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Abstract We propose a spectral turning-bands approach

for the simulation of second-order stationary vector

Gaussian random fields. The approach improves existing

spectral methods through coupling with importance sam-

pling techniques. A notable insight is that one can simulate

any vector random field whose direct and cross-covariance

functions are continuous and absolutely integrable, pro-

vided that one knows the analytical expression of their

spectral densities, without the need for these spectral

densities to have a bounded support. The simulation

algorithm is computationally faster than circulant-embed-

ding techniques, lends itself to parallel computing and has

a low memory storage requirement. Numerical examples

with varied spatial correlation structures are presented to

demonstrate the accuracy and versatility of the proposal.

Keywords Matrix-valued covariance functions � Spectral
density � Importance sampling � Matérn covariance �
Compactly supported covariance

1 Introduction

The simulation of multivariate stationary Gaussian random

fields with cross-correlated components is an active research

topic in spatial statistics and has received an increasing

attention in many disciplines of sciences and engineering

where it is of interest to assess spatial uncertainty or to map

heterogeneities at different spatial scales, such as geo-

sciences, physics, cosmology, medicine, agriculture, soil,

atmospheric and environmental sciences, to name a few.

Available algorithms for simulating Gaussian random

fields have been extensively described in the literature, see

(Chilès andDelfiner 2012; Christakos 1992; Lantuéjoul 2002;

Schlather 2012) and references therein. Broadly speaking,

they can be classified into two families: the former consists of

algorithms that produce realizations of random fields with

finite-dimensional distributions being exactly multivariate

Gaussian, whereas the latter consists of algorithms that pro-

duce realizations of random fields having finite-dimensional

distributions that are approximately Gaussian. Among exact

algorithms, autoregressive, moving-average, circulant-em-

bedding and discrete spectral simulation (Box and Jenkins

1976; Chan andWood 1999; Chilès and Delfiner 1997, 2012;

Dietrich and Newsam 1993; Mignolet and Spanos 1992;

Pardo-Iguzquiza andChica-Olmo1993; Spanos andMignolet

1992; Wood and Chan 1994) have been especially popular.

However, these algorithms are restricted to the simulation of

random fields at evenly spaced locations in low-dimensional

spaces and cannot reproduce all the parametric families of

covariance models available in the literature. The Cholesky

decomposition of the covariance matrix (Alabert 1987; Davis

1987) and the sequential algorithms (Ripley 1987) produce

perfect simulation of Gaussian random fields at non-evenly

spaced locations, but computational costs become prohibitive

when the number of locations exceeds a few thousands. These
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costs can be decreased by using Markov Chain Monte Carlo

methods such as the Gibbs sampler (Arroyo et al. 2012;

Emery et al. 2014), but the number of target locations

remains limited by computer storage capacity. On the other

hand, the second family of simulation algorithms rely on the

central limit theorem to produce approximately Gaussian

random fields. The most notable are the Poisson dilution,

tessellation, continuous spectral and turning bands algo-

rithms (Chilès and Delfiner 2012; Christakos 1992; Emery

2008; Emery and Lantuéjoul 2006; Lantuéjoul 2002; Math-

eron 1973; Shinozuka 1971; Shinozuka and Jan 1972). All

these algorithms allow simulating random fields at non-

evenly spaced locations, but they have been notoriously

limited in their ability to simulate from certain parametric

models of covariance only.

To remove this limitation, our research presents a

spectral turning-bands algorithm that improves the pro-

posal in (Shinozuka 1971) and (Shinozuka and Jan 1972)

by simulating from any multivariate covariance model

having an available closed form for the associated matrix-

valued spectral density. In particular, our main finding is

obtained by coupling the idea in (Shinozuka 1971) with

importance sampling approaches. The outline of the paper

is the following: after a brief review on matrix-valued

covariance functions and variograms in Sect. 2, we expose

our proposal in Sect. 3. Section 4 is devoted to applications

to synthetic case studies. Conclusions follow in Sect. 5.

Some technical facts are reported in Appendix for a neater

exposition.

