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Space–time analysis using a general product–sum model
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Abstract

A generalization of the product–sum covariance model introduced by De Cesare et al. (Statist. Probab. Lett. 51 (2001)
9) is given in this paper. This generalized model is non-separable and in general is non-integrable, hence, it cannot be
obtained from the Cressie–Huang representation. Moreover, the product–sum model does not correspond to the use of a
metric in space–time. It is shown that there are simple methods for estimating and modeling the covariance or variogram
components of the product–sum model using data from realizations of spatial–temporal random �elds. c© 2001 Published
by Elsevier Science B.V.
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1. Introduction

There are two main di�culties in modeling spatial–temporal correlation, the �rst being how to ensure that
one has a valid model (Christakos, 1984), the second being how to �t the data to the model. The earliest
examples of models are either based on simplistic assumptions, e.g. require the use of a metric in space–
time, or can lead to semi-de�nite as opposed to positive-de�nite functions. A product model was used in De
Cesare et al. (1997) which was then extended to a product–sum model (De Cesare et al., 2001). In Cressie
and Huang (1999), it was shown that the product model is essentially a special case of a product–integral
model. For each of these model constructions, it is necessary to �t a function which depends on the spatial
component and a function which depends on the temporal component. The results presented subsequently
address both of the questions above. The generalized product–sum model provides a large new class of
models not obtainable from the Cressie–Huang representation and which are easily modeled using techniques
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similar to those used for modeling spatial variograms. De Cesare et al. (2001) includes a brief comparison of
the (simpli�ed) product–sum covariance model and some other classes of spatial–temporal covariance models
that have appeared in the literature. These include the metric model (Dimitrakopoulos and Luo, 1994), the
product model (Rodriguez-Iturbe and Meija, 1974), the linear model (Rouhani and Hall, 1989), the product
model (De Cesare et al., 1997) and the integrated product model (Cressie and Huang, 1999). In that paper,
two simplifying constraints were imposed on the coe�cients in the product–sum model. These constraints
were used to ensure the positive de�niteness property and to simplify estimating the coe�cients, i.e., �tting
the model to the data. These constraints are replaced by a more general set of conditions in this paper.
This leads to a more general class of the product–sum covariance models (as well as the corresponding

variogram models). Moreover, it is shown that, after modeling the spatial and temporal components, the
spatial–temporal variogram function depends on only one parameter, which has to be estimated from data.
Admissible values for this parameter are dependent on the sill values of the spatial–temporal component
variograms. This leads to a necessary and su�cient condition for positive de�niteness, i.e., conditional negative
de�niteness for the variogram form. Practical aspects for �tting the spatial–temporal variogram to data are
discussed.

2. A generalization of the product–sum model

Let Z = {Z(s; t); (s; t) ∈ D× T} be a second-order stationary spatial–temporal random �eld, where D⊂Rd

and T ⊂R+, with expected value, covariance and variogram, respectively,

E(Z(s; t)) = 0;

Cs; t(hs; ht) = Cov(Z(s+ hs; t + ht); Z(s; t));


s; t(hs; ht) =
Var(Z(s+ hs; t + ht)− Z(s; t))

2
; (1)

where (s; s+ hs) ∈ D2 and (t; t + ht) ∈ T 2.
The function Cs; t in (1) must satisfy a positive-de�niteness condition in order to be an admissible covariance

model. That is, for any (si; tj) ∈ D × T , any aij ∈ R; i = 1; : : : ; ns; j = 1; : : : ; nt , and any positive integers ns
and nt , Cs; t must satisfy:

ns∑
i=1

nt∑
j=1

ns∑
k=1

nt∑
l=1

aijaklCs; t(si − sk ; tj − tl)¿0:

The following class of valid product–sum covariance models was introduced in De Cesare et al. (2001):

Cs; t(hs; ht) = k1Cs(hs)Ct(ht) + k2Cs(hs) + k3Ct(ht); (2)

where Ct and Cs are valid temporal and spatial covariance models, respectively. For positive de�niteness it
is then su�cient that k1¿ 0; k2¿0 and k3¿0. In De Cesare et al. (2001) two simplifying assumptions were
made, but these last will be replaced by more general conditions. The above model can also be written in
terms of the variograms:


s; t(hs; ht) = (k2 + k1Ct(0))
s(hs) + (k3 + k1Cs(0))
t(ht)− k1
s(hs)
t(ht); (3)

where 
s and 
t are valid spatial and temporal variogram models, while Cs(0) and Ct(0) are the corresponding
sill values. The second-order stationarity assumption is su�cient to ensure that these variograms have sills,
i.e. they are asymptotically bounded.
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Using the de�ning property, 
(0) = 0, it follows that:


