization process involves
generating independent frequency vectors 𝒗𝑖 from the spectral densities
associated with the desired covariance function. These vectors are then
paired with optimized phases 𝑢𝑖 which minimizes an OF. The algorithm
is sequential, optimizing each phase 𝑢𝑖 in sequence. The Gaussian
random field is built from scratch using the following equation:

𝒁 𝑖(𝒙) =
√

𝑖 − 1
𝑖

𝒁 𝑖−1(𝒙) +
√

1
𝑖

√

2𝑐𝑜𝑠(⟨𝒗𝑖,𝒙⟩ + 2𝜋𝑢𝑖) (3)

here 𝒁 𝑖(𝒙) represents the Gaussian random field at the location
f grid node 𝒙 of iteration 𝑖, 𝒗𝑖 is an independent frequency vector
ampled from the desired spectral density function, ⟨⋅, ⋅⟩ denotes the
nner product, and 𝑢𝑖, assumed to be uniformly distributed in [0, 1],

is the calibrated phase at iteration 𝑖. Typically, at least hundreds
of iterations are needed to converge to the multivariate Gaussian
distribution (Lantuéjoul, 2002; Lauzon and Marcotte, 2020b).

The underlying assumption of S-STBM is that the distribution of
the set 𝒖 = {𝑢𝑖|𝑖 = 1,… , 𝐿}, 𝐿 the number of optimized phases,
which should follow a uniform distribution in [0,1], is not influenced
by the optimization of each phase 𝑢𝑖. However, this assumption is
approximated, as the optimized phases may deviate from a uniform
distribution. Nevertheless, the case studies presented in Lauzon and
Marcotte (2020a, 2022, 2023) suggest that optimization has a negli-
gible impact on the covariance function, as the realization variograms
remain close to the target variogram.

The optimization of each phase 𝑢𝑖 in S-STBM is achieved using a few
golden search steps (typically < 10 steps) (Luenberger and Ye, 2008).
To ensure that the Gaussian random field has no visible periodicities,
a minimum of 𝐿 = 1, 000 cosine functions is generated. For covariance
models with linear behavior at the origin, the value of 𝐿 may need to be
ncreased to ensure sufficient sampling at high frequencies. In this case,
= 4, 000 cosine functions are used. For more details on the S-STBM
ethod, in particular, how to sample frequency vectors from a desired

ovariance function, refer to Lauzon and Marcotte (2020a, 2023).
To accelerate the creation of the optimized Gaussian field, we

dopt the approach proposed by Lauzon and Marcotte (2023) for phase
ptimization. Instead of sequentially optimizing one phase at a time, we
ptimize a batch of 𝑚 phases. The gradual deformation method (Hu,
000) is employed to achieve this. We merge two Gaussian white noise
ectors of length 𝑙, denoted as 𝒚1 and 𝒚2. The Gaussian values are then
ransformed into values of the cumulative normal distribution function
𝐺(⋅)), providing a set of phases to be used in Eq. (3):

= 𝐺(𝒚1cos(𝑡) + 𝒚2sin(𝑡)) (4)

As a result, a single continuous variable, 𝑡, defined on [0, 2𝜋],
eeds to be optimized instead of 𝑙 phases. This substantially reduces
he number of calls required by the flow simulator. In this study, we
reserve solely those optimized vector phases that result in a reduction
f the OF. Conversely, we discard the remaining phases, akin to an
ccept/reject algorithm.

.2.3. Simulate single-value property using S-STBM
Given the uncertainties in boundary conditions, pumping rate, and

pecific storage, it is imperative to devise a method for estimating the
osterior distribution of all these parameters, including the hydraulic
onductivity field. In response to this necessity, we have adapted
-STBM to calibrate fields representing single-value properties.

Consider simulating a single-value property at a specified coordi-
ate, denoted as 𝒙 = 𝑥0, using S-STBM. S-STBM generates a zero-mean
nit variance random field at this coordinate, employing a chosen
ovariance function (e.g., a spherical model). The specific choice of
4

the covariance function is inconsequential, as we simulate only one
coordinate with a Gaussian distribution. We can transition from the
normal distribution to the marginal distribution of the property through
Gaussian anamorphosis. This graphical process associates Gaussian
quantiles with the marginal distribution of the property. Thus, we
obtain a value adhering to the prior distribution of the parameters.
Subsequently, optimizing the phase linked to this Gaussian field allows
the determination of the posterior distribution of the property by
solving the inverse problem.

To simultaneously optimize the hydraulic conductivity field, bound-
ary conditions, pumping rate, and specific storage, Eq. (4) can be
extended to include the phases associated with the multiple fields
generated by S-STBM. Consequently, we need to simulate five fields: the
hydraulic conductivity with 128 times 128 parameters, the two bound-
ary conditions represented by two fields of a single parameter, and sim-
ilarly for the pumping rate and the specific storage. Therefore, we can
optimize all five properties using only one parameter in every iteration.