2 Matrix-valued covariance functions
and variograms

Throughout the paper, let us denote byY ¼ fYðxÞ : x 2 Rdg a
second-order stationary vector Gaussian random field with P

cross-correlated components. Recall that a vector random field

is Gaussian when any linear combination of its variables (as-

sociated with possibly different vector components and with

different locations of Rd) is a Gaussian random variable, and

that it is second-order stationary when its first two moments

(mean and covariance function) exist and are invariant under a

translation in space. Assuming, with no loss of generality, that

Y has zero mean, its finite-dimensional distributions are com-

pletely determined by the covariance function C : Rd ! SþP ,

with SþP denoting the set of real-valued symmetric positive

semi-definite matrices of size P� P, such that

CðhÞ ¼ EfYðxþ hÞ � YðxÞTg; xþ h; x 2 Rd;

with E denoting stochastic expectation. The diagonal ele-

ments of CðhÞ are even functions called the auto or direct

covariances of the components of Y, while the off-diagonal

elements are the cross-covariances between the compo-

nents of Y.

For the remainder of the paper, we work with covari-

ances being continuous and absolutely integrable. For the

scalar-valued case (P ¼ 1) such covariances are described

through Bochner’s theorem (Bochner 1933) as being the

Fourier transforms of uniquely determined bounded mea-

sures. Such a result has been extended to the matrix-valued

case (P[ 1) by (Cramér 1940):

CðhÞ ¼
Z
Rd

expfihu; higfðuÞdu; h 2 Rd; ð1Þ

with i2 ¼ �1 and h�; �i the usual scalar product in Rd. The

mapping f : Rd ! Hþ
P , with Hþ

P denoting the set of com-

plex-valued Hermitian positive semi-definite matrices of

size P� P, is called the matrix of spectral densities and the

elements of f must be integrable on Rd. Since CðhÞ is real-
valued, one can rewrite Eq. (1) as follows:

CðhÞ ¼
Z
Rd

cosðhu; hiÞReðfðuÞÞ � sinðhu; hiÞImðfðuÞÞ½ � du;

h 2 Rd; ð2Þ

where Re and Im stand for the real and imaginary part,

respectively.

Matrix-valued covariance functions have become ubiq-

uitous and there has been a growing interest in proposing

models for their construction. We refer the reader to the

broad review in (Genton and Kleiber 2015) with the ref-

erences therein, as well to the discussion by (Bevilacqua

et al. 2015) for suggestions on how to choose a suitable

multivariate model. Notable examples are the intrinsic

correlation model (Journel and Huijbregts 1978), Markov-

type models (Almeida and Journel 1994), linear core-

gionalization model (Wackernagel 2003), generalized lin-

ear coregionalization model (Marcotte 2012), bilinear

coregionalization model (Grzebyk and Wackernagel 1994),

kernel and covariance convolution models (Gaspari and

Cohn 1999; Ver Hoef and Barry 1998), multivariate

Matérn models (Gneiting et al. 2010), matrix-valued

covariances with compact supports (Daley et al. 2015), and

multivariate spectral densities based on Archimedean

compositions (Porcu et al. 2012).

Another tool that is commonly used for modeling the

spatial correlation structure of a vector Gaussian random

field is the (semi-)variogram, defined as

CðhÞ ¼ 1

2
Ef½Yðxþ hÞ � YðxÞ� � ½Yðxþ hÞ � YðxÞ�Tg;

xþ h; x 2 Rd:

The diagonal elements of CðhÞ are the direct variograms of

the components of Y, while the off-diagonal elements are

the cross-variograms between components of Y. In the case
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of second-order stationary random fields, there is a one-to-

one relationship between direct variograms and direct

covariances, but the cross-variograms only contain infor-

mation on the even part of the cross-covariance functions

(Wackernagel 2003):

CðhÞ ¼ Cð0Þ � 1

2
½CðhÞ þ Cð�hÞ�: ð3Þ

3 Our proposal

Let us define a simulated vector random field YS as

follows:

8x 2 Rd;YSðxÞ ¼
XP
p¼1

apðUpÞ cosðhx;Upi þ /pÞ

þ
XP
p¼1

bpðUpÞ sinðhx;Upi þ /pÞ;
ð4Þ

where fUp : p ¼ 1; . . .;Pg are mutually independent ran-

dom vectors with probability density g : Rd ! Rþ, f/p :

