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Abstract Modeling the semivariogram to characterize spatial continuity requires 
expert geostatistical knowledge and domain expertise about the spatial phenome-
non of interest. Moreover, although practitioners may have experience in semivari-
ograms, their interpretations may vary due to experimental semivariogram noise and 
ambiguity. In general, modeling semivariograms remains highly subjective. This 
paper presents a data-driven, deep learning-based automated semivariogram mod-
eling method known as automatic semivariogram modeling with convolution-based 
deep learning (ASMC) that improves the utilization of available spatial information 
to reduce the subjectivity of semivariogram modeling. Training models are gener-
ated by sequential Gaussian simulation (SGS) and labeled with their associated sem-
ivariogram parameters (i.e., maximum correlation length, aspect ratio of major and 
minor direction ranges, and azimuth of major direction). ASMC consists of two con-
volutional neural networks (CNNs). The first CNN model maps the sparse spatial 
samples to the exhaustive SGS-derived spatial models, and the second CNN maps 
the SGS spatial model to the semivariogram parameters. Both CNNs are trained 
with realistic spatial training data, and their validity is also checked with validation 
data withheld from training. Two-dimensional synthetic, but realistic, case studies 
demonstrate that the first CNN successfully learns the spatial characteristics among 
spatial data and generates realistic subsurface model estimates. The second CNN 
learns the spatial context of the estimated subsurface model and successfully pre-
dicts the semivariogram parameters with greater than 96% accuracy. The proposed 

 * Honggeun Jo 
 honggeun.jo@utexas.edu

1 Hildebrand Department of Petroleum and Geosystems Engineering, The University of Texas, 
Austin, TX, USA

2 Bureau of Economic Geology, Jackson School of Geosciences, The University of Texas, Austin, 
TX, USA

3 Jackson School of Geosciences, The University of Texas, Austin, TX, USA

http://orcid.org/0000-0002-1184-0190
http://crossmark.crossref.org/dialog/?doi=10.1007/s11004-021-09962-w&domain=pdf


178 Math Geosci (2022) 54:177–205

1 3

machine, deep learning-based workflow improves the utilization and objectivity of 
spatial data in semivariogram-based spatial continuity modeling. With the optimal 
design of the experiment for training and tuning of model hyperparameters, this 
method may be generalized for application for a wide range of spatial modeling 
projects.

Keywords Automatic semivariogram modeling · Machine learning · Deep 
learning · Convolutional neural network

1 Introduction

Characterization and modeling of the spatial continuity of the spatially sampled fea-
ture of interest are challenging and essential steps in spatial modeling workflows 
(David 1997; Jensen et al. 1997; Deutsch and Journel 1998; Larrondo et al. 2003; 
Pyrcz and Deutsch 2014; Liu and Pyrcz 2020; Cho et  al. 2020; Salazar and Lake 
2020; Chilès and Delfiner 2012). The semivariogram model is a spatial two-point 
statistic that characterizes feature variability over lag distance and is often applied 
in spatial modeling for estimation (e.g., kriging) or simulation (e.g., sequential 
Gaussian simulation). The typical procedure for calculating semivariogram models 
is to (1) check the stationarity of the available data over the volume of interest, (2) 
detrend or segment the data to ensure stationarity, (3) compute experimental semi-
variograms over a variety of directions to identify the directions of maximum and 
minimum continuity, and (4) fit multiple nested positive definite semivariogram 
structures to the computed experimental semivariogram.

The semivariogram model is parameterized by maximum correlation lengths 
(ranges), major and minor continuity direction, and contribution to variance (i.e., the 
proportion of the sill) for each nested structure. For example, in a typical semivario-
gram graph, the range is the distance, where the semivariogram reaches the sill (i.e., 
the upper limit of semivariogram, identical to the variance of data). If the range is in 
the major direction, it is called the major range, and if the range is along the minor 
continuity direction, it is called the minor range. Moreover, the directions of major 
and minor continuity are parameterized by the azimuth in the horizontal plane and 
dip in the vertical axis. In the case of the existence of more than one semivariogram 
(e.g., zonal anisotropy), contribution to the variance of each nested semivariogram 
structure and each semivariogram may have different ranges over different major 
and minor continuity directions.

The application of this approach, along with an assumption of geometric anisot-
ropy for inference of spatial continuity for off-diagonal directions, guarantees solv-
able kriging systems of equations and valid, positive kriging variances (Pyrcz and 
Deutsch 2014). However, semivariogram modeling is generally conducted manually 
with incomplete, noisy, experimental semivariograms and requires a fair amount of 
tradecraft and geostatistical knowledge, which may not be readily available, often 
resulting in low repeatability between practitioners and, for some cases, poor semi-
variogram model inference.
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Least-square and maximum likelihood methods are proposed as an alternative 
workflow for automated semivariogram modeling. The least-square workflows mir-
ror the common manual semivariogram modeling approach up to the computation of 
multiple experimental semivariograms and then automates the selection of the semi-
variogram parameters to minimize the misfit with the experimental semivariogram 
points. In other words, least-square workflows convert semivariogram modeling 
problems into the optimization of a cost function based on misfit (i.e., commonly 
based on L2 norm, mean square error) between experimental semivariogram points 
and the semivariogram model at the same lags. Several researchers have proposed 
using various stochastic optimization algorithms, including random perturbation 
(Larrando et al. 2003), simulated annealing (Emery 2010; Wilde and Deutsch 2012), 
the Gauss–Newton algorithm (Dasassis and Renard 2013), and the genetic algorithm 
(Li et al. 2018; Yasojima et al. 2019).

Even though these least-square methods may perform well in some cases, they 
have several limitations. First, most of the algorithms are vulnerable to convergence 
issues, especially in the poor choice of initial values and solution boundaries. More-
over, the number of fitting parameters should be small for the practical solution of 
the optimization. As a result, most of the applications are confined to two-dimen-
sional cases. Second, the least-square workflows assume experimental semivario-
gram certainty, yet the experimental semivariogram is uncertain due to sensitivity to 
search template parameters such as lag distance, lag tolerance, azimuth or dip toler-
ance, and bandwidth. Variations in these semivariogram calculation parameters may 
result in a significant difference in experimental semivariograms, and least-square 
workflows may converge with a large irreducible error or demonstrate instability in 
the assessed semivariogram models. Mitigation through the use of large enough spa-
tial datasets to reduce variability in experimental semivariograms and expert knowl-
edge to identify optimum search template settings may not be possible.