3. Numerical experiment

The objective of this paper is to validate the use of a U-Net architec-
ture as a surrogate model for groundwater flow simulation in transient
states, aiming to accelerate the resolution of an inverse problem using
a geostatistical method such as S-STBM. The feasibility of U-Net in
capturing the transient behavior of a pumping test, characterized by
rapid changes in pressure values around a well, is tested. S-STBM is
employed to assess the uncertainty of key parameters determined by
the pumping test, such as the hydraulic conductivity field and specific
storage, while also addressing modeling errors associated with bound-
ary conditions and pumping rates. In this context, reality is assumed to
be perfectly known and simplified to rigorously test the quality of the
results obtained with the proposed methodology.

The methodology is illustrated in Fig. 2 and is divided into two
sections. The first involves training the network using a dataset gen-
erated by a flow simulator. The network is trained to recognize highly
nonlinear constraints between the inputs (hydraulic conductivity, phys-
ical principles, and previous transient heads) and the output (current
transient heads at time 𝑡). Once the network is trained, it can be used
as a surrogate model to solve an inverse problem using the spectral
geostatistical method, S-STBM. The inverse problem aims to ascertain
the hydraulic conductivity field, boundary conditions, specific storage,
pumping rate, and their uncertainties from a collection of groundwater
head measurements around a pumping well during a pumping test. De-
tailed explanations regarding the setup of this experiment are presented
in the following subsections.

3.1. Groundwater model

Without loss of generality, consider a two-dimensional groundwa-
ter flow in a heterogeneous aquifer. Subject to appropriate boundary
conditions, the transient-state groundwater flow in saturated media
satisfies the fundamental governing equation:

div(𝐾∇ℎ) +𝑄 = 𝑆S
𝜕ℎ
𝜕𝑡

(5)

where ℎ is the hydraulic head [𝐿], 𝐾 is the hydraulic conductivity
[𝐿𝑇 −1], 𝑄 is a source term [𝑇 −1], 𝑆𝑠 is the specific storage [𝐿−1], and
𝑡 is the time [𝑇 ].

The MATLAB Reservoir Simulation Toolbox (MRST), a freely avail-
able open-source software designed for modeling hydrogeological sys-
tems (Lie, 2019), serves as the flow simulator for generating the train-
ing images. Note that the MRST is primarily designed as a research
tool for quickly prototyping new simulation methods and modeling con-
cepts, rather than serving as a dedicated flow simulator. In this study,
transient head data were acquired by solving a non-linear physical

model through automatic differentiation on a regular grid.



Advances in Water Resources 189 (2024) 104726D. Lauzon
Fig. 2. General overview of the methodology. A Gaussian random field was used to create a reference log-hydraulic conductivity field and its corresponding transient flow responses.
Geostatistical simulations were used to create N sets of hydraulic conductivity fields with the desired covariance function using different seed values. N × (n + 1) input sets were
created to train the U-Net architecture using an autoregressive strategy. The trained model was then used as a surrogate in the geostatistical inversion method, S-STBM, to generate
M realizations and assess uncertainty.
3.2. Problem setting

The synthetic aquifer represents a confined aquifer measuring 100 m
× 100 m, discretized on a 128 × 128 regular grid. The depth of
the aquifer is assumed to be constant throughout the area, set at
3 m. The upper and lower sides are designated as no-flow boundaries
(i.e., Neumann boundary conditions), while the fixed head boundary
conditions, namely Dirichlet boundary conditions, are set to 1.042 m
and −0.035 m on the left and right sides, respectively.

A pumping well with a constant pumping rate of 17 L/min is located
at the center of the area. Transient groundwater flow is simulated
with an 18-step schedule ranging from 0 to 12 h. Pressured heads
were obtained at 9 various time intervals: 0 min (initial state), 1 min,
5 min, 15 min, 30 min, 60 min, 120 min, 180 min, and 720 min
(close to steady state) over 16 piezometers, providing the conditioning
data (9 × 20 = 180 head data points). A random Gaussian noise
with 𝜎 = 0.05 m was added to the extracted head values to simulate
measurement errors. The locations of the 20 piezometers (black crosses)
were illustrated in Figs. 3 and 4. Hydraulic conductivity follows a base-
10 log-normal distribution with a log mean of −4.53. The covariance
function used to model the log conductivity is an isotropic spherical
model with a range of 30 m and a sill of 0.25. The specific storage, 𝑆S,
is set to 8.13E−5 m−1.