p ¼ 1; . . .;Pg are mutually independent random variables

(phases) being uniformly distributed over the interval

0; 2p½ Þ, independent of the Up, and fap : p ¼ 1; . . .;Pg and

fbp : p ¼ 1; . . .;Pg are deterministic vector-valued map-

pings with P components. It is straightforward to show that

the random field so defined has a zero mean vector. The

covariance between YSðxþ hÞ and YSðxÞ is then

Using the product-to-sum trigonometric identities and

accounting for the fact that the phases f/p : p ¼ 1; . . .;Pg
are independent and uniformly distributed in 0; 2p½ Þ, the
only terms that do not vanish are found when p ¼ q, so that

the previous equation simplifies into

EfYSðxþhÞ �YSðxÞTg

¼ 1

2

XP
p¼1

EfapðUpÞaTp ðUpÞgþ EfbpðUpÞbTp ðUpÞg
h i

cosðhh;UpiÞ

�1

2

XP
p¼1

EfapðUpÞbTp ðUpÞg �EfbpðUpÞaTp ðUpÞg
h i

sinðhh;UpiÞ:

This can be rewritten as follows:

EfYSðxþhÞ�YSðxÞTg

¼1

2

Z
Rd

XP
p¼1

apðuÞaTp ðuÞþbpðuÞbTp ðuÞ
h i

cosðhh;uiÞgðuÞdu

�1

2

Z
Rd

XP
p¼1

apðuÞbTp ðuÞ�bpðuÞaTp ðuÞ
h i

sinðhh;uiÞgðuÞdu

¼
Z
Rd

AðuÞATðuÞþBðuÞBTðuÞ
2

cosðhh;uiÞgðuÞdu

�
Z
Rd

AðuÞBTðuÞ�BðuÞATðuÞ
2

sinðhh;uiÞgðuÞdu; ð5Þ

where AðuÞ and BðuÞ are the matrices whose p-th columns

are apðuÞ and bpðuÞ, respectively.
Equation (5) proves that the simulated vector random

field YS is second-order stationary, insofar as the

covariance between YSðxþ hÞ and YSðxÞ does not

depend on x, but only on h. Moreover, this covariance is

equal to CðhÞ in Eq. (2) when the following conditions

are fulfilled:

AðuÞATðuÞ þ BðuÞBTðuÞ
2

gðuÞ ¼ReðfðuÞÞ

AðuÞBTðuÞ � BðuÞATðuÞ
2

gðuÞ ¼ ImðfðuÞÞ;

or, equivalently,

EfYSðxþ hÞ � YSðxÞTg ¼
XP
p¼1

XP
q¼1

EfapðUpÞaTq ðUqÞ cosðhxþ h;Upi þ /pÞ � cosðhx;Uqi þ /qÞg

þ
XP
p¼1

XP
q¼1

EfbpðUpÞbTq ðUqÞ sinðhxþ h;Upi þ /pÞ sinðhx;Uqi þ /qÞg

þ
XP
p¼1

XP
q¼1

EfapðUpÞbTq ðUqÞ cosðhxþ h;Upi þ /pÞ sinðhx;Uqi þ /qÞg

þ
XP
p¼1

XP
q¼1

EfbpðUpÞaTq ðUqÞ � sinðhxþ h;Upi þ /pÞ cosðhx;Uqi þ /qÞg:
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AðuÞ � iBðuÞ½ � AðuÞ � iBðuÞ½ ��¼ 2fðuÞ
gðuÞ ; ð6Þ

where the asterisk represents the conjugate transpose

operator.

For AðuÞ and BðuÞ to remain finite for any u 2 Rd, the

support of g must contain the support of f (i.e., g is strictly

positive when f is not zero). For instance, g can be a

probability density with support on Rd, while AðuÞ and

�BðuÞ can be the real and imaginary parts of the Cholesky

factor of 2fðuÞ=gðuÞ (if fðuÞ is strictly definite positive for

any u) or, in its defect, of a square root of 2fðuÞ=gðuÞ.
The proposed approach Eq. (4) borrows from impor-

tance sampling, insofar as the random vectors fUp : p ¼
1; . . .;Pg are simulated with a density g different from the

target spectral density f. This allows using the same set of

cosine and sine basic functions to simulate all the com-

ponents of the desired vector random field. A similar

simulation algorithm has been proposed by (Shinozuka and

Jan 1972) and (Mantoglou 1987), using a uniform density

for g, thus applicable only to the simulation of random

fields whose spectral densities have a bounded support,

which is quite restrictive.