s; t(hs; 0) = (k2 + k1Ct(0))
s(hs) = ks
s(hs) (4)

and


s; t(0; ht) = (k3 + k1Cs(0))
t(ht) = kt
t(ht); (5)

where ks and kt can be viewed as coe�cients of proportionality between the space–time variograms 
s; t(hs; 0)
and 
s; t(0; ht) and the spatial and temporal variogram models 
s(hs) and 
t(ht), respectively. ks and kt were
both assumed to be one in De Cesare et al. (2001). This was in order to simplify �tting the model, i.e.,
determining k1; k2 and k3. However, as will now be shown, those restrictions are not necessary and impose
a form of unnecessary symmetry on the model, i.e., symmetry between the impact of the spatial correlation
component and the temporal correlation component. First, it is shown that all three coe�cients in the model can
be written in terms of the sills and the two parameters ks and kt . In particular, this will lead to modeling 
s(hs)
and 
t(ht) by modeling 
s; t(hs; 0) and 
s; t(0; ht), respectively. Then these two parameters will be combined
into a single parameter in the model.
Combining:

(k2 + k1Ct(0)) = ks;

(k3 + k1Cs(0)) = kt

obtained from (4) and (5), along with

Cs; t(0; 0) = k1Cs(0)Ct(0) + k2Cs(0) + k3Ct(0)

obtained from (2). The coe�cients k1; k2 and k3 can be solved for in terms of the sill values Cs; t(0; 0); Cs(0);
Ct(0) and the parameters ks; kt :

k1 =
ksCs(0) + ktCt(0)− Cs; t(0; 0)

Cs(0)Ct(0)
; (6)

k2 =
Cs; t(0; 0)− ktCt(0)

Cs(0)
; (7)

k3 =
Cs; t(0; 0)− ksCs(0)

Ct(0)
: (8)

Since for positive de�niteness k1¿ 0; k2¿0 and k3¿0, admissibility for the class of covariance models (and
the corresponding class of product–sum variogram models) de�ned in (2) is related to the sills of the spatial
and temporal components.

3. Some general results

The product–sum model exhibits several interesting and perhaps unexpected features involving the sill values
of the component variograms. Using the link between a variogram and the corresponding covariance, it follows
that


s; t(hs; ht) = Cs; t(0; 0)− Cs; t(hs; ht); (9)


s; t(hs; 0) = Cs; t(0; 0)− Cs; t(hs; 0) (10)

and


s; t(0; ht) = Cs; t(0; 0)− Cs; t(0; ht): (11)
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By examining the asymptotic behaviour of 
s; t(hs; ht), 
s; t(hs; 0) and 
s; t(0; ht), the following theorem shows
that these variograms do not reach the same sill value.

Theorem 1. Let Z be a second-order stationary spatial–temporal random �eld. Assume that the space–time
covariance Cs; t has the form given in (2) and suppose that Cs; t is continuous in space–time. Then using (4)
and (5); the following are obtained

lim
hs→∞

lim
ht→∞


s; t(hs; ht) = Cs; t(0; 0); (12)

lim
hs→∞


s; t(hs; 0) = ksCs(0); (13)

lim
ht→∞


s; t(0; ht) = ktCt(0): (14)

Proof. In order to prove (12), it is su�cient to recall the continuity of Cs; t :

lim
hs→∞

lim
ht→∞

Cs; t(hs; ht) = 0:

Then, because of (9), it follows that

lim
hs→∞

lim
ht→∞


s; t(hs; ht) = Cs; t(0; 0):

Using the following relation:

Cs; t(hs; 0) = (k1Ct(0) + k2)Cs(hs) + k3Ct(0);

which is implicit in the product–sum covariance model, it follows that

lim
hs→∞

Cs; t(hs; 0) = k3Ct(0):

Finally, by applying (8) it follows that

lim
hs→∞


s; t(hs; 0) = Cs; t(0; 0)− lim
hs→∞

Cs; t(hs; 0) = ksCs(0):

Similarly, in order to prove (14), simply note the following:

Cs; t(0; ht) = (k1Cs(0) + k3)Ct(ht) + k2Cs(0);

and (7); then it follows that

lim
ht→∞


s; t(0; ht) = Cs; t(0; 0)− lim
ht→∞

Cs; t(0; ht) = ktCt(0):

Using (3)–(5), the expression for 
s; t(hs; ht) can be simpli�ed:


s; t(hs; ht) = 
s; t(hs; 0) + 
s; t(0; ht)− k
s; t(hs; 0)
s; t(0; ht); (15)

where

k =
k1
kskt

: (16)

Recalling (6), it is seen that

k =
k1
kskt

=
ksCs(0) + ktCt(0)− Cs; t(0; 0)

ksCs(0)ktCt(0)
:

In the process of estimating and modeling 
s; t(hs; 0) and 
s; t(0; ht) one will have already obtained the sill
values ksCs(0) and ktCt(0), de�ned in (13) and (14). Hence, in (15) k is the only remaining parameter to
be estimated; note that k depends on the global sill value. The following theorem establishes a necessary and
su�cient condition, given in terms of bounds on k, to ensure admissibility for 
s; t de�ned in (15).
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Theorem 2. Let Z be a second-order stationary spatial–temporal random �eld. Assume that Cs; t has the
form given in (2) and that Cs; t is continuous in space–time. Assume that for the spatial–temporal variogram
de�ned in (15) the value of k is the one de�ned in (16). Then k1¿ 0; k2¿0; k3¿0 if and only if k satis�es
the following inequality:

0¡k6
1

max{sill(
s; t(hs; 0)); sill(
s; t(0; ht))} : (17)

Proof. If Cs; t is expressed as product–sum of purely spatial and temporal covariances with coe�cients
k1¿ 0; k2¿0 and k3¿0, and

k =
k1
kskt

=
ksCs(0) + ktCt(0)− Cs; t(0; 0)

ksCs(0)ktCt(0)
;

where ksCs(0); ktCt(0); Cs; t(0; 0) are the sill values of 
s; t(hs; 0), 
s; t(0; ht), 
s; t as in Theorem 1, it follows
that

ks = k2 + k1Ct(0)¿ 0;

kt = k3 + k1Cs(0)¿ 0;

then it results that k ¿ 0. Moreover, the following inequalities are satis�ed by assumption:

k1 =
ksCs(0) + ktCt(0)− Cs; t(0; 0)

Cs(0)Ct(0)
¿ 0

⇒Cs; t(0; 0)¡ksCs(0) + ktCt(0); (18)

k2 =
Cs; t(0; 0)− ktCt(0)

Cs(0)
¿0⇒ Cs; t(0; 0)¿ktCt(0); (19)

k3 =
Cs; t(0; 0)− ksCs(0)

Ct(0)
¿0⇒ Cs; t(0; 0)¿ksCs(0): (20)

The last two inequalities are simultaneously satis�ed when

Cs; t(0; 0)¿max{ksCs(0); ktCt(0)}: (21)

In order to hold (18) and (21), k must be less than or equal to

1
max{ksCs(0); ktCt(0)} :

Hence,

k ∈
]
0;

1
max{ksCs(0); ktCt(0)}

]
:

Conversely, if k satis�es (17), then (15) will be a valid variogram, coming from a valid covariance model.
In fact, if

k =
(sill 
s; t(hs; 0) + sill 
s; t(0; ht)− sill 
s; t(hs; ht))

(sill 
s; t(hs; 0) sill 
s; t(0; ht))
;

(15) is equivalent to (2). The bounds on k and then the inequalities in (18) and (21) imply that k1¿ 0; k2¿0
and k3¿0.
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Corollary 1. If either 
s; t(hs; 0) or 
s; t(0; ht) is unbounded; then there is no choice of k, satisfying the
inequality (17) such that


s; t(hs; ht) = 
s; t(hs; 0) + 
s; t(0; ht)− k
s; t(hs; 0)
s; t(0; ht)
is a valid spatial–temporal variogram.

Proof. It easily follows from Theorem 2.

In turn, this last result implies the following corollary.

Corollary 2. If either 
s(hs) or 
t(ht) is unbounded; then (3) is not a valid model for any choice of the
coe�cients k1; k2 and k3.

4. A wider class of models

In Cressie and Huang (1999), the authors assume that Cs; t(hs; ht) is integrable (in order to obtain a Fourier
integral representation). It is easy to show that if either k2 6= 0 or k3 6= 0 then, irrespective of the choice of
the models for Cs(hs) or Ct(ht), i.e., for 
s(hs) or 
t(ht), Cs; t(hs; ht) is not integrable (in space–time). Hence,
there exist models which can be obtained as (generalized) product–sum models, but cannot be derived from
the integral representation proposed by Cressie and Huang (1999).
The product–sum model could be further generalized as follows:


s; t(hs; ht) = (k2 + k1Ct(0))
s(hs) + (k3 + k1Cs(0))
t(ht)− k1
s(hs)
t(ht) + k4
1s(hs) + k5
2t(ht); (22)

where 
s and 
t are (bounded) valid spatial and temporal variograms, 
1s and 
2t are valid spatial and temporal
variograms (not necessarily bounded), k4 and k5 are non-negative constants. Adding one or more of these two
terms will complicate the �tting process, however this generalization is not considered further in this paper.