3.3. Network training

The network takes as input an image consisting of six channels: the
hydraulic conductivity field, a map summarizing the boundary condi-
tions, two inputs representing the source term, one input summarizing
the specific storage value, and the previous prediction of transient
hydraulic heads. The output map represents the transient heads at the
current time step. Fig. 5 shows the input and output maps for a given
time 𝑡.

The two Dirichlet boundary conditions can be represented by an
image where the values to the east and west of the image are the
imposed hydraulic heads. The hydraulic heads throughout the image
are subsequently interpolated using a linear function, ensuring that the
5

Fig. 3. The reference log-hydraulic conductivity field that was considered the ground
truth (Black crosses: locations of piezometers, Black circle: location of the pumping
well).

flow is perpendicular to the north and south boundaries, thus respecting
the no-flow conditions imposed by the Neumann boundary conditions
(See Fig. 5b). Incorporating boundary conditions into image-to-image
regression allows the network to assimilate and understand the physics
of the problem.

The source term can be interpreted through two attributes: intensity
(or pumping rate) and active time. These two attributes are incorpo-
rated into separate maps, constructed by incorporating the pumping
rate (See Fig. 5c) and the time since the well activation (See Fig. 5d)
within the cell where the source term is situated. All other cells are
assigned zero values. At the initial state (𝑡 = 0), the intensity of the
source term yields a pumping rate of zero.
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Fig. 4. Corresponding transient flow responses of the ground truth. The corresponding times from the top left to the bottom right are: t = 0, 1, 5, 15, 30, 60, 120, 180, and
720 min. (Black crosses: locations of piezometers, Black circle: location of the pumping well, black lines: contour lines).
The specific storage is also integrated using a map where the specific
storage value is placed within the cell where the source term is situated.
All other cells are assigned zero values. In our study, we assume the
specific storage to be a constant value. However, one can generate a
heterogeneous storativity field in the same manner as the hydraulic
conductivity field and use the mapping in the training process. For
a constant value, our tests yield better results by only providing the
value at the well location, with the remaining cells filled with zeros
(See Fig. 5f).

In this work, the boundary conditions, specific storage, and pump-
ing rate are treated as uncertain parameters. For training the network,
these values were sampled from uniform distributions: [0.9, 1.1] m for
the left, and [−0.1, 0.1] m for the right side of the boundary conditions,
10 L/min to 20 L/min for the pumping rate, and log-uniformly between
−5 and −3 for the specific storage, corresponding to values between
1E-5 and 1E-3. Sampling values from a uniform distribution during
training facilitates exposure to a wide array of potential boundary
conditions, specific storage values, and pumping rates.

The model was trained in a supervised manner by producing 600
flow simulations using MRST, each with a distinct hydraulic conduc-
tivity field, boundary conditions, specific storage, and pumping rate
(i.e., a different seed is used for each simulation). It is worth noting
that the system modeling generated a set of 9 output maps, one for
each time step (𝑡 = 0, 1, 5, 15, 30, 60, 120, 180, and 720 min).
Thus, for each flow simulation, it was possible to create 9 sets of input
data following the methodology illustrated in Fig. 5 and explained
subsequently. The inherently sequential nature of this autoregressive
strategy facilitates the acquisition of a substantial dataset for network
training and validation purposes.
6

Therefore, for the 600 flow simulations, 5 400 data sets were cre-
ated and used for training (3600), validation (900), and testing (900).
The validation sets were utilized to fine-tune the hyperparameters of
the model, while the testing sets were employed to assess performance
metrics. With this strategy, the size of the training dataset was large
enough to ensure the model’s generalization capability. The losses were
minimized using the Adam optimizer (Kingma and Ba, 2014) with an
initial learning rate 𝛼 = 1E−3, and a decreasing rate of 0.8 every 10
epochs. The network was trained for 200 epochs with minibatches of
32. The training converged after approximately 2 h and 54 min, using
an NVIDIA GeForce RTX 3070 Ti graphics processor. The U-Net was
developed and trained in the MATLAB Deep Network Designer toolbox.

3.4. Performance metrics

The performance of the trained network is assessed by measuring
the mean absolute error (MAE), the root mean squared error (RMSE),
and the coefficient of determination (R2) between corresponding pixel
values in the target image and the predicted image. These evaluation
metrics provide insights into the accuracy and overall quality of the
model’s predictions compared to the ground truth.