According to the previous statements, the simulated

vector random field YS is second-order stationary with zero

mean and covariance function CðhÞ. Based on the central

limit theorem, to obtain an approximately Gaussian random

field, it suffices to sum up and properly normalize many of

such independent random fields:

8x2Rd;YSðxÞ ¼
1ffiffiffi
L

p
XL
l¼1

XP
p¼1

apðUl;pÞcosðhx;Ul;piþ/l;pÞ

þ 1ffiffiffi
L

p
XL
l¼1

XP
p¼1

bpðUl;pÞsinðhx;Ul;piþ/l;pÞ;

ð7Þ

where L is a large integer, fUl;p : l ¼ 1; . . .; L; p ¼
1; . . .;Pg are mutually independent and distributed as Up,

and f/l;p : l ¼ 1; . . .; L; p ¼ 1; . . .;Pg are mutually inde-

pendent and distributed as /p. From Eq. (7), the target

location x appears to be successively projected onto the

random vectors Ul;p, which makes our proposal a special

case of the turning-bands algorithm (Matheron 1973), with

cosines and sines as the basic functions used for the one-

dimensional simulation.

Computing Eq. (7) for N target locations in Rd corre-

sponds to generating LP uniform random variables in

½0; 2pÞ, generating LP random vectors with probability

density g, calculating LP Cholesky decompositions of

complex-valued matrices of size P� P, 2NLP scalar-vec-

tor multiplications, NLP scalar products and NðLPþ 1Þ
summations. Let q be the computational cost of generating

one uniform random variable in 0; 2p½ Þ, one random vector

u with density g and calculating the matrix
2fðuÞ
gðuÞ . As the cost

of a Cholesky factorization is P3=3 floating point opera-

tions (flops) (Golub and Van 1989), the total cost of

computing Eq. (7) is LPðqþ P3=3Þ þ Nð2LP2 þ 2LPd þ
1Þ flops. Accordingly, the fixed cost (irrespective of the

number of locations targeted for simulation) is about

LP4=3, whereas the varying cost is about 2NLP2. Inter-

estingly, this varying cost is directly proportional to the

number N of target locations, which makes the proposal a

competitive alternative to other simulation algorithms. As

an example, the computational cost of the circulant-em-

bedding algorithm (one of the fastest alternatives to date) is

OðN logNÞ (Gneiting et al. 2006). Another advantage

of the proposed algorithm over circulant-embedding tech-

niques is the possibility to split the set of target locations

into small subsets and to process these subsets

consecutively and/or independently, allowing for a con-

siderable reduction of memory storage requirements and

for parallel computations.

4 Examples

In this section, the proposed algorithm is tested to simulate

random fields on a regular two-dimensional grid (d ¼ 2)

with 500� 500 nodes and a unit mesh. The simulation is

performed by using L ¼ 500 basic random fields in Eq. (7).

The density g is chosen as the spectral density of an iso-

tropic Matérn (Bessel-K) covariance model with scale

parameter a ¼ 10 and shape parameter m ¼ 0:5:

Mðh; a; mÞ ¼ 21�m

CðmÞ
khk
a

� �m

Km
khk
a

� �
; ð8Þ

that is (Lantuéjoul 2002)

gðu; a; mÞ ¼
adC mþ d

2

� �
CðmÞpd=2

1

ð1þ a2 kuk 2Þmþd=2
: ð9Þ

A random vector with such a density in Rd can be obtained

by computing the ratio of a Gaussian random vector and

the square root of a gamma random variable with shape

parameter m (Emery and Lantuéjoul 2006).

The examples presented in the next subsections and their

specific parameters have been taken from the literature or

chosen arbitrarily, in order to illustrate the capabilities and

versatility of the proposed algorithm.
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4.1 Example 1: bivariate random field with Matérn

covariance model

Consider a vector random field with P ¼ 2 components

and a bivariate Matérn covariance model (Gneiting et al.

2010)

CðhÞ ¼
Mðh; a1; m1Þ q12 Mðh; a12; m12Þ

q12 Mðh; a12; m12Þ Mðh; a2; m2Þ

� �
: ð10Þ

The two components have unit variances and collocated

correlation coefficient q12. This model is especially inter-

esting as it allows for different levels of smoothness for the

components of the associated vector Gaussian random

field, associated with the shape parameters m1 and m2.
Following (Gneiting et al. 2010), we here consider the case

when a1 ¼ 20, a2 ¼ 100, a12 ¼ 100=3, m1 ¼ 1:5, m2 ¼ 0:5,

m12 ¼ 1:0 and q12 ¼ 0:5.