Alternatively, maximum likelihood methods estimate semivariogram parameters 
(e.g., range, sill, and nugget) by minimizing a negative log-likelihood function with-
out any intermediate steps such as initial value estimate and iteration for optimiza-
tion (Mardia and Marshall 1984; Pardo-Igúzquiza et al. 2009; Oliver and Webster 
2014). Therefore, maximum likelihood methods enable direct estimation of semi-
variogram model parameters and quantification of uncertainty in the parameters. 
Pardo-Igúzquiza et al. (2009) demonstrate that the maximum likelihood method can 
also detect possible linear or quadratic trends in semivariogram modeling in the case 
of a groundwater dataset. However, the maximum likelihood methods require the 
variables of interest to be multivariate Gaussian-distributed, a strong assumption 
that is often not met and is difficult to verify with typical data sparsity (Kerry and 
Oliver 2007; Zhang et al. 2017). Moreover, ill-posed assumptions with respect to the 
nugget effect (i.e., the spatial variability observed at distances less than the mini-
mum data spacing) and nonstationary trends may result in unrealistic semivariogram 
models (Pardo- Igúzquiza et al. 2009; Oliver and Webster 2014).

Artificial intelligence and deep machine learning algorithms are adding value for 
spatial analysis, specifically geoscience, and geostatistical workflows (Dimitrako-
poulos 1993; Dowd and Sarac 1994). These data-driven methods enhance efficiency 
and may improve estimation accuracy over conventional statistical algorithms. 
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Dimitrakopoulos (1993) introduced a conceptual framework of artificial intelligence 
in geostatistics for computing an experimental semivariogram and performing ordi-
nary kriging. Dowd and Sarac (1994) applied neural networks to geostatistical simu-
lation. Bergen et al. (2019) extensively summarized machine learning applications 
in geoscience.

The convolutional neural network (CNN), which consists of multiple feature 
maps, has become one of the most popular deep learning algorithms for applica-
tions with spatial data (LeCun et al. 1998). By transferring information through ker-
nels between the feature maps, a CNN is well suited for image data to learn spatial 
configurations (Guo et al. 2016). For this reason, the CNN is the most commonly 
applied machine learning method in various computer vision applications, includ-
ing image denoising (Xuejiao et al. 2015; Zhang et al. 2017), image segmentation 
(Ronneberger et al. 2015), and image inpainting (Yeh et al. 2016). In addition, CNN-
based workflows have been applied for reconstructing porous structures in rock 
(Mosser et  al. 2017; Wang et  al. 2018), data conditioning in rule-based reservoir 
models (Jo et al. 2020; Pan et al. 2021; Jo et al. 2021), developing a surrogate reser-
voir flow model (Park et al. 2021; Maldonado-Cruz and Pyrcz 2021), and develop-
ing proxy pore flow simulation in digital rock (Santos et al. 2020, 2021).

In this paper, machine learning-assisted, automatic semivariogram modeling, 
known as automatic semivariogram modeling with convolution-based deep learn-
ing (ASMC), is proposed to maximize the use of spatial data and reduce semivari-
ogram modeling subjectivity by omitting traditional experimental semivariogram 
computation and modeling. The workflow includes calculation of two CNNs; the 
first neural network maps sparse data to exhaustive sequential Gaussian simulation 
(SGS) images, and the second convolutional neural network maps the SGS images 
to semivariogram parameters (i.e., range, azimuth of major direction, and aspect 
ratio between major and minor directions). By dividing the workflow into two steps, 
the proposed method makes the role of the individual CNN model explicit and sta-
bilizes the training process. Moreover, the proposed method enables geoscientists 
and engineers to build subsurface models to explore and examine a wide range of 
possible semivariogram models with the least prior assumptions. As such, ASMC 
is opposed to the previous least-square methods that require solution boundaries to 
resolve convergence issues and the maximum likelihood methods that required an 
assumption of multivariate Gaussianity for the sparse data. The proposed machine 
learning-based workflows provide improved efficiency and simplification; therefore, 
the experts may spend more effort in interpreting results and designing geological 
models. The proposed workflow may be applied to the case of exhaustive images 
(e.g., acoustic impedance or seismic interpretation models), where the second CNN 
model directly estimates semivariogram model parameters from the exhaustive 
images.

The remainder of the paper is organized as follows. Section  2 describes the 
general CNN design and the training process. Section 3 covers the proposed CCN 
design and related hyperparameters for automatic semivariogram modeling. Sec-
tions 4 and 5 include several demonstrations in synthetic data and a real case study 
(i.e., the North Cowden field) with performance evaluations. Finally, conclusions 
are given in Sect. 6.
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2  Deep Learning

2.1  Architecture of the CNN

LeCun et  al. (1989) first proposed the concept of the convolutional neural net-
work, but CNN was not initially considered practical because of the large amount 
of computation necessary and the instability in training. Implementation of 
graphics processing unit (GPU)-based programming and various regularization 
techniques such as dropout (Srivastava et al. 2014) and batch normalization (Ioffe 
and Szegedy 2015) made the CNN practical for tackling a variety of problems, 
especially in the field of computer vision applications. Unlike the conventional 
neural network for which each layer is fully connected to the next layer, the CNN 
applies a kernel filter to transfer information between the layers. While the con-
ventional neural network is composed of multiple hidden layers (i.e., one-dimen-
sional sets of nodes) between input and output, the CNN has feature maps (i.e., 
higher than or equal to two-dimensional matrices).

The main steps of a CNN are convolution, pooling, and upsampling (Guo et al. 
2016). Convolution projects information from current feature maps to the next 
feature maps through the weighted sum of each pixel based on a weighting ker-
nel. Figure  1 shows an example of a convolution operation from 5 × 5 input to 
4 × 4 output with a kernel size of 2 × 2. Pooling and upsampling reshape the size 
of the feature map; pooling shrinks the feature map, and upsampling enlarges the 
feature map, as shown in Fig.  2. The CNN also may have fully connected lay-
ers like the conventional neural network. In this case, a feature map should be 
flattened to connect to a hidden layer, or a hidden layer should be rearranged to 
connect to a feature map. Figures 3 and 4 illustrate the CNN models used in this 
paper. The first CNN maps spatial data to a possible subsurface model, and the 
second CNN maps the subsurface model to semivariogram model parameters.