MAE =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1
|𝑦𝑖 − �̂�𝑖| (6)

RMSE =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1
(𝑦𝑖 − �̂�𝑖)2 (7)

R2 = 1 −
∑𝑁

𝑖=1(𝑦𝑖 − �̂�𝑖)2
∑𝑁 2

(8)

𝑖=1(𝑦𝑖 − �̄�)
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Fig. 5. Overview of input and output maps. U-Net sequentially predicts the model output at time 𝑡 (g) given an input hydraulic conductivity map (a), an image representing the
boundary conditions (b), the mapping of the localization source term with source intensity (c), and the number of seconds during which pumping is activated (d), the map of
predicted transient heads at time 𝑡 − 1 (e), and the mapping of the specific storage (f).
Table 1
Summary of the four scenarios: If ‘Yes’, the parameter has variability. If
‘No’, the parameter is fixed. (Notation: 𝐾 - Hydraulic conductivity, 𝐵.𝐶.
- Boundary conditions, 𝑆𝑆 - Specific storage, 𝑄 - Pumping rate).
Scenario 𝐾 𝐵.𝐶. 𝑆𝑠 𝑄

1 Yes No No No
2 Yes Yes No No
3 Yes Yes Yes No
4 Yes Yes Yes Yes

where N denote the total number of pixels of each image, 𝑦 represents
the target image, �̂� represents the network prediction, �̄� is the mean of
the target image (𝑦) in the dataset. A well-performing trained model
is characterized by minimal MAE and RMSE values approaching zero,
accompanied by a 𝑅2 close to one.

4. Results

In this section, we begin by evaluating the network’s performance
in accurately identifying transient pressure heads during a 12-hour
pumping test. We provide a sensitivity analysis regarding the number
of model evaluations during training and the number of epochs. Sub-
sequently, we compare the inversion results obtained from S-STBM,
utilizing the U-Net network as a surrogate model, with those ac-
quired from S-STBM without surrogate modeling, i.e., using the forward
model.

Four scenarios are under study. In the first scenario, we maintain
fixed boundary conditions, specific storage, and pumping rates. This
means that the network is exclusively trained on diverse hydraulic
conductivity fields. In the second scenario, we introduce variations
in the boundary conditions. The third scenario involves incorporating
different values of specific storage during training. Lastly, the fourth
scenario introduces a range of pumping rates to ensure a more com-
prehensive and diverse training set. These four scenarios are designed
to assess the impact of including multiple parameters in the image-
to-image regression tasks on the training and validation of the U-Net
architecture. Table 1 resumes the four scenarios.

4.1. U-Net validation

In all four scenarios, the same methodology was employed. A total
of 400 models were used for training, 100 models for validation, and
7

100 for testing, resulting in 3600 training sets, 900 validation sets,
and 900 testing sets. The distribution of parameters is summarized
in Table 2. We trained four networks, one for each scenario listed in
Table 1. The objective is to evaluate the impact of adding parameters
on the efficiency of the networks.

4.1.1. Testing the network on four scenarios
We showed two models associated with scenario 1 (Fig. 6), and two

models associated with scenario 4 (Fig. 7). The hydraulic conductivity
field and their corresponding pressure fields at each time step (t = 0,
1, 5, 15, 30, 60, 120, 180, 720 min) predicted by U-Net were visually
compared to the maps obtained from the flow simulator. Additionally,
scatterplots are displayed, offering a comprehensive view of the U-
Net network’s performance. The results demonstrate that the generated
images are quite similar to their originals, though slightly noisy, as
depicted by the contour lines in the U-Net predictions. Also, the main
errors are primarily concentrated around the pumping influence zone as
depicted by the scatterplots. Moreover, Scenario 4 provides more noisy
images than Scenario 1 when comparing visually the contour lines of
both scenarios.

The testing process utilized two key metrics: Root Mean Squared
Error (RMSE) and the coefficient of determination (𝑅2). All scenarios
provide a training average RMSE below 0.05, which is lower to the
errors added by the Gaussian noise of 𝜎 = 0.05 to the observed data,
and an average 𝑅2 score higher than 0.98. These results suggest that the
trained U-Net model can effectively predict highly nonlinear mappings
for the studied case, regardless of the number of uncertain parameters
(i.e., the scenario type). However, due to the sequential nature of the
approach, where time 𝑡 − 1 is used to predict time 𝑡, errors from the
previous iteration are propagated to the current one. This phenomenon
was quantified by an increase in RMSE (the same for MAE, not shown)
and a decrease in 𝑅2 score as time progressed. This behavior is depicted
in Table 3. Moreover, testing error increases as uncertain parameters
are added to the network. This suggests that to obtain similar testing
results as in Scenario 1, one may need to add more models in the
training sets or increase the number of epochs to train a network
dealing with more parameters than in Scenario 1. This would inevitably
lead to more computation time and possibly necessitate a readjustment
of the hyperparameters. Another way is to redesign the network by
adding more channels, resulting in more learnable variables and a more
complex training process. We do not explore such approaches, as the

results obtained are satisfactory for our purposes.
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Table 2
Parameters distribution for the training, validation, and testing sets.(Notation: 𝐾 - Hydraulic conductivity, 𝐵.𝐶. - Boundary
conditions, 𝑆𝑆 - Specific storage, 𝑄 - Pumping rate).
Parameter Distribution Value range Unit