The steps for simulation are the following:

(i) For p ¼ 1; 2 and l ¼ 1; . . .; 500

a. Simulation of a phase /l;p uniformly dis-

tributed in ½0; 2pÞ.
b. Simulation of a random vector Ul;p in R2 with

density gð:; a; mÞ Eq. (9).
c. Calculation of the spectral density matrix

fðUl;pÞ¼
gðUl;p;a1;m1Þ q12 gðUl;p;a12;m12Þ

q12 gðUl;p;a12;m12Þ gðUl;p;a2;m2Þ

� �
:

Given the values chosen for parameters a1, a2,

a12, m1, m2, m12 and q12, this matrix is positive

semi-definite for all Ul;p 2 R2, which ensures

the validity of the bivariate Matérn model

under consideration.

d. Eigendecomposition and calculation of the

principal square root of matrix
2fðUl;pÞ

gðUl;p;a;mÞ.

e. Identification of matrices AðUl;pÞ and �BðUl;pÞ
as the real and imaginary parts of this square

root matrix Eq. (6).

f. Identification of vectors apðUl;pÞ and bpðUl;pÞ
as the p-th columns of AðUl;pÞ and BðUl;pÞ,
respectively.

(ii) Calculation of the simulated random field YS at all

the grid nodes, as per Eq. (7).

Figure 1 shows the map of one realization, while Fig. 2

compares the experimental variograms of one hundred

realizations (calculated along the abscissa axis) with the

theoretical Matérn variograms. The experimental vari-

ograms fluctuate around the theoretical model and the

amplitude of the fluctuation increases with the lag separa-

tion distance, as expected by theory (Chilès and Delfiner

2012; Emery 2007). However, on average over the real-

izations, the experimental variograms almost match the

theoretical model, corroborating that the spatial correlation

structure of the desired vector random field is reproduced,

see further discussion in Sect. 4.5.

4.2 Example 2: bivariate random field

with compactly supported covariance functions

In this subsection, let us consider the following Wendland

covariance model in the two-dimensional space (Daley

et al. 2015):

Wðh; aÞ ¼ 1� khk
a

� �5

þ
1þ 5

khk
a

� �
; ð11Þ

where ð�Þþ denotes positive part and a identifies the com-

pact support of the covariance.

Following (Daley et al. 2015), one can define a bivariate

random field (P ¼ 2) with covariance functions of the form:

CðhÞ ¼
Wðh; a11Þ q12Wðh; a12Þ

q12Wðh; a12Þ Wðh; a22Þ

� �
: ð12Þ

The spectral density of Wðh; aÞ is (Zastavnyi 1991)

f ðu; aÞ ¼ a2

120
1F2

5

2
;
9

2
; 5;� a2 kuk2

4

 !
; ð13Þ

Fig. 1 Realization of a vector

Gaussian random field with

bivariate Matérn covariance

structure (first component on the

left, second component on the

right), with scale parameters

a1 ¼ 20; a2 ¼ 100 and

a12 ¼ 100=3, and shape

parameters m1 ¼ 1:5; m2 ¼ 0:5
and m12 ¼ 1

Stoch Environ Res Risk Assess (2016) 30:1863–1873 1867

123



where 1F2 is a generalized hypergeometric function, which

can be calculated by means of Bessel functions of the first

kind and Struve functions (http://functions.wolfram.com/

HypergeometricFunctions/hypergeometric1F2/03/03/11/15/

0004/, accessed on April 27, 2015).

Figure 3 shows a map of one realization obtained with

a11 ¼ 50; a12 ¼ 70; a22 ¼ 100 and q12 ¼ 0:5, while Fig. 4

displays the experimental direct and cross-variograms

calculated over one hundred realizations, which fluctuate

around the theoretical model (Eq. (12)).