Fig. 1  Schematic diagram of a convolution operation: The input and output feature maps have 5 × 5 and 
4 × 4 dimensions, respectively. The kernel filter size is 2 × 2 with a stride (i.e., kernel shift between con-
volution operations) of 1
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Fig. 2  Schematic diagram of a upsampling and b max pooling

Fig. 3  A CNN model with five convolutional layers, four upsampling layers, and one fully connected 
later: This CNN model maps spatial data to an exhaustive subsurface model. Red lines describe convolu-
tion, whereas orange lines indicate upsampling

Fig. 4  A CNN model with six convolutional layers, five max-pooling layers, and one fully connected 
later: This CNN model maps an exhaustive subsurface model to semivariogram parameters. Red lines 
describe convolution, whereas blue lines indicate max pooling
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The CNN in Fig. 3 consists of an input layer, one fully connected layer, five 
convolutions, four upsampling layers, and an output layer. As the first CNN takes 
a vector (i.e., spatial conditioning data) and maps it to a subsurface model, the 
first fully connected layer expands the number of nodes to reshape the feature 
map. In the next layers, the convolution operations extract the main geometric 
features, and upsampling operations expand the feature map dimensions so that 
the size of the output layer is equivalent to the subsurface model size. The kernel 
filter size is often 3 × 3, 4 × 4, or 5 × 5, but our example shows that 3 × 3 works 
better than others. The number of channels in layers controls the CNN model’s 
complexity, which is tuned to the given problem’s complexity. The CNN’s opti-
mum structure (e.g., the sequence of operations, kernel filter size, and the number 
of channels) is mainly adjusted in a heuristic manner. The details of the first CNN 
are:

1. A vector of spatial data (i.e., values for the feature of interest in sample locations) 
is inputted into the model. In Fig. 3, the length of the input layer is assumed to 
be 168, but this can be updated depending on the number of given spatial sample 
data.

2. Next, the input layer is fully connected to the next hidden layer, whose num-
ber of elements is 1,024, and the hidden layer is reshaped to 8 × 8 × 16 (i.e., 
width × height × channel). The channel is a depth of an image, and each channel 
captures a different component of information from the image. For example, a 
colored image has three channels for red, blue, and green. Each channel contains 
the intensity of the corresponding color. The feature map (8 × 8 × 16) is enlarged 
to 16 × 16 × 16 through upsampling. Upsampling repeats the rows and columns 
twice, respectively, as shown in Fig. 2a.

3. The first upsampling is followed by a convolution layer through 16 kernel filters, 
and the size of each kernel is 3 × 3; therefore, each kernel filter consists of nine 
weights. The next feature maps encode various geometric characteristics in the 
current feature map with multiple sets of kernels. The value of the (i, j) pixel of 
the k th channel in the feature map can be described as fk(i, j).

where R(∗) is the activate function (i.e., ReLu from LeCun et al. 1989), U1t
 is 

the t th channel of upsampling layer 1, ∗ denotes the convolution operation (Guo 
et al. 2016), Wk is the k th filter of 3 × 3 in size, and bk is the bias.

4. The above upsampling and convolution are repeated three more times to result in 
the feature maps of 32 × 32 × 8, 64 × 64 × 8, and 128 × 128 × 4, respectively.

5. Finally, the last convolution maps 128 × 128 × 4 to 128 × 128 × 1, a spatial sub-
surface model. The value of the (i, j) pixel of the output layer is f (i, j) and can be 
calculated by

(1)fk(i, j) = R

(
16∑

t=1

(
U1t

∗ Wk

)
(i, j) + bk

)
,
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where R(∗) is the sigmoid activate function (LeCun et al. 1989) that is varying 
from zero to 1, C4t

 is the t th channel of convolution layer 4, ∗ denotes the convo-
lution operation, W is the 3 × 3 filter, and b is the bias.

The second CNN model in Fig. 4 consists of six convolutional layers, five max-
pooling layers, and one fully connected layer to map the subsurface model to semi-
variogram parameters (i.e., the range, aspect ratio, and azimuth of major direction). 
In the first few layers of the second CNN model, convolution layers convey the main 
geometric features in feature maps, whereas max pooling downsizes and imposes 
location invariance in the feature maps. In the last few layers, the feature map is flat-
tened and converged into three nodes for semivariogram parameters. Kernel filter 
dimensions for convolution layers are determined as 3 × 3 through hyperparameter 
tuning, the same as the first CNN model. The second CNN includes the following:

1. A 128 × 128 × 1 subsurface model is inputted into the model.
2. Next, eight kernel filters 3 × 3 in size convolve with the input image to generate 

the feature map of 128 × 128 × 8. Like the first CNN model, this process extracts 
the main features of the input image with different kernel filters. For example, the 
value of the (i, j) pixel of the k th channel in the feature map is expressed as fk(i, j)
.

where R(∗) is the ReLu activation function, I is the input image (i.e., a subsur-
face model), ∗ denotes the convolution operation, Wk is the k th kernel filter, and 
bk is the bias.

3. The first convolution layer is followed by a pooling layer that shrinks the feature 
map along the spatial dimension (i.e., width and height) and results in the feature 
map of 64 × 64 × 8. Max pooling and average pooling are most commonly imple-
mented (Guo et al. 2016); Max pooling is applied in this research and illustrated 
in Fig. 2b.

4. The second convolution computation is conducted on max-pooling layer 1. 
This process converts the feature map of 64 × 64 × 8 into a new feature map of 
64 × 64 × 16. The value of the (i, j) pixel of the k th channel in the feature map is 
expressed as fk(i, j).

where R(∗) is the activate function (i.e., ReLu), M1t
 is the t th channel of max-

pooling layer 1, ∗ is the convolution operation, Wk is the k th filter of 3 × 3 in size, 
and bk is the bias parameter.

(2)f (i, j) = R

(
4∑

t=1

(
C4t

∗ W
)
(i, j) + b

)
,

(3)fk(i, j) = R
((
I ∗ Wk

)
(i, j) + bk

)
,

(4)fk(i, j) = R

(
8∑

t=1

(
M1t

∗ Wk

)
(i, j) + bk

)
,
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5. The above max pooling and convolution are carried out four more times to result 
in the feature maps of 32 × 32 × 32, 16 × 16 × 64, 8 × 8 × 128, and 4 × 4 × 128, 
respectively. While downsizing the image and increasing the number of channels, 
this CNN model learns the main features of the input image.

6. The last feature map is flattened to a hidden layer of 2,048 elements, and this hid-
den layer is fully connected to a final layer with three nodes. Each node indicates 
the range, aspect ratio, and azimuth of the major direction.