𝐾 Base-10 Log-Normal

Approximately between [1E−6, 1E−3]

m/s
Isotropic spherical model
Log mean: −4.53
Sill: 0.25
Range: 30 m

𝐵.𝐶. (Left side) Uniform [−0.1, −0.1] m

𝐵.𝐶. (Right side) Uniform [0.9, 1.1] m

𝑆𝑆 Base-10 Log-Uniform [−5, −3] (i.e., [1E−5, 1E−3]) m−1

𝑄 Uniform [10, 20] L/min
Table 3
Time evolution of the validation metrics (RMSE and 𝑅2) for 100 realizations resulting in 900 datasets. Predictions are made sequentially, leading to error
propagation. This results in an increase in RMSE and a decrease of 𝑅2 over time.
Scenario 1 2 3 4

Metrics RMSE 𝑅2 RMSE 𝑅2 RMSE 𝑅2 RMSE 𝑅2

(m) (–) (m) (–) (m) (–) (m) (–)

𝑡 = 0 min 0.014 0.997 0.015 0.997 0.015 0.997 0.017 0.996
𝑡 = 1 min 0.020 0.994 0.024 0.992 0.029 0.990 0.035 0.984
𝑡 = 5 min 0.027 0.991 0.032 0.988 0.041 0.984 0.048 0.976
𝑡 = 15 min 0.034 0.900 0.039 0.985 0.047 0.983 0.049 0.981
𝑡 = 30 min 0.038 0.989 0.044 0.984 0.054 0.980 0.051 0.981
𝑡 = 60 min 0.042 0.988 0.048 0.983 0.056 0.980 0.053 0.982
𝑡 = 120 min 0.044 0.987 0.050 0.982 0.054 0.982 0.054 0.983
𝑡 = 180 min 0.045 0.987 0.051 0.982 0.056 0.981 0.058 0.981
𝑡 = 720 min 0.046 0.987 0.052 0.981 0.057 0.981 0.061 0.980

Mean 0.034 0.990 0.039 0.986 0.045 0.984 0.047 0.983
4.2. Impact of epochs and training sizes

As is common with many deep learning algorithms, training models
requires a significant amount of time. An analysis was conducted by
altering the number of epochs and the size of the training dataset while
monitoring variations in terms of Mean Absolute Error (MAE), Root
Mean Square Error, and 𝑅2, along with training time. The same hard-

are configuration was used, specifically an NVIDIA GeForce RTX 3070
i graphics processor. The experiment is conducted using Scenario 4.
imilar results are obtained for Scenarios 1 to 3.

The results of this study, presented in Table 4, provide detailed
nsights into the MSE, RMSE, 𝑅2, and training time obtained for various
ombinations of epoch numbers (i.e., 100, 200, 300, 400, 500) and
he number of hydrogeological models generated for training (i.e., 100,
00, 300, 400, 500). We recall that a hydrogeological model provides
ine sets for training (or validation, or testing). These statistics indicate
hat as the size of the training dataset increases, the results favor
mproved learning, with a decrease in MAE and RMSE, and an increase
n 𝑅2. A distinct pattern emerges as the number of epochs increases.
he metrics undergo rapid changes initially, stabilizing and reaching a
lateau after 300 epochs. This suggests that extending training beyond
his point may not be necessary. This underscores the importance of
iversity within the training dataset, which occurs when more models
re provided. However, it is essential to note that this comes at a
ubstantial cost in terms of training time, which is proportional to the
umber of epochs and the model size. For example, when the number of
pochs doubles (and likewise for the model size), the training time also
oubles. We, therefore, chose a configuration of 200 epochs and 400
odels for training. This choice allowed us to keep training times at

pproximately 3 h while still achieving an adequate level of precision.

.3. S-STBM results

Scenario 4 is employed for the inversion. The prior distributions
or hydraulic conductivity, boundary conditions, specific storage, and
8

umping rate are assumed to be the same as those in Table 2.
One hundred realizations were calibrated using S-STBM with a
parameter of 𝑙 = 100 and 400 iterations for the inversion. Scatterplots
of the reference values against the inversion results using U-Net and
the flow simulator MRST are presented for two realizations, along
with the mean calibrated heads and their standard deviation (refer to
Fig. 8). The red dashed lines represent the 95% confidence interval
corresponding to the Gaussian noise with 𝜎 = 0.05 added to the sampled
reference data.

It can be observed that for both methods, the majority of points
fall within the confidence interval for realizations 1 and 2, as well
as for the average estimated heads. Slightly larger discrepancies were
observed when using the flow simulator, but they were not sufficient to
conclude that using the deep learning network would be more effective
than an approach utilizing a flow simulator. These discrepancies are
apparent through the slightly larger error bars in the MRST method.
Consequently, both methods effectively condition the transient pressure
heads for this problem.