4.3 Example 3: random field regularized

at different supports

Let us consider a scalar random field Y0 with a Matérn

covariance model (a0 ¼ 100, m0 ¼ 0:6) in Rd and its reg-

ularization Yr over a ball with radius r:

Yr ¼ Y0 � �xr;

where � is the convolution operator, xr is the indicator

function of the ball of radius r centered at the origin, and

Fig. 2 Experimental

variograms for 100 realizations

(green dashed lines), average of

experimental variograms (blue

stars) and theoretical

variograms (black solid lines)

(bivariate Matérn model). From

left to right and top to bottom

variograms for first component,

variograms for second

component, and cross-

variograms

Fig. 3 Realization of a vector

Gaussian random field with

compactly supported

covariances (Eq. (12)) with

a11 ¼ 50; a22 ¼ 100, a12 ¼ 70

and q12 ¼ 0:5. Left first
component; right second

component
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�xrðtÞ ¼ xrð�tÞ. The spectral density frr of Yr can be

derived from the spectral density f00 of Y0 (Proof in

Appendix)

frrðuÞ ¼ f00ðuÞn2ðu; rÞ; ð14Þ

where

nðu; rÞ ¼
2d=2C d

2
þ 1

� �
Jd=2ð rkuk Þ

ðrkukÞd=2
ð15Þ

with Jd=2 being the Bessel function of the first kind with

index d / 2.

Similarly, the density f0r associated with the cross-co-

variance between Y0 and Yr is

f0rðuÞ ¼ f00ðuÞnðu; rÞ: ð16Þ

Likewise, the density associated with the cross-covariance

between the two regularized random fields Yr and Yr0 is

frr0 ðuÞ ¼ f00ðuÞnðu; rÞnðu; r0Þ ð17Þ

The above formulae have been used for simulating the

vector random field

Y ¼ Y0; Y3; Y6; Y9; Y12; Y15; Y18;Y21; Y24½ �T

on the previously defined two-dimensional grid. A map of

one realization is displayed in Fig. 5, where one observes a

progressive smoothing when the radius of the regulariza-

tion ball increases, in agreement with the change-of-

support theory (Chilès and Delfiner 2012). Note that the

standard approach for change of support, which consists in

simulating Y0 and regularizing it over balls of radii 3, 6, 9,

12, 15, 18, 21 and 24, would be approximate since, in

practice, the balls need to be discretized into a finite set of

point-support locations. In contrast, our algorithm directly

simulates the random field Y0 and its regularizations over

different supports without the need for any discretization.

4.4 Example 4: bivariate random field with an odd

cross-covariance function

In the examples shown so far, the cross-covariances are

even functions, so that the spectral densities are real-val-

ued. Accordingly, matrix B in Eq. (6) is zero and the sine

terms vanish from Eq. (7). The following gives an

example of random fields with an odd cross-covariance

function, for which the spectral density is purely

imaginary.

Consider the following bilinear coregionalization model

(De Iaco et al. 2003; Grzebyk and Wackernagel 1994):

CðhÞ ¼ Mðh; a0; m0Þ B1 coshu0; hi � B2 sinhu0; hi½ �

with u0 fixed, and

B1 ¼
b1 0

0 b1

� �
and B2 ¼

0 b2

�b2 0

� �
:

Fig. 4 Experimental

variograms for 100 realizations

(green dashed lines), average of

experimental variograms (blue

stars) and theoretical variogram

models (black solid lines)

(compactly supported model).

From left to right and top to

bottom variograms for first

component, variograms for

second component and cross-

variograms
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The corresponding spectral density matrix is

fðuÞ ¼
f11ðuÞ f12ðuÞ
f21ðuÞ f22ðuÞ

� �

with

f11ðuÞ ¼ f22ðuÞ

¼ b1
gðu� u0; a0; m0Þ þ gðuþ u0; a0; m0Þ

2

� �
;

f12ðuÞ ¼ �f21ðuÞ

¼ � i b2
gðu� u0; a0; m0Þ � gðuþ u0; a0; m0Þ

2

� �
:

Figure 6 shows the map of one realization for a0 ¼
100; m0 ¼ 0:6; b1 ¼ 1; b2 ¼ 0:7 and u0 ¼ 0:04, while Fig. 7

compares the experimental covariances (calculated along

the abscissa axis) of one hundred realizations with the

theoretical covariance. On average over the realizations,

the experimental covariances almost match the theoretical

model. The variograms have not been calculated in this

example, insofar as the cross-variograms only contain

information on the even part of the cross-covariance, which

is zero (Eq. (3)).