The detailed structures of CNN models are described in Tables 1 and 2.

2.2  Training

Each step of convolution in the CNN has trainable model parameters such as filter 
weights and biases, and fully connected layers also have connection weights and node 
biases. These trainable model parameters, � , are represented as

(5)�1 =
{
W1

1
,W1

2
, … , W1

6
, B1

1
,B1

2
,… , B1

6

}
,

(6)�2 =
{
W2

1
,W2

2
, … , W2

7
, B2

1
,B2

2
,… , B2

7

}
,

Table 1  Architecture of CNN #1, which maps sparse data to an exhaustive subsurface model

Layer Type Dimension (width 
× height × channel)

Kernel size Stride Activate function Trainable 
param-
eters

Input Sparse data # of spatial data – – – –
1 Fully connected 1,024 – – ReLU W

1

1
 , B1

1

2 Reshape (8 × 8 × 16) – – – –
3 Upsampling (16 × 16 × 16) – – – –
4 Convolution (16 × 16 × 16) 3 × 3 1 ReLU W

1

2
 , B1

2

5 Batch normalization (16 × 16 × 16) – – – –
6 Upsampling (32 × 32 × 16) – – – –
7 Convolution (32 × 32 × 16) 3 × 3 1 ReLU W

1

3
 , B1

3

8 Batch normalization (32 × 32 × 16) – – – –
9 Upsampling (64 × 64 × 16) – – – –
10 Convolution (64 × 64 × 8) 3 × 3 1 ReLU W

1

4
 , B1

4

11 Batch normalization (64 × 64 × 8) – – – –
12 Upsampling (128 × 128 × 8) – – – –
13 Convolution (128 × 128 × 4) 3 × 3 1 ReLU W

1

5
 , B1

5

14 Batch normalization (128 × 128 × 4) – – – -
15 Convolution (128 × 128 × 1) 3 × 3 1 Sigmoid W

1

6
 , B1

6

Output Subsurface model (128 × 128 × 1) – – – –
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where �1 and �2 are trainable parameter sets of the first and second CNN models, 
respectively. Wi (i = 1, 2, … , n) are the weights of the convolutional kernel filter or 
fully connected layer in the i th step (e.g., in Fig. 3, the dimension of the kernel filter 
in the first convolution layer W2 is 3 × 3 × 16), Bi(i = 1, 2, … , n) is the bias of the 
ith step (e.g., in Fig. 3, the dimension of B2 is 16), and n denotes the number of steps 
that are either a convolution layer or a fully connected layer (e.g., the n is 6 in Figs. 3 
and 7 in Fig. 4) in the CNN model.

The training process is conducted by minimizing the loss function L1(�1) for the 
first CNN model and L2

(
�2
)
 for the second CNN model. In this paper, the mean 

square error is used as loss functions

where Nk is the number of training data of the k th CNN model, yk
i
 is the true value, 

and 
∼

yki is the estimate from the k th CNN model. These loss functions are minimized 
using the rectified adaptive moment (Adam) optimization (Liu et  al. 2019). The 

(7)L1
(
�1
)
=

1

N1

N1∑

i=1

(
y1
i
− ỹ1i

)2

,

(8)L2
(
�2
)
=

1

N2

N2∑

i=1

(
y2
i
− ỹ2i

)2

.

Table 2  Architecture of CNN #2, which maps an exhaustive subsurface model to semivariogram param-
eters (i.e., maximum range, azimuth of major direction, and aspect ratio between major and minor range)

Layer Type Dimension (width 
× height × chan-
nel)

Kernel size Stride Activate function Trainable 
param-
eters

Input Subsurface model (128 × 128 × 1) – – – –
1 Convolution (128 × 128 × 8) 3 × 3 1 ReLU W

2

1
 , B2

1

2 Max pooling (64 × 64 × 8) – – – –
3 Convolution (64 × 64 × 16) 3 × 3 1 ReLU W

2

2
 , B2

2

4 Max pooling (32 × 32 × 16) – – – –
5 Convolution (32 × 32 × 32) 3 × 3 1 ReLU W

2

3
 , B2

3

6 Max pooling (16 × 16 × 32) – – – –
7 Convolution (16 × 16 × 64) 3 × 3 1 ReLU W

2

4
 , B2

4

8 Max pooling (8 × 8 × 64) – – – –
9 Convolution (8 × 8 × 128) 3 × 3 1 ReLU W

2

5
 , B2

5

10 Max pooling (4 × 4 × 128) – – – –
11 Convolution (4 × 4 × 8) 3 × 3 1 ReLU W

2

6
 , B2

6

12 Dropout (4 × 4 × 8) – – – –
13 Flatten 2,048 – – –
14 Fully connected 3 – – Sigmoid W

2

7
 , B2

7

Output Semivariogram 
parameters

3 – – – –
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learning rates for both CNN models are set as 0.0001 from the hyperparameter tun-
ing process.

3  Automated Semivariogram Modeling with a Convolutional Neural 
Network

ASMC consists of two steps, each with separate CNN models. The first CNN model 
maps the sparsely sampled spatial data to an estimate of the exhaustive subsurface 
model, and the second CNN model maps the estimated exhaustive spatial model to 
the estimated semivariogram parameters. For brevity, this paper will refer to the first 
CNN model as CNN #1 and the second CNN as CNN #2. Figure  5 presents the 
entire workflow of ASMC, and Fig. 6 describes the detailed training process of two 
CNN models.

First, the spatial feature of interest (e.g., porosity) is pooled from available 
samples under the assumption of univariate distribution and semivariogram sta-
tionarity. For this demonstration, the spatial model extent is 1 km × 1 km, and the 
spatial data are plotted in a two-dimensional grid composed of 128 × 128 grid 
cells. Therefore, the spatial data can be visualized in a location map, as shown 
in step 1 of Fig.  5. Next, multiple semivariogram models with variable param-
eters are sampled through the design of experiments (in Table  3). Then, SGS 
realizations are calculated with all semivariogram models from the design. Each 
SGS realization is labeled with its semivariogram parameters. Third, both CNN 
#1 and #2 models are trained with these SGS realizations. Figure  6 illustrates 
the approach for training CNN models. There are two groups of SGS realiza-
tions: training and validating groups. Spatial data are extracted from the SGS 

Fig. 5  Schematic graph of the automated semivariogram modeling with CNN: The first step is to trans-
form a given sparse sample data into a two-dimensional grid. Then, a variety of semivariogram param-
eters are selected from random sampling, and SGS realizations are generated with the semivariogram 
parameters. Each realization is labeled by its semivariogram model. CNN #1 and CNN #2 are trained 
with the SGS realizations and their label. Finally, original spatial data is input to CNN #1 to estimate the 
SGS image, and the SGS image is input to CNN #2 to estimate semivariogram parameters
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realizations at sample locations, and CNN #1 maps the spatial data to estimate 
their exhaustive subsurface model. CNN #2 maps the exhaustive subsurface mod-
els to estimates of semivariogram parameters. Training data is only used for train-
ing, whereas validation data are withheld from model parameter training to apply 
in the model validation step to check model performance with unseen inputs and 
to avoid significant overfitting issues. After training and validating CNN #1 and 
CNN #2, the two-part ASMC model efficiently maps the original spatial data to 
estimates of the underlying semivariogram model.