The log-hydraulic conductivity fields obtained through inversion
using S-STBM with both U-Net and MRST are presented in Fig. 9 for the
same two realizations, alongside the mean log-hydraulic conductivity
values and their corresponding variances. The results demonstrate that
both S-STBM realizations accurately reproduce the spatial structure of
the reference field. The mean log-conductivity fields reveal that S-STBM
(with U-Net and MRST) are capable of identifying high conductivity
zones (just below the well and in the lower-left corner) and lower
conductivity areas (left and top sides). Note that U-Net displays slightly
higher mean values in regions with high conductivity (indicated by
red areas) and slightly lower means in regions with low conductiv-
ity (indicated by blue areas) compared to the inversion carried out
with MRST. U-Net demonstrates similar variance around the pumping
zone when compared to MRST. However, these results do not provide
sufficient robustness to definitively assert the efficiency of U-Net over
MRST. Consequently, the inversion results of S-STBM with U-Net are
comparable to those obtained with S-STBM with MRST. Further inves-
tigations across various hydrogeological contexts will be essential to

draw conclusions regarding the efficiency of U-Net compared to MRST.
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Fig. 6. Scenario (1) Validation images for visually evaluating the prediction performance of the trained U-Net. Two panels show the U-Net predictions (left), flow simulation
(middle), and scatterplots (right) of actual head values against the U-Net predictions for a given realization 1, panel (a), and a given realization 2, panel (b). The corresponding
times from top to bottom are: t = 0, 1, 5, 15, 30, 60, 120, 180, and 720 min.
Moreover, it is evident that the simulated conductivities in regions
beyond the influence zone of the well, particularly near the boundaries
where no piezometers are located, exhibit significant uncertainty. This
9

underscores the difficulty of determining the actual hydraulic con-
ductivity field using observed pressure head data, which is the sole
available information. This situation generates an ill-posed problem
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Fig. 7. Scenario (4) Validation images for visually evaluating the prediction performance of the trained U-Net. Two panels show the U-Net predictions (left), flow simulation
(middle), and scatterplots (right) of actual head values against the U-Net predictions for a given realization 1, panel (a), and a given realization 2, panel (b). The corresponding
times from top to bottom are: t = 0, 1, 5, 15, 30, 60, 120, 180, and 720 min.
within the hydrogeological system under study. One solution can be
to couple the hydrogeological models with an available geophysical
model (Neven and Renard, 2023).

The uncertainty associated with boundary conditions, specific stor-
age, and pumping rate was also evaluated. In Table 5, the mean,
10
standard deviation, and the 15–85th quantiles are presented. The per-
formance of S-STBM with U-Net (up) is compared with S-STBM us-
ing MRST (bottom). The results indicate no significant difference be-
tween the U-Net approach and utilizing a flow simulator. Furthermore,
the posterior distributions encompass the reference values, suggesting
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Table 4
Scenario (4) Investigation of the performance metrics (MAE, RMSE, 𝑅2) between observed and predicted U-Net heads
across varying combinations of epoch counts and training dataset sizes. Additionally, the training times are presented.

Epoch Training size MAE RMSE 𝑅2 Training time
(m) (m) (–) (h)

100 0.068 0.097 0.917 0.36
200 0.062 0.086 0.930 0.64

100 300 0.041 0.058 0.970 1.06
400 0.031 0.046 0.983 1.35
500 0.033 0.046 0.984 1.66

100 0.062 0.086 0.930 0.64
200 0.056 0.076 0.951 1.31

200 300 0.037 0.055 0.974 2.00
400 0.033 0.047 0.983 2.95
500 0.028 0.042 0.985 3.74

100 0.062 0.087 0.932 0.97
200 0.049 0.069 0.957 2.00

300 300 0.036 0.053 0.975 3.11
400 0.030 0.045 0.982 3.98
500 0.027 0.041 0.986 5.23

100 0.065 0.089 0.926 1.31
200 0.053 0.074 0.955 3.52

400 300 0.038 0.055 0.972 4.21
400 0.032 0.048 0.982 5.34
500 0.027 0.040 0.986 6.95

100 0.067 0.093 0.924 1.64
200 0.050 0.070 0.957 3.41

500 300 0.038 0.055 0.973 5.15
400 0.033 0.049 0.980 6.97
500 0.028 0.042 0.985 8.56
Table 5
Posterior distribution after solving the inversion problem using U-Net (top) and MRST (bottom). (Ref: Reference values, Mean: Mean value,
Std: Standard deviation, Q15: 15th quantile, Q85: 85th quantile of one hundred realizations. 𝐵.𝐶.: Boundary conditions, 𝑆𝑠: specific storage,
𝑄: pumping rate.).