4.5 Discussion: fluctuation between experimental

covariance or variogram and theoretical model

The experimental covariance or variogram of a random

field simulated in a domain of finite size does not perfectly

match the underlying theoretical covariance or variogram

Fig. 5 Realization of a vector Gaussian random field with Matérn covariance model (top left) and its regularizations (from left to right and top to

bottom, starting from the top medium, r ¼ 3; 6; 9; 12; 15; 18; 21 and 24)
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model. The deviation between the experimental covari-

ance or variogram and the model is called a fluctuation. It

can be shown (Chilès and Delfiner 2012; Emery 2007)

that, provided that the simulation algorithm is correct, the

fluctuation at a given lag separation distance is a zero-

mean random variable whose variance depends on the

fourth-order moments of the underlying random field and

on the size and shape of the simulation domain.

Accordingly, when averaging the experimental covari-

ances or variograms of a set of realizations drawn inde-

pendently, the fluctuation variance should tend to zero as

the number of realizations becomes very large. This fact

agrees with the examples shown in the previous subsec-

tions, as the average experimental covariance or vari-

ogram is seen to get closer to the theoretical model when

the number of realizations increases (Table 1). Such a

result corroborates that the theoretical covariance of the

simulated random field, as calculated in Eq. (5), matches

the desired covariance model, i.e., that the proposed

spectral-turning bands algorithm generates realizations

that reproduce the spatial correlation structure of the

target random field.

Fig. 6 Realization of a vector

Gaussian random field with a

correlation structure given by a

bilinear coregionalization model

Fig. 7 Experimental

covariances for 100 realizations

(green dashed lines), average of

experimental covariances (blue

stars) and theoretical variogram

models (black solid lines)

(bilinear coregionalization

model). From left to right and

top to bottom covariances for

first component, covariances for

second component, and cross-

covariances
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5 Conclusions

We proposed a simulation algorithm having several nice

features: (i) accuracy: the simulated random fields have the

desired covariance structure; (ii) speed: the algorithm works

very fast and lends itself to parallel computing; (iii) memory

storage requirements: the entire field can be simulated pro-

gressively, with no need to be stored in random access

memory; (iv) versatility: one can simulate any vector random

field possessing continuous and absolutely integrable

covariance functions,with any number of components (P), in

any workspace dimension (d), for any number (N) of the

target locations and any configuration of these locations

(evenly spaced or not). The simulation at non-evenly spaced

locations is a frequent problem in geostatistical applications,

where it is of interest to condition the realizations to data

known at scattered locations in space (Chilès and Delfiner

2012). The applicability of the algorithm has been demon-

strated through several examples, where the vector compo-

nents exhibit different spatial behaviors, such as their

smoothness or their correlation ranges, which go well

beyond the linear coregionalizationmodel classically used in

geostatistics.
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Appendix: proof of equations (14), (16) and (17)

Let Y0 be a scalar random field. The random field regu-

larized by a sampling function xrð�Þ being the indicator

function of the ball of Rd with arbitrary radius r is defined

as (Chilès and Delfiner 2012)

YrðxÞ ¼
Z
Rd

Y0ðxþ tÞxrðtÞ dt:

If Y0 is a second-order stationary random field with

covariance C0ðhÞ, then Yr is also a second-order stationary

random field, therefore one can define the following

covariances that depend only on h.

The covariance between Y0ðxþ hÞ and YrðxÞ is

C0rðhÞ ¼
Z
Rd

EfY0ðxþ hÞ � Y0ðxþ tÞgxrðtÞ dt

¼
Z
Rd

C0ðh� tÞxrðtÞ dt;

that is

C0r ¼ C0 � xr: ð18Þ

Similarly, the covariance between Yrðxþ hÞ and Yr0 ðxÞ is

(Chilès and Delfiner 2012)

Crr0 ¼ C0 � ð �xr � xr0 Þ ð19Þ

with �xðtÞ ¼ xð�tÞ.
Since the Fourier transformation exchanges convolution

and multiplication, Eqs. (18) and (19) in terms of Fourier

transforms follow respectively, as:

f0r ¼f00 � nxr

frr0 ¼f00 � n �xr
� nxr0

;

where f00 is the spectral density of Y0, and nxr
, n �xr

and nxr0

are the Fourier transforms of xr, �xr and xr0 , respectively.

As xr is the indicator of a ball with radius r, one has

nxr
¼ n �xr

¼ nð�; rÞ (Eq. (15)) (Gradshtein and Ryzhik

1965); likewise, nxr0
¼ nð�; r0Þ.
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