Note that the random seed that controls the stochastic realizations of SGS (Pyrcz 
and Deutsch 2014) is identical in all SGS realizations, resulting in greater consist-
ency among realizations and allowing for ASMC to train rapidly with a relatively 
small number of training cases. On the other hand, a diverse random seed integrates 
inessential variability in the training data, degrading the predictive performance of 
ASMC. The primary purpose of ASMC is to predict one best solution subsurface 
model and semivariogram parameter rather than multiple possible subsurface mod-
els and the associated semivariogram parameters. After predicting semivariogram 
parameters, we can span the uncertainty in the subsurface models through SGS. 
Therefore, generating SGS realizations with a fixed random seed does not limit the 
capability of ASMC but makes the training process more efficient. The effect of fix-
ing and varying random seeds in ASMC is investigated in Sect. 4.8.

Fig. 6  Schematic diagram of training and validating CNN #1 and CNN #2: First, SGS realizations are 
generated with different semivariogram parameters and divided into training and validating groups. The 
data at sample locations are extracted from the realizations. CNN #1 is trained to map spatial data to a 
subsurface model, and CNN #2 is trained to map the subsurface model to semivariogram parameters 
(i.e., range, aspect ratio of major/minor range, azimuth of major direction). After training CNN #1 and 
CNN#2 with training data, they are validated with the data in the validating group

Table 3  Design of experiments to generate multiple semivariogram models with different designs of 
parameters: for example, if range is 100 m and aspect ratio is 2, the range in the minor direction becomes 
50 m. An azimuth of 0 degree indicates the major range is along the north–south direction, whereas an 
azimuth of 90 degrees is an east–west direction

Semivariogram parameters Range Unit

Range of major direction 80–240 (or 10–30) Meter (or grid cells)
Aspect ratio of major/minor 1–3 Ratio
Azimuth of major direction 0–180 Degree
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Moreover, in the SGS realizations, the values at sample locations are replaced 
by SGS outcomes, referenced by surrounding simulated values. This results in 
locally consistent realizations with the data but not overly constrained by the avail-
able spatial data. The CNN models should be customized to a given spatial data. In 
other words, the entire workflow of generating possible SGS realizations and train-
ing CNN models should be repeated for each spatial dataset. Nevertheless, the total 
computational time is practical on a typical workstation (see Table 4). The average 
computation time, including generating SGS realizations and training two CNNs, 
is around 20  min on a desktop computer with an Intel E5-1650 3.60  GHz CPU 
environment.

4  Results

Synthetic porosity data is calculated in a two-dimensional space to demonstrate 
the ASMC workflow. The extent of the subsurface model is 1 km × 1 km, and there 
are porosity measures available at 163 samples. The porosity samples have a mean 
of 16.2% and a standard deviation of 5.2%, as visualized in Fig. 7 (left). The dis-
tribution shows a positive skew but no outliers (based on the Tukey method). The 
porosity data is transferred to the two-dimensional grid of 128 × 128 in size. Fig-
ure 7 (right) presents the location map of 163 samples with their porosity values. 

Table 4  Required computation time in each task of ASMC: training data consists of 1,000 SGS models 
from GSLIB, and both CNN models are trained over 500 epochs with an Intel E5-1650 3.60 GHz CPU 
and NVIDIA Quadro M6000 24 GB GPU

Task Computation time, s Average 
computation 
time, s

Generating training data 1,000–1,100 1,050
Training CNN #1 100–130 115
Training CNN #2 150–170 160

Fig. 7  The histogram and box plot of the given porosity data (left) and location map of the given data 
(right) from 163 samples
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The sample locations are widely spaced over the entire subsurface model, and there 
are no apparent trends, as the spatial data is assumed to be stationary. Otherwise, 
the detrending process is necessary before the application of the ASMC workflow 
(Pyrcz and Deutsch 2014). Moreover, in the severe non-Gaussian distribution in the 
hard data, normal score transformation (Pyrcz and Deutsch 2014) can be used to 
alleviate possible artifacts before ASMC.

A total of 800 SGS realizations are calculated as a training set. A further 200 
SGS realizations were retained as a validating set to detect any possible overfitting 
issues and evaluate the prediction performance of ASMC. Figure 8 shows all SGS 
realizations: each realization depends on the original porosity data, distribution, and 
semivariogram model parameters from the design of experiments (Table  3). For 
example, the first realization integrates a semivariogram model with a major range 
of 23.3 grid cells, a minor range of 15.3 grid cells, and an azimuth of 153 degrees 
(northern-west to southern-east).

4.1  Subsurface Model Estimate from Spatial Data

The performance of CNN #1 that maps spatial data to a subsurface model estimate 
is evaluated with the validation set of 200 SGS realizations (see Fig. 9). The first 
column presents the SGS realizations and their univariate distributions. From the 
realizations, the porosity values at sample locations are extracted and mapped in the 
second column. New simulated values replace the original values at sample loca-
tions. The porosity values at data locations are input to CNN #1 to estimate the 
subsurface models, as shown in the third column. For example, the first realization 
shows the dominant continuity from northwest to southeast. Even though it is chal-
lenging to identify this from visual inspection of the spatial data alone, CNN #1 
learns this well from the sparse sample data. The subsurface model estimate of the 
first realization is not perfectly fit to the original SGS realization. However, it shows 
a similar spatial continuity to the original one as the dominant continuity in the orig-
inal subsurface model with a major continuity direction from northwest to southeast. 
The results of the second and third realizations demonstrate consistency in the per-
formance of CNN #1. In other words, CNN #1 successfully learns the main spa-
tial characteristics of the porosity data at sample locations and estimates subsurface 
models estimating a similar spatial continuity type.