Model Properties Ref Mean Std Q15 Q85

U-Net

𝐵.𝐶. left side (m) −0.035 −0.038 0.023 −0.058 −0.017
𝐵.𝐶. right side (m) 1.042 1.043 0.037 1.005 1.084
𝑙𝑜𝑔10(𝑆𝑠) (m−1) −4.090 −4.110 0.102 −4.207 −4.009
𝑄 (L/min) 17 −17.187 2.010 −19.400 −14.85

MRST

𝐵.𝐶. left side (m) −0.035 −0.044 0.033 −0.083 −0.007
𝐵.𝐶. right side (m) 1.042 −1.050 0.040 1.019 1.0864
𝐿𝑜𝑔10(𝑆𝑠) (m−1) −4.090 −4.039 0.063 −4.113 −3.977
𝑄 (L/min) 17 −18.000 1.651 −19.458 −16.093
that both scenarios effectively retrieve parameter values and their
uncertainties. The methodology demonstrates the capability to simul-
taneously determine a heterogeneous hydraulic conductivity field and
single-value parameters.

An undeniable advantage of the S-STBM approach with U-Net, in
comparison to the S-STBM approach with MRST, is the execution time
of the forward model. With U-Net, the average execution time to obtain
transient head fields is 0.304 s, in contrast to 3.509 s when using the
MRST flow simulator—a difference of one order of magnitude. For this
study, it takes approximately 3.57 h to obtain inversion results with U-
Net and around 40 h hours when using MRST. Even taking into account
the U-Net network training time of 3 h, S-STBM with U-Net remains six
times faster in execution time while producing very similar results to
the approach employing a flow simulator.

5. Discussion

A novel methodology has been implemented to solve inverse prob-
lems by combining S-STBM and U-Net for calibrating transient hy-
draulic heads. U-Net serves as an emulator, replacing the conventional
physics-based model typically used in hydrogeological inverse prob-
lems. The model was trained on a dataset comprising 400 hydrogeolog-
ical models and their corresponding flow simulations obtained through
MRST. To expand the training set, an auto-regressive strategy was
11

employed, incorporating hydraulic heads from the previous time step
as input to predict heads at the current time step. Nine-time steps were
utilized, resulting in the creation of 3600 (9 times 400) datasets for
training. This approach enhances diversity and increases the size of
the training dataset. Following training, U-Net was used to emulate the
forward operator in the geostatistical S-STBM algorithm, enabling the
quantification of uncertainties related to hydraulic conductivity.

The performance of U-Net was evaluated using a separate dataset
containing 100 hydrogeological models (900 datasets) and correspond-
ing flow simulations, as well as applied to a synthetic case study. The
results demonstrate U-Net’s ability to successfully establish a corre-
spondence between given heterogeneous hydraulic conductivity field,
boundary conditions, source term, and specific storage, enabling the
prediction of corresponding transient flow simulations of a 12-hour
pumping test. While the generated pressure maps exhibit slight noise
compared to reference maps, there is a strong correlation between the
predicted and actual transient hydraulic heads. These errors were small
enough to have minimal impact on the inversion results. The hydraulic
conductivity maps and their uncertainties obtained using U-Net closely
match those obtained by S-STBM when used with a flow simulator. The
study highlights U-Net’s effectiveness in hydrogeological inversion of
transient hydraulic heads, reducing computational demands compared
to the MRST flow simulator.

A primary contribution of the proposed framework lies in its incor-
poration of boundary conditions, the source term, including intensity

and activation time, and the specific storage as input data to preserve
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Fig. 8. Scatterplots depicting the relationship between actual head values and the inversions generated by the U-Net model (top) and the MTSR model (bottom) for two specific
realizations (left side). On the right side, the scatterplot showcases the average head values across 100 realizations along with their associated uncertainties. (Red dashed lines:
95% confidence interval corresponding to Gaussian noise with a standard deviation of 𝜎 = 0.05).
Fig. 9. The reference log-hydraulic conductivity field (Top). The hydraulic conductivity fields, derived from inversions performed by the U-Net model (middle) and the MRST
model (bottom) for two distinct realizations, displayed on the left side. On the right side, the average hydraulic conductivity field computed across 100 realizations, accompanied
by the corresponding variance field.
the model’s physics. The U-Net network was effectively trained to
respect Neumann boundary conditions, resulting in no flow at the
northern and southern boundaries, as observed in Figs. 6 and 7. By in-
cluding the source term in the network’s input parameters, the temporal
aspect of the problem is considered.