5. Some practical aspects

Even though it is now possible, using either product–sums or Fourier integral representations, to generate
a large class of valid spatial–temporal covariances or variograms, the problem of choosing the model and
�tting it to the data, i.e., determining the parameters in the model(s), has to be faced. The �tted model can
then be used to predict the spatial–temporal process at non-data locations (data location in space and non-data
location in time, non-data location in space and data location in time, non-data location in space and non-data
location in time).
In a strictly spatial context, structural analysis basically consists of computing the sample variogram and

�tting a valid model to it. Although there may be complications due to anisotropies or non-stationarity, the
procedure will still involve these steps. The process is practical, since a large class of known valid models
is available and additional models can be generated as positive convex combinations of the simpler models.
Moreover, there are three basic geometric features to look for in plotting the sample variogram that can be
used to choose the type of model. Anisotropic models are variations of isotropic models. This procedure
does not work so well in the space–time context. The problem of valid models, which has been discussed
above, and the problem of �tting the data to a model, have to be addressed. In De Cesare, et al. (1997,2001),
spatial and temporal variograms were separately estimated and modeled from data. These models were then
combined, as in the product model or in the product–sum model, to obtain the �nal spatial–temporal model.
This reduced the problem to essentially the same techniques used in the strictly spatial context. Least squares
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could also be used as scheme to determine the parameters in either or both of the variogram components.
Note that using least squares still requires determining the model type(s) separately. For a diagnostic check
of their results, Cressie and Huang (1999) simply picked three di�erent models obtained from the Fourier
integral representation and then used least squares to determine the parameters in the models. The model
with the smallest weighted least squares was selected. However this technique does not ascertain whether
there might be another model that would result in a smaller weighted least squares. Apart from the added
unbounded variogram component, their models are necessarily integrable, hence the class of models is limited
in that respect.
As shown above, the general product–sum model de�ned in (15), depends solely on the parameter k, hence

on the global sill Cs; t(0; 0) (assuming that the separate spatial and temporal variograms have been �tted). The
problem of computing the parameter k is now addressed.
Given the set of data locations in space–time

A= ((si; tj); i = 1; 2 : : : ; ns; j = 1; 2; : : : ; nt);

estimating and modeling the spatial and temporal components proceeds as follows:

1. compute the sample spatial and temporal variograms corresponding to 
s; t(hs; 0) and 
s; t(0; ht),


̂s; t(rs; 0) =
1

2|N (rs)|
∑
N (rs)

[Z(s+ hs; t)− Z(s; t)]2; (23)


̂s; t(0; rt) =
1

2|M (rt)|
∑
M (rt)

[Z(s; t + ht)− Z(s; t)]2; (24)

where rs and rt are, respectively, the vector lag with spatial tolerance �s and the lag with temporal tolerance
�t . |N (rs)| and |M (rt)| are the cardinalities of the following sets:

N (rs) = {(s+ hs; t) ∈ A; (s; t) ∈ A : ‖rs − hs‖¡�s};
M (rt) = {(s; t + ht) ∈ A; (s; t) ∈ A : ‖rt − ht‖¡�t};

2. choose valid variogram models 
s; t(hs; 0) and 
s; t(0; ht) for the above two variogram estimators. Note that
at this point, one must use models with sills. Hence estimates for the sill values ksCs(0) and ktCt(0) are
obtained;

3. compute the sample variogram corresponding to 
s; t(hs; ht), namely:


̂s; t(rs; rt) =
1

2|L(rs; rt)|
∑
L(rs;rt)

[Z(s+ hs; t + ht)− Z(s; t)]2; (25)

where |L(rs; rt)| is the cardinality of the set L(rs; rt), that is
{(s+ hs; t + ht) ∈ A; (s; t) ∈ A : ‖rs − hs‖¡�s and ‖rt − ht‖¡�t};

4. estimate the global sill Cs; t(0; 0). There are two alternative methods:
• graphically, by plotting the sample variogram surface 
̂s; t(rs; rt);
• �tting 
̂s; t(rs; rt) to the space–time variogram (15). In this last case Cs; t(0; 0) can be estimated by mini-
mizing W (Cs; t(0; 0)), the weighted least-squares value (Cressie, 1993), given by

W (Cs; t(0; 0)) =
Ls∑
s

Lt∑
t

|L(rs; rt)|
(

̂s; t(rs; rt)− 
s; t(hs; ht ;Cs; t(0; 0))


s; t(hs; ht ;Cs; t(0; 0))

)2
;

where Ls and Lt are, respectively, the number of spatial vector lags and the number of temporal lags.
Once a spatial–temporal model has been �tted, cross-validation provides an additional diagnostic for
judging the �t.
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5. Once the three sills have been estimated, the value of k parameter is determined, of course one must check
that (7) is satis�ed.
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