4.2  Estimating Semivariogram Parameters from the Subsurface Model

Figure  10 demonstrates the semivariogram model prediction performance of the 
ASMC workflow for the validation data withheld from model training. The SGS 
realizations that are conditioned to the original porosity are in the first column. The 
second column of Fig. 10 presents the experimental semivariogram from the poros-
ity values at sample locations and their respective semivariogram models in major 
and minor directions. Recall the experimental semivariogram is defined as
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where h denotes a lag vector (i.e., offset between spatial locations), xi is the variable 
of interest (e.g., porosity) at the start of the pair i , and yi is the corresponding end 

(9)�(h) =
1

2N(h)

N(h)∑

i=1

(
xi − yi

)2
,

Fig. 8  Overview of the SGS realizations as training/validating data for ASMC: In the first row, the origi-
nal porosity map and its distribution are given. From the second row, the first column is the SGS realiza-
tion that is conditioned to the original porosity data and semivariogram model in the second column. 
The semivariogram model parameters are randomly sampled from Table 3. The third column shows the 
distribution of the new porosity values at well locations
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Fig. 9  Demonstration of CNN #1: SGS realization and its probability density function (in the first col-
umn), porosity at sample locations and its histogram (in the second column), and subsurface model esti-
mate through CNN #1 and the distribution of the estimated porosity (in the third column). Even though 
the spatial subsurface model estimate has a tendency to be slightly blurred and its distribution is not 
entirely identical to the original SGS, CNN #1 successfully understands the main spatial characteristics 
of the porosity data at sample locations and reconstructs the subsurface model estimate by showing the 
similar continuity trend
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value. N(h) stands for the number of sample pairs available for lag h . The number of 
lags should be carefully selected based on the minimum data spacing and the extent 
of the study area.

Moreover, the semivariogram model is usually modeled by one or a combination of 
these three known, positive definite semivariogram models (Deutsch and Journel 1998; 
Pyrcz and Deutsch 2014)

Fig. 10  Demonstration of ASMC: The first column is SGS realization from the validating group, and the 
second column shows both the experimental semivariogram from porosity at sample locations and the 
true semivariogram model that is utilized in generating the SGS realization. The third column is the sub-
surface model estimates through CNN #1, and the fourth column shows both the experimental semivari-
ogram from estimated porosity at sample locations and the semivariogram model that is computed from 
CNN #2. ASMC successfully estimates the original semivariogram models
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where C0 is the structure contribution, and a0 denotes the range. As the values are 
standardized to have a unity variance, C0 is always equal to 1 in this demonstra-
tion (we assume a single structure). Please note that as Gaussian and exponential 
semivariograms never reach the sill (i.e., their sills are asymptotic), their ranges 
are defined where the semivariogram reaches around 95% of the sill. Moreover, the 
semivariogram is assumed to follow the exponential type, and only the 2D case is 
considered, so the estimated semivariogram parameters include a0 values in major 
and minor directions, and the azimuth of major direction.

In the second column of Fig.  10, the experimental semivariograms are shown 
with the truth semivariogram models that are used to generate training data and 
ASMC workflow estimates. The third column of Fig. 10 presents the estimated sub-
surface models through CNN #1 that have a similar continuity trend as the original 
SGS realizations. The last column of Fig.  10 is a plot of the experimental semi-
variograms calculated from the porosity values in subsurface model estimates and 
the semivariogram models computed from CNN #2. The experimental semivario-
grams (i.e., dots in the semivariogram plots) of subsurface model estimates are quite 
similar to those of the original SGS realizations. This similarity indicates that CNN 
#1 is accurate in estimating the underlying continuity models in SGS realizations. 
Moreover, the semivariogram model estimates from CNN #2 are also like the calcu-
lated experimental semivariograms as well as the original truth semivariogram mod-
els. Thus, the ASMC workflow successfully interprets spatial continuity from the 
porosity data at the sample locations and predicts reasonable semivariogram model 
parameters.

4.3  Model Validation of ASMC

In training CNN models, loss functions should be inspected over training epochs to 
measure the model accuracy and stability and detect any possible issues (e.g., over-
fitting). Figure 11 shows the loss functions (i.e., mean square error) of CNN #1 and 
CNN #2 over 500 epochs. The loss function of CNN #1 decreases rapidly until 100 
epochs and then stabilizes. Both loss curves for training and validation data decrease 
simultaneously, indicating no issue with overfitting. On the other hand, the loss 
function of CNN #2 improves up to 300 epochs and then stabilizes. The loss func-
tion of training data slightly deviates from validating data after 200 epochs, but this 
is assessed to be insignificant. The best CNN #1 and #2 parameters with the least 
loss values are automatically saved during the training process.

Figure  12 compares the estimated semivariogram model parameter values to 
the true values. The blue cross indicates the estimation performance of training 
data, whereas the red dot is for validating data. The R-squared values in the range 
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prediction, aspect ratio prediction, and azimuth prediction show over 0.97 for train-
ing and validation datasets. The proposed prediction model performs reliably.

4.4  Testing ASMC with the Original Data

The best CNN models from the training process are selected by their minimum loss 
values. The original porosity spatial data is input to ASMC to estimate the associ-
ated semivariogram model parameters. Figure 13 includes the original porosity data, 

Fig. 11  Loss curve of CNN #1 (left), loss curve of CNN #2 (middle), and accuracy of CNN #2 (right) 
over the training epoch: Both training and validating loss functions of CNN #1 and CNN #2 decrease 
effectively. No significant overfitting is observed

Fig. 12  True values vs. estimates of CNN #2: the range in the major direction (left), the aspect ratio 
between the major range and minor range (middle), and the azimuth of the major direction (right). Both 
training and validating data show over 0.97 explained variance scores

Fig. 13  ASMC demonstration for original porosity data: a Original spatial data, b subsurface model 
estimate from the original spatial data, c experimental semivariogram and estimated semivariogram 
model in major direction, and d experimental semivariogram and estimated semivariogram model in the 
minor direction. The estimated range is 24 (grid cells), and the estimated azimuth of the major direction 
is 46.8 degrees. The estimated aspect ratio is 2.18. Both semivariogram models are well fitted to the 
experimental semivariogram
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and the estimated subsurface model is computed through CNN #1. The maximum 
continuity is from northeast to southwest. CNN #2 predicts semivariogram model 
parameters of a 24-grid-cell major range, 11-grid-cell minor range, and the azimuth 
of the major direction at 46.8 degrees. Experimental semivariograms and estimated 
semivariogram models are shown in the last two graphs in Fig.  13. The machine 
learning-based predictions of semivariogram models in major and minor directions 
closely approximate the experimental semivariograms from the original spatial 
dataset.