Surrogate modeling using U-Net extends beyond continuous fields.
Categorical aquifers can be taken into account by using the approach
developed by Lauzon and Marcotte (2023), which employs latent Gaus-
sian fields to generate categorical variables, or the approach proposed
by Dagasan et al. (2020), which employs multiple point simulations and
a sampling technique to solve the inverse problem.
12
The simplicity of the proposed U-Net architecture has facilitated
rapid training of the network. A pivotal factor contributing to this
efficiency is the consistent maintenance of channel dimensions at 192,
which corresponds to 32 feature maps for each input map (192 =
32 × 6), in every downscale or upscale step within both the encoder and
decoder. In contrast, the conventional approach of gradually doubling
channel sizes up to 1024 channels, as commonly observed in U-Net
architectures (Mo et al., 2019b; Taccari et al., 2022), would lead
to a substantial increase in learnable variables from 10.0 million to
hundreds of millions in our study. Such an expansion would impose
considerable limitations on memory and time, thus motivating the
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decision to maintain a fixed number of channels. This choice has
demonstrated minimal impact on U-Net’s prediction capability.

One strategy to enhance U-Net’s predictive performance could in-
volve incorporating an attention mechanism, as proposed by Taccari
et al. (2022), aimed at improving the network’s approximation ac-
curacy and reducing model uncertainty by focusing on crucial areas.
Nevertheless, it is important to acknowledge that this integration would
inevitably extend the network’s training time. This enhancement could
potentially yield benefits for more complex problems compared to the
one presented.

Our machine-learning network serves as a surrogate model to es-
timate responses across various geological scenarios, encompassing a
range of hydraulic conductivity fields, boundary conditions, pumping
wells, or specific storage conditions. However, our current approach
does not account for scenarios in which hard data (i.e., known hy-
draulic conductivity at a specific cell) or soft data (e.g., geophysical
survey or geophysical log data) are available. In such cases, we can
tailor the training of the neural networks to address a specific geologi-
cal problem by directly incorporating hard data and soft data into the
models used for training. This streamlined approach involves creating
training sets that accurately capture the behavior of both hard and soft
data. Geostatistical algorithms can be employed to condition geological
fields to the available hard and soft data (Azevedo and Soares, 2017;
Lauzon and Marcotte, 2020a; Neven and Renard, 2023). This focused
training can result in specialized networks designed for a particular
site or project, potentially improving accuracy and reducing training
time. The parameter space is constrained due to the conditioning effect
of hard and soft data. Additionally, these specialized networks can
be easily reused and adapted if additional data becomes available,
particularly when coupled with geophysical data during the inversion
process (Neven and Renard, 2023). Further research is required to fully
understand and address these behaviors.

A situation not discussed pertains to the marginal distribution and
variogram parameters of the hydraulic conductivity field, assumed to
be known. However, in real-life applications, assessing these parame-
ters is a complex task due to the potentially high uncertainty in the
marginal distribution and variogram resulting from a lack of data.
Handling this uncertainty in network training is straightforward; one
can generate models with different marginal distributions and vari-
ogram structures to address the uncertainty. The mapping of hydraulic
conductivity is thus performed in the original space, as opposed to
mapping a zero-mean Gaussian random field with a fixed marginal
distribution. However, this approach may require more models to
obtain a satisfactory surrogate model, and further research needs to
be conducted to verify the applications of such methodology. For the
inverse problem, S-STBM can handle unknown variogram parameters
by simulating an isotropic field with a unit range and transforming it
using contraction, dilation, and rotation matrices with sets of variogram
parameters. The only requirement is to fix a variogram model, in
this case, the spherical model. The Gaussian anamorphosis is capable
of handling any marginal distribution by transforming the original
data space into a Gaussian distribution. To address uncertainty in the
marginal distribution, it is necessary to use a parametrizable marginal
distribution, allowing S-STBM to optimize its parameters.

6. Conclusion

This article introduces a U-Net convolutional encoder–decoder net-
work, which efficiently calculates the response to the transient state of
a groundwater system during a pumping test. The data-driven surro-
gate model is trained and tested using a limited number of models,
where transient hydraulic heads throughout the domain need to be
inferred. By training it to minimize the discrepancy with target im-
ages, the proposed U-Net model easily captures the highly nonlinear
relationship between inputs (hydraulic conductivity fields, boundary
conditions, source term location, and intensity, and specific storage)
13
and the output (transient hydraulic head field). To expedite learning,
an auto-regressive strategy is employed, where hydraulic heads from
the previous time step serve as inputs to predict the current time step
output. The performance of the proposed surrogate is demonstrated
on a synthetic problem with a heterogeneous conductivity field with
uncertain boundary conditions, pumping rate, and specific storage. The
hydraulic conductivity maps and their uncertainties obtained using U-
Net are found to be very similar to those obtained with a geostatistical
inverse method, the S-STBM algorithm, when used with a flow sim-
ulator. The study has shown that U-Net can be successfully used for
hydrogeological inversion of transient hydraulic heads with reduced
computational demands compared to the use of a flow simulator.
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