4.5  Comparison with the Least‑square Method

The performance of ASMC is compared with the least-square method in the same 
porosity dataset. The loss function of the least-square method is defined as

where a0, r, and � are semivariogram parameters (i.e., the range, aspect ratio 
between major and minor range, and azimuth, respectively), �model is the semivari-
ogram model with the given parameters, and � is the experimental semivariogram 
along the azimuth of � . Moreover, Nlag is the number of lags in the experimental 
semivariogram.

With a fixed aspect ratio, the loss is calculated for the change of the range and 
azimuth, as shown in Fig. 14a. We implement Nelder–Mead optimization (Nelder 
and Mead 1965) to find the solutions for the least-square method. Figure 14b shows 
the contour map of the loss with estimated semivariogram parameters from the 
ASMC and least-square methods, as well as global minimum location.

(11)MSE
(
a0, r, �

)
=

1

Nlag

Nlag∑

i=1

(
�model

(
h
i
|a0, r, �

)
− �

(
h
i
|�
))2

,

Fig. 14  Response surface of loss (i.e., mean square error) between the experimental semivariogram and 
the corresponding semivariogram model: a three-dimensional view of the loss change with respect to the 
range and azimuth and b contour map of the loss with solutions from ASMC and least-square method. 
The least-square method falls into multiple local minima with different initial guesses
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Due to the non-convex loss function, the least-square solutions converge on 
multiple local minima from different initial guesses, and these estimates are sig-
nificantly different from each other. For example, one solution estimates the range 
of 16 grid cells with an azimuth of 110 degrees, whereas another solution indi-
cates the range of 25 grid cells with an azimuth of 60 degrees. Considering that 
calculating exhaustive loss response is computationally expensive and unavail-
able, it is extremely challenging to tell which solution is closer to the global mini-
mum in the typical least-square process. Unlike the least-square solution, ASMC 
gives a stable solution close enough to the global minimum solution, as shown in 
Fig. 14b.

4.6  Uncertainty Assessment of Semivariogram Parameters

The uncertainty of ASMC estimates is investigated following the workflow in 
Fig. 15. With the given degree of measurement error in hard data, multiple possi-
ble realizations of the hard dataset are generated through the Monte Carlo simula-
tion. Each realization passes through the two CNNs in ASMC and computes esti-
mated semivariogram parameters. The probability distribution can be computed 
with reliable uncertainty quantification from the multiple estimates for the range, 
aspect ratio, and azimuth. As two trained CNNs only require negligible computa-
tional time to render estimates, the proposed workflow can assess uncertainties in 
semivariogram parameters without significant additional computational cost.

Figure  16 presents the uncertainty distribution of semivariogram parameters 
with different degrees of measurement error in hard data. Each column of plots 
stands for semivariogram parameters, and each row indicates the significance of 
measurement errors. The blue lines describe the probability density of estimates 
in each plot, and the red dashed lines show ASMC estimates with no importing 
measurement error. For example, the range varies from 22 to 27 grid cells with a 
1% measurement error, but it can go from 15 to 35 grid cells with a 5% measure-
ment error. In the same way, the uncertainty ranges of the aspect ratio and azi-
muth can be quantified.

Fig. 15  Schematic diagram for uncertainty assessment of semivariogram parameters
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4.7  Sensitivity Analysis of CNN Hyperparameters

The sensitivity analysis for the CNN hyperparameters of the ASMC workflow is 
shown in Figs. 17 and 18. There are two key hyperparameters in CNNs: (i) kernel 
size and (ii) the number of channels. With the same training dataset, we assess 
the performance of ASMC with different complexity of CNNs. Figure 17 shows 
the losses of ASMC with the different numbers of channels in CNNs, and the 
base case indicates the CNN structure that we describe in Tables 1 and 2. Moreo-
ver, the y-axis in Fig. 17 is normalized by the loss of validating data in the base 
case (e.g., 100% means the same loss for validation data in the base case). Blue 
and orange bars indicate relative losses of training and validating data, respec-
tively. Using a quarter or a half of the channels of the base case, the losses of 
training and validating data do not decrease effectively, indicating underfitting. 
On the other hand, when increasing the number of channels twice or four times, 
training data losses keep decreasing, whereas those of validating data increase, 
indicating overfitting. Therefore, we select the structures of CNN #1 and #2 with 
the most optimum predictive performance of both training and validating data.

Fig. 16  Uncertainty distribution of semivariogram parameters with different measurement errors: each 
row indicates a different degree of measurement errors in hard data. Each column presents uncertainty 
distributions (i.e., solid blue lines) of semivariogram parameters and ASMC estimates (i.e., red dashed 
lines)



199

1 3

Math Geosci (2022) 54:177–205 

Figure 18 shows the changes in ASMC’s performance concerning the kernel size. 
The base case uses 3 × 3, as described in Tables  1 and 2. For a 2 × 2 kernel size, 
losses of training and validating data are not as small as the base case. Moreover, for 
4 × 4 and 5 × 5 kernel sizes, even though the losses of validating data do not change 
much, the discrepancy between training and validating losses becomes significant 
(i.e., overfitting). Therefore, we select 3 × 3 as an optimum kernel size in ASMC. 
The optimum number of channels and kernel size should be adequately investigated 
for the given tasks through the hyperparameter tunning process.

Fig. 17  Sensitivity of ASMC performance with respect to the number of channels in CNNs: the y-axis 
is normalized by the MSE of the validation dataset for the base case that is described in Tables 1 and 2. 
For example, “× 2” indicates that the number of channels is increased by 2, and “× 1/2” denotes that the 
number of channels is decreased by half

Fig. 18  Sensitivity of ASMC performance with respect to the kernel size in CNNs: the y-axis is normal-
ized by the MSE of the validation dataset for the base case that is described in Tables 1 and 2. For exam-
ple, “2 × 2” indicates that the kernel size is 2 by 2 in width and height
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4.8  Effect of Random Seeds in SGS Realizations

The effect of fixing random seeds in generating SGS realizations is investigated in 
Fig. 19. Even though the training losses of both cases are similar in comparison, 
the validation loss of ASMC that uses varying random seeds in generating SGS 
realization becomes significantly larger than that of ASMC with a fixed random 
seed. In other words, such overfitting occurs in conditions with varying random 
seeds. As such, varying random seeds with unnecessary variability in SGS reali-
zations is shown to be less efficient than using a fixed random seed.

5  Demonstration for the North Cowden field

The ASMC is also demonstrated in a real case study. The North Cowden field 
is in west Texas, where 62 wells have been drilled. Pyrcz et  al. (2006) studied 
comprehensive geostatistical analysis (i.e., stationary check, declustering, trend 
modeling and debiasing, object-based modeling, semivariogram, and uncertainty 
quantifications) in the field. Figure 20a and b show well locations with porosity 
histogram in units of fractions averaged over the vertical thickness of the reser-
voir. Note that the observed porosity follows a bimodal distribution, indicating 
two distinct rock facies (e.g., dolomite and siltstone) and the possible horizontal 
trends. As such, Pyrcz et al. (2006) applied detrending to the porosity and com-
puted residual porosity. Figure 20c and d shows a spatial scatter map and histo-
gram of the residual porosity. The residual porosity satisfies the stationarity and 
follows a Gaussian distribution.

Fig. 19  Performance of ASMC with different types of random seeds in generating SGS realizations: the 
y-axis is normalized by the MSE of the validation dataset for the base case that uses a fixed random seed 
in generating SGS realizations
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5.1  ASMC Estimation for Semivariogram Parameters

The extent of the North Cowden field is 10,200 ft × 10,200 ft, and the residual 
porosity data is transferred to the grid of 128 × 128 cells. The average residual 
porosity is close to zero, which is typical after an unbiased detrending process, 
and its standard deviation is 0.3%, as shown in Fig. 20d. Under the same scheme 
as the synthetic data demonstration, 1,000 SGS realizations are generated with 
different semivariogram parameters from the design of experiments in Table  5. 
Moreover, 800 of them are used for training, while the rest are used to validate 
the two CNNs in ASMC. Note that these two CNNs have the same structure as 
those in the synthetic data demonstration.

Fig. 20  The spatial distribution of all 62 wells in the North Cowden field and the histogram of the 
porosity: a the location of wells, b histogram of porosity at well locations, c spatial distribution of resid-
ual porosity, and d histogram of residual porosity

Table 5  Design of experiments 
to generate multiple 
semivariogram models with 
different designs of parameters 
in the North Cowden field 
demonstration

Semivariogram parameters Range Unit

Range of major direction 2,000–6,000 ft
Aspect ratio of major/minor 1–3 Ratio
Azimuth of major direction 0–180 Degree
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After training the CNNs of ASMC, the original residual porosity is fed to ASMC 
to estimate its semivariogram model parameters. Figure 21 shows the original resid-
ual porosity, the subsurface model estimate for the residual porosity, and the esti-
mated semivariogram model. CNN #1 maps original residual porosity to subsurface 
model estimate, whose major continuity direction lies northeast to southwest, as 
shown in Fig. 21b. Moreover, CNN #2 predicts its semivariogram model parameters 
of 4,960-ft major range, 1,810-ft minor range, and the azimuth of major direction 
at 73.7 degrees. Figure 21c and d shows that the experimental variograms in major 
and minor directions are well fitted to the estimated semivariogram models, which 
indicates that ASMC successfully predicts the semivariogram of residual porosity in 
the North Cowden field.

5.2  Uncertainty Assessment of Semivariogram Parameters

The uncertainty analysis scheme is applied to the North Cowden field data. Fig-
ure  22 shows the uncertainty of semivariogram parameters with different degrees 
of measurement error. The range in the major direction varies between 4,930 ft and 
4,980 ft with a 1% measurement error, whereas the major range’s uncertainty can 
move from 4,600 ft to 5,100 ft with a 5% measurement error. The larger the meas-
urement errors, the wider the uncertainty ranges of semivariogram model param-
eters, same as the uncertainty assessment of the synthetic porosity data.

6  Conclusion

This paper introduces a deep learning-based automated semivariogram modeling 
with convolutional neural networks to improve the efficiency of modeling semi-
variograms with an automated, data-driven approach. Unlike the least-square 
automated semivariogram modeling methods, ASMC does not require customiz-
ing the cost function to fit the semivariogram model to an experimental semivari-
ogram through the optimization process. Instead, the ASMC workflow generates 
multiple possible semivariogram parameters and trains two CNNs to learn the 
mapping from spatial data to an exhaustive spatial model and from an exhaus-
tive spatial model to semivariogram model parameters. The simplified ASMC 

Fig. 21  ASMC demonstration for the North Cowden field data: a original residual porosity, b subsurface 
model estimate for residual porosity, c experimental semivariogram and estimated semivariogram model 
in the major direction, and d experimental semivariogram and estimated semivariogram model in the 
minor direction. The estimated range is 4,960 ft, and the estimated azimuth of the major direction is 73.7 
degrees. The estimated aspect ratio is 2.81
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workflow avoids experimental semivariogram calculation and the associated sub-
jectivities of defining semivariogram search parameters. Moreover, the uncer-
tainty of semivariogram model parameters can be measured without adding con-
siderable computation time in ASMC. Therefore, ASMC can efficiently estimate 
semivariogram model parameters from spatial data and swiftly quantify the asso-
ciated uncertainties. The flexibility of ASMC allows this workflow to expand to 
various subsurface features of interest, such as mineral content in mining, perme-
ability in reservoir engineering, or any spatial features of interest, including plant 
and animal species population densities and precipitation rates.

One limitation of this study is that demonstrations only have been verified in 
non-nugget, single-structure semivariogram cases. To include the nugget effect 
and nested structures in semivariograms, it is required to modify the last layer 
in the second CNN to add more semivariogram model parameters. Moreover, to 
expand the application of ASME to three-dimensional spatial data, the vertical 
range and dip in the vertical axis should be added to the semivariogram param-
eters. Moreover, three-dimensional kernel filters should be applied in CNNs 
to capture spatial continuity in horizontal and vertical directions. The possible 
cost of expanding ASMC to more complicated semivariogram cases includes 

Fig. 22  Uncertainty distribution of semivariogram parameters for the North Cowden field: each row 
indicates a different degree of measurement error in hard data. Each column presents uncertainty distri-
butions (i.e., solid blue lines) of semivariogram parameters and ASMC estimates (i.e., red dashed lines)
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additional training data and consequent computational time increment as the 
number of estimates and associated trainable parameters in CNNs increases.
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